/usr/share/Yap/clpr/fourmotz_r.pl is in yap 5.1.3-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 | /* $Id: fourmotz_r.pl,v 1.1 2008/03/13 17:16:43 vsc Exp $
Part of CLP(R) (Constraint Logic Programming over Reals)
Author: Leslie De Koninck
E-mail: Leslie.DeKoninck@cs.kuleuven.be
WWW: http://www.swi-prolog.org
http://www.ai.univie.ac.at/cgi-bin/tr-online?number+95-09
Copyright (C): 2004, K.U. Leuven and
1992-1995, Austrian Research Institute for
Artificial Intelligence (OFAI),
Vienna, Austria
This software is part of Leslie De Koninck's master thesis, supervised
by Bart Demoen and daily advisor Tom Schrijvers. It is based on CLP(Q,R)
by Christian Holzbaur for SICStus Prolog and distributed under the
license details below with permission from all mentioned authors.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
As a special exception, if you link this library with other files,
compiled with a Free Software compiler, to produce an executable, this
library does not by itself cause the resulting executable to be covered
by the GNU General Public License. This exception does not however
invalidate any other reasons why the executable file might be covered by
the GNU General Public License.
*/
:- module(fourmotz_r,
[
fm_elim/3
]).
:- use_module(bv_r,
[
allvars/2,
basis_add/2,
detach_bounds/1,
pivot/5,
var_with_def_intern/4
]).
:- use_module('../clpqr/class',
[
class_allvars/2
]).
:- use_module('../clpqr/project',
[
drop_dep/1,
drop_dep_one/1,
make_target_indep/2
]).
:- use_module('../clpqr/redund',
[
redundancy_vars/1
]).
:- use_module(store_r,
[
add_linear_11/3,
add_linear_f1/4,
indep/2,
nf_coeff_of/3,
normalize_scalar/2
]).
fm_elim(Vs,Target,Pivots) :-
prefilter(Vs,Vsf),
fm_elim_int(Vsf,Target,Pivots).
% prefilter(Vars,Res)
%
% filters out target variables and variables that do not occur in bounded linear equations.
% Stores that the variables in Res are to be kept independent.
prefilter([],[]).
prefilter([V|Vs],Res) :-
( get_attr(V,itf,Att),
arg(9,Att,n),
occurs(V) % V is a nontarget variable that occurs in a bounded linear equation
-> Res = [V|Tail],
setarg(10,Att,keep_indep),
prefilter(Vs,Tail)
; prefilter(Vs,Res)
).
%
% the target variables are marked with an attribute, and we get a list
% of them as an argument too
%
fm_elim_int([],_,Pivots) :- % done
unkeep(Pivots).
fm_elim_int(Vs,Target,Pivots) :-
Vs = [_|_],
( best(Vs,Best,Rest)
-> occurences(Best,Occ),
elim_min(Best,Occ,Target,Pivots,NewPivots)
; % give up
NewPivots = Pivots,
Rest = []
),
fm_elim_int(Rest,Target,NewPivots).
% best(Vs,Best,Rest)
%
% Finds the variable with the best result (lowest Delta) in fm_cp_filter
% and returns the other variables in Rest.
best(Vs,Best,Rest) :-
findall(Delta-N,fm_cp_filter(Vs,Delta,N),Deltas),
keysort(Deltas,[_-N|_]),
select_nth(Vs,N,Best,Rest).
% fm_cp_filter(Vs,Delta,N)
%
% For an indepenent variable V in Vs, which is the N'th element in Vs,
% find how many inequalities are generated when this variable is eliminated.
% Note that target variables and variables that only occur in unbounded equations
% should have been removed from Vs via prefilter/2
fm_cp_filter(Vs,Delta,N) :-
length(Vs,Len), % Len = number of variables in Vs
mem(Vs,X,Vst), % Selects a variable X in Vs, Vst is the list of elements after X in Vs
get_attr(X,itf,Att),
arg(4,Att,lin(Lin)),
arg(5,Att,order(OrdX)),
arg(9,Att,n), % no target variable
indep(Lin,OrdX), % X is an independent variable
occurences(X,Occ),
Occ = [_|_],
cp_card(Occ,0,Lnew),
length(Occ,Locc),
Delta is Lnew-Locc,
length(Vst,Vstl),
N is Len-Vstl. % X is the Nth element in Vs
% mem(Xs,X,XsT)
%
% If X is a member of Xs, XsT is the list of elements after X in Xs.
mem([X|Xs],X,Xs).
mem([_|Ys],X,Xs) :- mem(Ys,X,Xs).
