This file is indexed.

/usr/share/Yap/clpr/store_r.pl is in yap 5.1.3-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
/*  $Id: store_r.pl,v 1.1 2008/03/13 17:16:43 vsc Exp $

    Part of CLP(R) (Constraint Logic Programming over Reals)

    Author:        Leslie De Koninck
    E-mail:        Leslie.DeKoninck@cs.kuleuven.be
    WWW:           http://www.swi-prolog.org
		   http://www.ai.univie.ac.at/cgi-bin/tr-online?number+95-09
    Copyright (C): 2004, K.U. Leuven and
		   1992-1995, Austrian Research Institute for
		              Artificial Intelligence (OFAI),
			      Vienna, Austria

    This software is part of Leslie De Koninck's master thesis, supervised
    by Bart Demoen and daily advisor Tom Schrijvers.  It is based on CLP(Q,R)
    by Christian Holzbaur for SICStus Prolog and distributed under the
    license details below with permission from all mentioned authors.

    This program is free software; you can redistribute it and/or
    modify it under the terms of the GNU General Public License
    as published by the Free Software Foundation; either version 2
    of the License, or (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU Lesser General Public
    License along with this library; if not, write to the Free Software
    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA

    As a special exception, if you link this library with other files,
    compiled with a Free Software compiler, to produce an executable, this
    library does not by itself cause the resulting executable to be covered
    by the GNU General Public License. This exception does not however
    invalidate any other reasons why the executable file might be covered by
    the GNU General Public License.
*/

:- module(store_r,
	[
	    add_linear_11/3,
	    add_linear_f1/4,
	    add_linear_ff/5,
	    normalize_scalar/2,
	    delete_factor/4,
	    mult_linear_factor/3,
	    nf_rhs_x/4,
	    indep/2,
	    isolate/3,
	    nf_substitute/4,
	    mult_hom/3,
	    nf2sum/3,
	    nf_coeff_of/3,
	    renormalize/2	
	]).

% normalize_scalar(S,[N,Z])
%
% Transforms a scalar S into a linear expression [S,0]

normalize_scalar(S,[S,0.0]).

% renormalize(List,Lin)
%
% Renormalizes the not normalized linear expression in List into
% a normalized one. It does so to take care of unifications.
% (e.g. when a variable X is bound to a constant, the constant is added to
% the constant part of the linear expression; when a variable X is bound to
% another variable Y, the scalars of both are added)

renormalize([I,R|Hom],Lin) :-
	length(Hom,Len),
	renormalize_log(Len,Hom,[],Lin0),
	add_linear_11([I,R],Lin0,Lin).

% renormalize_log(Len,Hom,HomTail,Lin)
%
% Logarithmically renormalizes the homogene part of a not normalized
% linear expression. See also renormalize/2.

renormalize_log(1,[Term|Xs],Xs,Lin) :-
	!,
	Term = l(X*_,_),
	renormalize_log_one(X,Term,Lin).
renormalize_log(2,[A,B|Xs],Xs,Lin) :-
	!,
	A = l(X*_,_),
	B = l(Y*_,_),
	renormalize_log_one(X,A,LinA),
	renormalize_log_one(Y,B,LinB),
	add_linear_11(LinA,LinB,Lin).
renormalize_log(N,L0,L2,Lin) :-
	P is N>>1,
	Q is N-P,
	renormalize_log(P,L0,L1,Lp),
	renormalize_log(Q,L1,L2,Lq),
	add_linear_11(Lp,Lq,Lin).

% renormalize_log_one(X,Term,Res)
%
% Renormalizes a term in X: if X is a nonvar, the term becomes a scalar. 

renormalize_log_one(X,Term,Res) :-
	var(X),
	Term = l(X*K,_),
	get_attr(X,itf,Att),
	arg(5,Att,order(OrdX)), % Order might have changed
	Res = [0.0,0.0,l(X*K,OrdX)].
renormalize_log_one(X,Term,Res) :-
	nonvar(X),
	Term = l(X*K,_),
	Xk is X*K,
	normalize_scalar(Xk,Res).

