This file is indexed.

/usr/share/Yap/ugraphs.yap is in yap 5.1.3-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
%   File   : GRAPHS.PL
%   Author : R.A.O'Keefe
%   Updated: 20 March 1984
%   Purpose: Graph-processing utilities.

%
% adapted to support some of the functionality of the SICStus ugraphs library
% by Vitor Santos Costa.
%
 
/*  The P-representation of a graph is a list of (from-to) vertex
    pairs, where the pairs can be in any old order.  This form is
    convenient for input/output.
 
    The S-representation of a graph is a list of (vertex-neighbours)
    pairs, where the pairs are in standard order (as produced by
    keysort) and the neighbours of each vertex are also in standard
    order (as produced by sort).  This form is convenient for many
    calculations.
 
    p_to_s_graph(Pform, Sform) converts a P- to an S- representation.
    s_to_p_graph(Sform, Pform) converts an S- to a P- representation.
 
    warshall(Graph, Closure) takes the transitive closure of a graph
    in S-form.  (NB: this is not the reflexive transitive closure).
 
    s_to_p_trans(Sform, Pform) converts Sform to Pform, transposed.
 
    p_transpose transposes a graph in P-form, cost O(|E|).
    s_transpose transposes a graph in S-form, cost O(|V|^2).
*/

:- module(ugraphs,
	  [
	   add_vertices/3,
	   add_edges/3,
	   complement/2,
	   compose/3,
	   del_edges/3,
	   del_vertices/3,
	   edges/2,
	   neighbours/3,
	   neighbors/3,
	   reachable/3,
	   top_sort/2,
	   top_sort/3,
	   transitive_closure/2,
	   transpose/2,
	   vertices/2,
	   vertices_edges_to_ugraph/3,
	   ugraph_union/3
	]).

:- use_module(library(lists), [
	append/3,
	member/2,
	memberchk/2
   ]).

:- use_module(library(ordsets), [
	ord_add_element/3,
	ord_subtract/3,
	ord_union/3,
	ord_union/4
   ]).


/*
 
:- public
	p_to_s_graph/2,
	s_to_p_graph/2, % edges
	s_to_p_trans/2,
	p_member/3,
	s_member/3,
	p_transpose/2,
	s_transpose/2,
	compose/3,
	top_sort/2,
	vertices/2,
	warshall/2.

:- mode
	vertices(+, -),
	p_to_s_graph(+, -),
	    p_to_s_vertices(+, -),
	    p_to_s_group(+, +, -),
		p_to_s_group(+, +, -, -),
	s_to_p_graph(+, -),
	    s_to_p_graph(+, +, -, -),
	s_to_p_trans(+, -),
	    s_to_p_trans(+, +, -, -),
	p_member(?, ?, +),
	s_member(?, ?, +),
	p_transpose(+, -),
	s_transpose(+, -),
	    s_transpose(+, -, ?, -),
		transpose_s(+, +, +, -),
	compose(+, +, -),
	    compose(+, +, +, -),
		compose1(+, +, +, -),
		    compose1(+, +, +, +, +, +, +, -),
	top_sort(+, -),
	    vertices_and_zeros(+, -, ?),
	    count_edges(+, +, +, -),
		incr_list(+, +, +, -),
	    select_zeros(+, +, -),
	    top_sort(+, -, +, +, +),
		decr_list(+, +, +, -, +, -),
	warshall(+, -),
	    warshall(+, +, -),
		warshall(+, +, +, -).