% select_nth(List,N,Nth,Others)
%
% Selects the N th element of List, stores it in Nth and returns the rest of the list in Others.
select_nth(List,N,Nth,Others) :-
select_nth(List,1,N,Nth,Others).
select_nth([X|Xs],N,N,X,Xs) :- !.
select_nth([Y|Ys],M,N,X,[Y|Xs]) :-
M1 is M+1,
select_nth(Ys,M1,N,X,Xs).
%
% fm_detach + reverse_pivot introduce indep t_none, which
% invalidates the invariants
%
elim_min(V,Occ,Target,Pivots,NewPivots) :-
crossproduct(Occ,New,[]),
activate_crossproduct(New),
reverse_pivot(Pivots),
fm_detach(Occ),
allvars(V,All),
redundancy_vars(All), % only for New \== []
make_target_indep(Target,NewPivots),
drop_dep(All).
%
% restore NF by reverse pivoting
%
reverse_pivot([]).
reverse_pivot([I:D|Ps]) :-
get_attr(D,itf,AttD),
arg(2,AttD,type(Dt)),
setarg(11,AttD,n), % no longer
get_attr(I,itf,AttI),
arg(2,AttI,type(It)),
arg(5,AttI,order(OrdI)),
arg(6,AttI,class(ClI)),
pivot(D,ClI,OrdI,Dt,It),
reverse_pivot(Ps).
% unkeep(Pivots)
%
%
unkeep([]).
unkeep([_:D|Ps]) :-
get_attr(D,itf,Att),
setarg(11,Att,n),
drop_dep_one(D),
unkeep(Ps).
%
% All we drop are bounds
%
fm_detach( []).
fm_detach([V:_|Vs]) :-
detach_bounds(V),
fm_detach(Vs).
% activate_crossproduct(Lst)
%
% For each inequality Lin =< 0 (or Lin < 0) in Lst, a new variable is created:
% Var = Lin and Var =< 0 (or Var < 0). Var is added to the basis.
activate_crossproduct([]).
activate_crossproduct([lez(Strict,Lin)|News]) :-
var_with_def_intern(t_u(0.0),Var,Lin,Strict),
% Var belongs to same class as elements in Lin
basis_add(Var,_),
activate_crossproduct(News).
% ------------------------------------------------------------------------------
% crossproduct(Lst,Res,ResTail)
%
% See crossproduct/4
% This predicate each time puts the next element of Lst as First in crossproduct/4
% and lets the rest be Next.
crossproduct([]) --> [].
crossproduct([A|As]) -->
crossproduct(As,A),
crossproduct(As).
% crossproduct(Next,First,Res,ResTail)
%
% Eliminates a variable in linear equations First + Next and stores the generated
% inequalities in Res.
% Let's say A:K1 = First and B:K2 = first equation in Next.
% A = ... + K1*V + ...
% B = ... + K2*V + ...
% Let K = -K2/K1
% then K*A + B = ... + 0*V + ...
% from the bounds of A and B, via cross_lower/7 and cross_upper/7, new inequalities
% are generated. Then the same is done for B:K2 = next element in Next.
crossproduct([],_) --> [].
crossproduct([B:Kb|Bs],A:Ka) -->
{
get_attr(A,itf,AttA),
arg(2,AttA,type(Ta)),
arg(3,AttA,strictness(Sa)),
arg(4,AttA,lin(LinA)),
get_attr(B,itf,AttB),
arg(2,AttB,type(Tb)),
arg(3,AttB,strictness(Sb)),
arg(4,AttB,lin(LinB)),
K is -Kb/Ka,
add_linear_f1(LinA,K,LinB,Lin) % Lin doesn't contain the target variable anymore
},
( { K > 1.0e-10 } % K > 0: signs were opposite
-> { Strict is Sa \/ Sb },
cross_lower(Ta,Tb,K,Lin,Strict),
cross_upper(Ta,Tb,K,Lin,Strict)
; % La =< A =< Ua -> -Ua =< -A =< -La
{
flip(Ta,Taf),
flip_strict(Sa,Saf),
Strict is Saf \/ Sb
},
cross_lower(Taf,Tb,K,Lin,Strict),
cross_upper(Taf,Tb,K,Lin,Strict)
),
crossproduct(Bs,A:Ka).