% ----------------------------- sparse vector stuff ---------------------------- %

% add_linear_ff(LinA,Ka,LinB,Kb,LinC)
%
% Linear expression LinC is the result of the addition of the 2 linear expressions
% LinA and LinB, each one multiplied by a scalar (Ka for LinA and Kb for LinB).

add_linear_ff(LinA,Ka,LinB,Kb,LinC) :-
	LinA = [Ia,Ra|Ha],
	LinB = [Ib,Rb|Hb],
	LinC = [Ic,Rc|Hc],
	Ic is Ia*Ka+Ib*Kb,
	Rc is Ra*Ka+Rb*Kb,
 	add_linear_ffh(Ha,Ka,Hb,Kb,Hc).

% add_linear_ffh(Ha,Ka,Hb,Kb,Hc)
%
% Homogene part Hc is the result of the addition of the 2 homogene parts Ha and Hb,
% each one multiplied by a scalar (Ka for Ha and Kb for Hb)

add_linear_ffh([],_,Ys,Kb,Zs) :- mult_hom(Ys,Kb,Zs).
add_linear_ffh([l(X*Kx,OrdX)|Xs],Ka,Ys,Kb,Zs) :-
	add_linear_ffh(Ys,X,Kx,OrdX,Xs,Zs,Ka,Kb).

% add_linear_ffh(Ys,X,Kx,OrdX,Xs,Zs,Ka,Kb)
%
% Homogene part Zs is the result of the addition of the 2 homogene parts Ys and
% [l(X*Kx,OrdX)|Xs], each one multiplied by a scalar (Ka for [l(X*Kx,OrdX)|Xs] and Kb for Ys)

add_linear_ffh([],X,Kx,OrdX,Xs,Zs,Ka,_) :- mult_hom([l(X*Kx,OrdX)|Xs],Ka,Zs).
add_linear_ffh([l(Y*Ky,OrdY)|Ys],X,Kx,OrdX,Xs,Zs,Ka,Kb) :-
	compare(Rel,OrdX,OrdY),
	(   Rel = (=)
	->  Kz is Kx*Ka+Ky*Kb,
	    (   % Kz =:= 0
		Kz =< 1.0e-10,
		Kz >= -1.0e-10
	    ->  add_linear_ffh(Xs,Ka,Ys,Kb,Zs)
	    ;   Zs = [l(X*Kz,OrdX)|Ztail],
		add_linear_ffh(Xs,Ka,Ys,Kb,Ztail)
	    )
	;   Rel = (<)
	->  Zs = [l(X*Kz,OrdX)|Ztail],
	    Kz is Kx*Ka,
	    add_linear_ffh(Xs,Y,Ky,OrdY,Ys,Ztail,Kb,Ka)
	;   Rel = (>)
	->  Zs = [l(Y*Kz,OrdY)|Ztail],
	    Kz is Ky*Kb,
	    add_linear_ffh(Ys,X,Kx,OrdX,Xs,Ztail,Ka,Kb)
     	).

% add_linear_f1(LinA,Ka,LinB,LinC)
%
% special case of add_linear_ff with Kb = 1

add_linear_f1(LinA,Ka,LinB,LinC) :-
	LinA = [Ia,Ra|Ha],
	LinB = [Ib,Rb|Hb],
	LinC = [Ic,Rc|Hc],
	Ic is Ia*Ka+Ib,
	Rc is Ra*Ka+Rb,
	add_linear_f1h(Ha,Ka,Hb,Hc).

% add_linear_f1h(Ha,Ka,Hb,Hc)
%
% special case of add_linear_ffh/5 with Kb = 1

add_linear_f1h([],_,Ys,Ys).
add_linear_f1h([l(X*Kx,OrdX)|Xs],Ka,Ys,Zs) :-
	add_linear_f1h(Ys,X,Kx,OrdX,Xs,Zs,Ka).

% add_linear_f1h(Ys,X,Kx,OrdX,Xs,Zs,Ka)
%
% special case of add_linear_ffh/8 with Kb = 1

add_linear_f1h([],X,Kx,OrdX,Xs,Zs,Ka) :- mult_hom([l(X*Kx,OrdX)|Xs],Ka,Zs).
add_linear_f1h([l(Y*Ky,OrdY)|Ys],X,Kx,OrdX,Xs,Zs,Ka) :-
	compare(Rel,OrdX,OrdY),
	(   Rel = (=)
	->  Kz is Kx*Ka+Ky,
	    (   % Kz =:= 0.0
		Kz =< 1.0e-10,
		Kz >= -1.0e-10
	    ->  add_linear_f1h(Xs,Ka,Ys,Zs)
	    ;   Zs = [l(X*Kz,OrdX)|Ztail],
		add_linear_f1h(Xs,Ka,Ys,Ztail)
	    )
	;   Rel = (<)
	->  Zs = [l(X*Kz,OrdX)|Ztail],
	    Kz is Kx*Ka,
	    add_linear_f1h(Xs,Ka,[l(Y*Ky,OrdY)|Ys],Ztail)
 	;   Rel = (>)
	->  Zs = [l(Y*Ky,OrdY)|Ztail],
	    add_linear_f1h(Ys,X,Kx,OrdX,Xs,Ztail,Ka)
	).