*/
 
 
%   vertices(S_Graph,  Vertices)
%   strips off the neighbours lists of an S-representation to produce
%   a list of the vertices of the graph.  (It is a characteristic of
%   S-representations that *every* vertex appears, even if it has no
%   neighbours.)
 
vertices([], []) :- !.
vertices([Vertex-_|Graph], [Vertex|Vertices]) :-
	vertices(Graph, Vertices).
 
vertices_edges_to_ugraph(Vertices, Edges, Graph) :-
	sort(Edges, EdgeSet),
	p_to_s_vertices(EdgeSet, IVertexBag),
	append(Vertices, IVertexBag, VertexBag),
	sort(VertexBag, VertexSet),
	p_to_s_group(VertexSet, EdgeSet, Graph).


add_vertices(Graph, Vertices, NewGraph) :-
	msort(Vertices, V1),
	add_vertices_to_s_graph(V1, Graph, NewGraph).
	
add_vertices_to_s_graph(L, [], NL) :- !, add_empty_vertices(L, NL).
add_vertices_to_s_graph([], L, L) :- !.
add_vertices_to_s_graph([V1|VL], [V-Edges|G], NGL) :-
	compare(Res, V1, V),
	add_vertices_to_s_graph(Res, V1, VL, V, Edges, G, NGL).

add_vertices_to_s_graph(=, _, VL, V, Edges, G, [V-Edges|NGL]) :-
	add_vertices_to_s_graph(VL, G, NGL).
add_vertices_to_s_graph(<, V1, VL, V, Edges, G, [V1-[]|NGL]) :-
	add_vertices_to_s_graph(VL, [V-Edges|G], NGL).
add_vertices_to_s_graph(>, V1, VL, V, Edges, G, [V-Edges|NGL]) :-
	add_vertices_to_s_graph([V1|VL], G, NGL).

add_empty_vertices([], []).
add_empty_vertices([V|G], [V-[]|NG]) :-
	add_empty_vertices(G, NG).

%
% unmark a set of vertices plus all edges leading to them.
%
del_vertices(Graph, Vertices, NewGraph) :-
	msort(Vertices, V1),
	(V1 = [] -> Graph = NewGraph ;
	 del_vertices(Graph, V1, V1, NewGraph) ).

del_vertices(G, [], V1, NG) :- !,
	del_remaining_edges_for_vertices(G, V1, NG).
del_vertices([], _, _, []).
del_vertices([V-Edges|G], [V0|Vs], V1, NG) :-  
	compare(Res, V, V0),
	split_on_del_vertices(Res, V,Edges, [V0|Vs], NVs, V1, NG, NGr),
	del_vertices(G, NVs, V1, NGr).

del_remaining_edges_for_vertices([], _, []).
del_remaining_edges_for_vertices([V0-Edges|G], V1, [V0-NEdges|NG]) :-
	ord_subtract(Edges, V1, NEdges),
	del_remaining_edges_for_vertices(G, V1, NG).

split_on_del_vertices(<, V, Edges, Vs, Vs, V1, [V-NEdges|NG], NG) :-
	ord_subtract(Edges, V1, NEdges).
split_on_del_vertices(>, V, Edges, [_|Vs], Vs, V1, [V-NEdges|NG], NG) :-
	ord_subtract(Edges, V1, NEdges).
split_on_del_vertices(=, _, _, [_|Vs], Vs, _, NG, NG).

add_edges(Graph, Edges, NewGraph) :-
	p_to_s_graph(Edges, G1),
	graph_union(Graph, G1, NewGraph).

%   graph_union(+Set1, +Set2, ?Union)
%   is true when Union is the union of Set1 and Set2.  This code is a copy
%   of set union

graph_union(Set1, [], Set1) :- !.
graph_union([], Set2, Set2) :- !.
graph_union([Head1-E1|Tail1], [Head2-E2|Tail2], Union) :-
	compare(Order, Head1, Head2),
	graph_union(Order, Head1-E1, Tail1, Head2-E2, Tail2, Union).

graph_union(=, Head-E1,  Tail1, _-E2,     Tail2, [Head-Es|Union]) :-
	ord_union(E1, E2, Es),
	graph_union(Tail1, Tail2, Union).
graph_union(<, Head1, Tail1, Head2, Tail2, [Head1|Union]) :-
	graph_union(Tail1, [Head2|Tail2], Union).
graph_union(>, Head1, Tail1, Head2, Tail2, [Head2|Union]) :-
	graph_union([Head1|Tail1], Tail2, Union).

del_edges(Graph, Edges, NewGraph) :-
	p_to_s_graph(Edges, G1),
	graph_subtract(Graph, G1, NewGraph).