% cross_lower(Ta,Tb,K,Lin,Strict,Res,ResTail)
%
% Generates a constraint following from the bounds of A and B.
% When A = LinA and B = LinB then Lin = K*LinA + LinB. Ta is the type
% of A and Tb is the type of B. Strict is the union of the strictness
% of A and B. If K is negative, then Ta should have been flipped (flip/2).
% The idea is that if La =< A =< Ua and Lb =< B =< Ub (=< can also be <)
% then if K is positive, K*La + Lb =< K*A + B =< K*Ua + Ub.
% if K is negative, K*Ua + Lb =< K*A + B =< K*La + Ub.
% This predicate handles the first inequality and adds it to Res in the form
% lez(Sl,Lhs) meaning K*La + Lb - (K*A + B) =< 0 or K*Ua + Lb - (K*A + B) =< 0
% with Sl being the strictness and Lhs the lefthandside of the equation.
% See also cross_upper/7
cross_lower(Ta,Tb,K,Lin,Strict) -->
{
lower(Ta,La),
lower(Tb,Lb),
!,
L is K*La+Lb,
normalize_scalar(L,Ln),
add_linear_f1(Lin,-1.0,Ln,Lhs),
Sl is Strict >> 1 % normalize to upper bound
},
[ lez(Sl,Lhs) ].
cross_lower(_,_,_,_,_) --> [].
% cross_upper(Ta,Tb,K,Lin,Strict,Res,ResTail)
%
% See cross_lower/7
% This predicate handles the second inequality:
% -(K*Ua + Ub) + K*A + B =< 0 or -(K*La + Ub) + K*A + B =< 0
cross_upper(Ta,Tb,K,Lin,Strict) -->
{
upper(Ta,Ua),
upper(Tb,Ub),
!,
U is -(K*Ua+Ub),
normalize_scalar(U,Un),
add_linear_11(Un,Lin,Lhs),
Su is Strict /\ 1 % normalize to upper bound
},
[ lez(Su,Lhs) ].
cross_upper(_,_,_,_,_) --> [].
% lower(Type,Lowerbound)
%
% Returns the lowerbound of type Type if it has one.
% E.g. if type = t_l(L) then Lowerbound is L,
% if type = t_lU(L,U) then Lowerbound is L,
% if type = t_u(U) then fails
lower(t_l(L),L).
lower(t_lu(L,_),L).
lower(t_L(L),L).
lower(t_Lu(L,_),L).
lower(t_lU(L,_),L).
% upper(Type,Upperbound)
%
% Returns the upperbound of type Type if it has one.
% See lower/2
upper(t_u(U),U).
upper(t_lu(_,U),U).
upper(t_U(U),U).
upper(t_Lu(_,U),U).
upper(t_lU(_,U),U).
% flip(Type,FlippedType)
%
% Flips the lower and upperbound, so the old lowerbound becomes the new upperbound and
% vice versa.
flip(t_l(X),t_u(X)).
flip(t_u(X),t_l(X)).
flip(t_lu(X,Y),t_lu(Y,X)).
flip(t_L(X),t_u(X)).
flip(t_U(X),t_l(X)).
flip(t_lU(X,Y),t_lu(Y,X)).
flip(t_Lu(X,Y),t_lu(Y,X)).
% flip_strict(Strict,FlippedStrict)
%
% Does what flip/2 does, but for the strictness.
flip_strict(0,0).
flip_strict(1,2).
flip_strict(2,1).
flip_strict(3,3).