% add_linear_11(LinA,LinB,LinC)
%
% special case of add_linear_ff with Ka = 1 and Kb = 1

add_linear_11(LinA,LinB,LinC) :-
	LinA = [Ia,Ra|Ha],
	LinB = [Ib,Rb|Hb],
	LinC = [Ic,Rc|Hc],
	Ic is Ia+Ib,
	Rc is Ra+Rb,
	add_linear_11h(Ha,Hb,Hc).

% add_linear_11h(Ha,Hb,Hc)
%
% special case of add_linear_ffh/5 with Ka = 1 and Kb = 1

add_linear_11h([],Ys,Ys).
add_linear_11h([l(X*Kx,OrdX)|Xs],Ys,Zs) :-
	add_linear_11h(Ys,X,Kx,OrdX,Xs,Zs).

% add_linear_11h(Ys,X,Kx,OrdX,Xs,Zs)
%
% special case of add_linear_ffh/8 with Ka = 1 and Kb = 1

add_linear_11h([],X,Kx,OrdX,Xs,[l(X*Kx,OrdX)|Xs]).
add_linear_11h([l(Y*Ky,OrdY)|Ys],X,Kx,OrdX,Xs,Zs) :-
	compare(Rel,OrdX,OrdY),
	(   Rel = (=)
	->  Kz is Kx+Ky,
	    (   % Kz =:= 0.0
		Kz =< 1.0e-10,
		Kz >= -1.0e-10
	    ->  add_linear_11h(Xs,Ys,Zs)
	    ;   Zs = [l(X*Kz,OrdX)|Ztail],
		add_linear_11h(Xs,Ys,Ztail)
	    )
	;   Rel = (<)
	->  Zs = [l(X*Kx,OrdX)|Ztail],
	    add_linear_11h(Xs,Y,Ky,OrdY,Ys,Ztail)
	;   Rel = (>)
	->  Zs = [l(Y*Ky,OrdY)|Ztail],
	    add_linear_11h(Ys,X,Kx,OrdX,Xs,Ztail)
	).

% mult_linear_factor(Lin,K,Res)
%
% Linear expression Res is the result of multiplication of linear 
% expression Lin by scalar K

mult_linear_factor(Lin,K,Mult) :-
	TestK is K - 1.0,	% K =:= 1
	TestK =< 1.0e-10,
	TestK >= -1.0e-10,	% avoid copy
	!,
	Mult = Lin.
mult_linear_factor(Lin,K,Res) :-
	Lin = [I,R|Hom],
	Res = [Ik,Rk|Mult],
	Ik is I*K,
	Rk is R*K,
	mult_hom(Hom,K,Mult).

% mult_hom(Hom,K,Res)
%
% Homogene part Res is the result of multiplication of homogene part
% Hom by scalar K

mult_hom([],_,[]).
mult_hom([l(A*Fa,OrdA)|As],F,[l(A*Fan,OrdA)|Afs]) :-
	Fan is F*Fa,
	mult_hom(As,F,Afs).

% nf_substitute(Ord,Def,Lin,Res)
%
% Linear expression Res is the result of substitution of Var in
% linear expression Lin, by its definition in the form of linear
% expression Def

nf_substitute(OrdV,LinV,LinX,LinX1) :-
	delete_factor(OrdV,LinX,LinW,K),
	add_linear_f1(LinV,K,LinW,LinX1).

% delete_factor(Ord,Lin,Res,Coeff)
%
% Linear expression Res is the result of the deletion of the term
% Var*Coeff where Var has ordering Ord from linear expression Lin

delete_factor(OrdV,Lin,Res,Coeff) :-
	Lin = [I,R|Hom],
	Res = [I,R|Hdel],
	delete_factor_hom(OrdV,Hom,Hdel,Coeff).

% delete_factor_hom(Ord,Hom,Res,Coeff)
%
% Homogene part Res is the result of the deletion of the term
% Var*Coeff from homogene part Hom

delete_factor_hom(VOrd,[Car|Cdr],RCdr,RKoeff) :-
	Car = l(_*Koeff,Ord),
	compare(Rel,VOrd,Ord),
	(   Rel= (=)
	->  RCdr = Cdr,
	    RKoeff=Koeff
	;   Rel= (>)
	->  RCdr = [Car|RCdr1],
	    delete_factor_hom(VOrd,Cdr,RCdr1,RKoeff)
	).


% nf_coeff_of(Lin,OrdX,Coeff)
%
% Linear expression Lin contains the term l(X*Coeff,OrdX)

nf_coeff_of([_,_|Hom],VOrd,Coeff) :-
	nf_coeff_hom(Hom,VOrd,Coeff).

% nf_coeff_hom(Lin,OrdX,Coeff)
%
% Linear expression Lin contains the term l(X*Coeff,OrdX) where the
% order attribute of X = OrdX

nf_coeff_hom([l(_*K,OVar)|Vs],OVid,Coeff) :-
	compare(Rel,OVid,OVar),
	(   Rel = (=)
	->  Coeff = K
	;   Rel = (>)
	->  nf_coeff_hom(Vs,OVid,Coeff)
	).

% nf_rhs_x(Lin,OrdX,Rhs,K)
%
% Rhs = R + I where Lin = [I,R|Hom] and l(X*K,OrdX) is a term of Hom

nf_rhs_x(Lin,OrdX,Rhs,K) :-
	Lin = [I,R|Tail],
	nf_coeff_hom(Tail,OrdX,K),
	Rhs is R+I.	% late because X may not occur in H

% isolate(OrdN,Lin,Lin1)
%
% Linear expression Lin1 is the result of the transformation of linear expression
% Lin = 0 which contains the term l(New*K,OrdN) into an equivalent expression Lin1 = New.

isolate(OrdN,Lin,Lin1) :-
	delete_factor(OrdN,Lin,Lin0,Coeff),
	K is -1.0/Coeff,
	mult_linear_factor(Lin0,K,Lin1).

% indep(Lin,OrdX)
%
% succeeds if Lin = [0,_|[l(X*1,OrdX)]]

indep(Lin,OrdX) :-
	Lin = [I,_|[l(_*K,OrdY)]],
	OrdX == OrdY,
	% K =:= 1.0
	TestK is K - 1.0,
	TestK =< 1.0e-10,
	TestK >= -1.0e-10,
	% I =:= 0
	I =< 1.0e-10,
	I >= -1.0e-10.

% nf2sum(Lin,Sofar,Term)
%
% Transforms a linear expression into a sum
% (e.g. the expression [5,_,[l(X*2,OrdX),l(Y*-1,OrdY)]] gets transformed into 5 + 2*X - Y)

nf2sum([],I,I).
nf2sum([X|Xs],I,Sum) :-
	(   % I =:= 0.0
	    I =< 1.0e-10,
	    I >= -1.0e-10
	->  X = l(Var*K,_),
 	    (   % K =:= 1.0
		TestK is K - 1.0,
		TestK =< 1.0e-10,
		TestK >= -1.0e-10
	    ->  hom2sum(Xs,Var,Sum)
	    ;   % K =:= -1.0
		TestK is K + 1.0,
		TestK =< 1.0e-10,
		TestK >= -1.0e-10
	    ->  hom2sum(Xs,-Var,Sum)
	    ;	hom2sum(Xs,K*Var,Sum)
	    )
	;   hom2sum([X|Xs],I,Sum)
 	).

% hom2sum(Hom,Sofar,Term) 
% 
% Transforms a linear expression into a sum
% this predicate handles all but the first term
% (the first term does not need a concatenation symbol + or -)
% see also nf2sum/3

hom2sum([],Term,Term).
hom2sum([l(Var*K,_)|Cs],Sofar,Term) :-
	(   % K =:= 1.0
	    TestK is K - 1.0,
	    TestK =< 1.0e-10,
	    TestK >= -1.0e-10
	->  Next = Sofar + Var
	;   % K =:= -1.0
	    TestK is K + 1.0,
	    TestK =< 1.0e-10,
	    TestK >= -1.0e-10
	->  Next = Sofar - Var
	;   % K < 0.0
	    K < -1.0e-10
	->  Ka is -K,
	    Next = Sofar - Ka*Var
	;   Next = Sofar + K*Var
	),
	hom2sum(Cs,Next,Term).