% cp_card(Lst,CountIn,CountOut)
%
% Counts the number of bounds that may generate an inequality in
% crossproduct/3
cp_card([],Ci,Ci).
cp_card([A|As],Ci,Co) :-
cp_card(As,A,Ci,Cii),
cp_card(As,Cii,Co).
% cp_card(Next,First,CountIn,CountOut)
%
% Counts the number of bounds that may generate an inequality in
% crossproduct/4.
cp_card([],_,Ci,Ci).
cp_card([B:Kb|Bs],A:Ka,Ci,Co) :-
get_attr(A,itf,AttA),
arg(2,AttA,type(Ta)),
get_attr(B,itf,AttB),
arg(2,AttB,type(Tb)),
K is -Kb/Ka,
( K > 1.0e-10 % K > 0: signs were opposite
-> cp_card_lower(Ta,Tb,Ci,Cii),
cp_card_upper(Ta,Tb,Cii,Ciii)
; flip(Ta,Taf),
cp_card_lower(Taf,Tb,Ci,Cii),
cp_card_upper(Taf,Tb,Cii,Ciii)
),
cp_card(Bs,A:Ka,Ciii,Co).
% cp_card_lower(TypeA,TypeB,SIn,SOut)
%
% SOut = SIn + 1 if both TypeA and TypeB have a lowerbound.
cp_card_lower(Ta,Tb,Si,So) :-
lower(Ta,_),
lower(Tb,_),
!,
So is Si+1.
cp_card_lower(_,_,Si,Si).
% cp_card_upper(TypeA,TypeB,SIn,SOut)
%
% SOut = SIn + 1 if both TypeA and TypeB have an upperbound.
cp_card_upper(Ta,Tb,Si,So) :-
upper(Ta,_),
upper(Tb,_),
!,
So is Si+1.
cp_card_upper(_,_,Si,Si).
% ------------------------------------------------------------------------------
% occurences(V,Occ)
%
% Returns in Occ the occurrences of variable V in the linear equations of dependent variables
% with bound =\= t_none in the form of D:K where D is a dependent variable and K is the scalar
% of V in the linear equation of D.
occurences(V,Occ) :-
get_attr(V,itf,Att),
arg(5,Att,order(OrdV)),
arg(6,Att,class(C)),
class_allvars(C,All),
occurences(All,OrdV,Occ).
% occurences(De,OrdV,Occ)
%
% Returns in Occ the occurrences of variable V with order OrdV in the linear equations of
% dependent variables De with bound =\= t_none in the form of D:K where D is a dependent
% variable and K is the scalar of V in the linear equation of D.
occurences(De,_,[]) :-
var(De),
!.
occurences([D|De],OrdV,Occ) :-
( get_attr(D,itf,Att),
arg(2,Att,type(Type)),
arg(4,Att,lin(Lin)),
occ_type_filter(Type),
nf_coeff_of(Lin,OrdV,K)
-> Occ = [D:K|Occt],
occurences(De,OrdV,Occt)
; occurences(De,OrdV,Occ)
).
% occ_type_filter(Type)
%
% Succeeds when Type is any other type than t_none. Is used in occurences/3 and occurs/2
occ_type_filter(t_l(_)).
occ_type_filter(t_u(_)).
occ_type_filter(t_lu(_,_)).
occ_type_filter(t_L(_)).
occ_type_filter(t_U(_)).
occ_type_filter(t_lU(_,_)).
occ_type_filter(t_Lu(_,_)).
% occurs(V)
%
% Checks whether variable V occurs in a linear equation of a dependent variable with a bound
% =\= t_none.
occurs(V) :-
get_attr(V,itf,Att),
arg(5,Att,order(OrdV)),
arg(6,Att,class(C)),
class_allvars(C,All),
occurs(All,OrdV).
% occurs(De,OrdV)
%
% Checks whether variable V with order OrdV occurs in a linear equation of any dependent variable
% in De with a bound =\= t_none.
occurs(De,_) :-
var(De),
!,
fail.
occurs([D|De],OrdV) :-
( get_attr(D,itf,Att),
arg(2,Att,type(Type)),
arg(4,Att,lin(Lin)),
occ_type_filter(Type),
nf_coeff_of(Lin,OrdV,_)
-> true
; occurs(De,OrdV)
).
|