%   graph_subtract(+Set1, +Set2, ?Difference)
%   is based on ord_subtract
%

graph_subtract(Set1, [], Set1) :- !.
graph_subtract([], _, []).
graph_subtract([Head1-E1|Tail1], [Head2-E2|Tail2], Difference) :-
	compare(Order, Head1, Head2),
	graph_subtract(Order, Head1-E1, Tail1, Head2-E2, Tail2, Difference).

graph_subtract(=, H-E1,     Tail1, _-E2,     Tail2, [H-E|Difference]) :-
	ord_subtract(E1,E2,E),
	graph_subtract(Tail1, Tail2, Difference).
graph_subtract(<, Head1, Tail1, Head2, Tail2, [Head1|Difference]) :-
	graph_subtract(Tail1, [Head2|Tail2], Difference).
graph_subtract(>, Head1, Tail1, _,     Tail2, Difference) :-
	graph_subtract([Head1|Tail1], Tail2, Difference).



edges(Graph, Edges) :- 
	s_to_p_graph(Graph, Edges).

p_to_s_graph(P_Graph, S_Graph) :-
	sort(P_Graph, EdgeSet),
	p_to_s_vertices(EdgeSet, VertexBag),
	sort(VertexBag, VertexSet),
	p_to_s_group(VertexSet, EdgeSet, S_Graph).
 
 
p_to_s_vertices([], []).
p_to_s_vertices([A-Z|Edges], [A,Z|Vertices]) :-
	p_to_s_vertices(Edges, Vertices).
 
 
p_to_s_group([], _, []).
p_to_s_group([Vertex|Vertices], EdgeSet, [Vertex-Neibs|G]) :-
	p_to_s_group(EdgeSet, Vertex, Neibs, RestEdges),
	p_to_s_group(Vertices, RestEdges, G).
 
 
p_to_s_group([V1-X|Edges], V2, [X|Neibs], RestEdges) :- V1 == V2, !,
	p_to_s_group(Edges, V2, Neibs, RestEdges).
p_to_s_group(Edges, _, [], Edges).
 
 
 
s_to_p_graph([], []) :- !.
s_to_p_graph([Vertex-Neibs|G], P_Graph) :-
	s_to_p_graph(Neibs, Vertex, P_Graph, Rest_P_Graph),
	s_to_p_graph(G, Rest_P_Graph).
 
 
s_to_p_graph([], _, P_Graph, P_Graph) :- !.
s_to_p_graph([Neib|Neibs], Vertex, [Vertex-Neib|P], Rest_P) :-
	s_to_p_graph(Neibs, Vertex, P, Rest_P).
 
 
 
s_to_p_trans([], []) :- !.
s_to_p_trans([Vertex-Neibs|G], P_Graph) :-
	s_to_p_trans(Neibs, Vertex, P_Graph, Rest_P_Graph),
	s_to_p_trans(G, Rest_P_Graph).
 
 
s_to_p_trans([], _, P_Graph, P_Graph) :- !.
s_to_p_trans([Neib|Neibs], Vertex, [Neib-Vertex|P], Rest_P) :-
	s_to_p_trans(Neibs, Vertex, P, Rest_P).
 
 
 
transitive_closure(Graph, Closure) :-
	warshall(Graph, Graph, Closure).
 
warshall(Graph, Closure) :-
	warshall(Graph, Graph, Closure).
 
warshall([], Closure, Closure) :- !.
warshall([V-_|G], E, Closure) :-
	memberchk(V-Y, E),	%  Y := E(v)
	warshall(E, V, Y, NewE),
	warshall(G, NewE, Closure).
 
 
warshall([X-Neibs|G], V, Y, [X-NewNeibs|NewG]) :-
	memberchk(V, Neibs),
	!,
	ord_union(Neibs, Y, NewNeibs),
	warshall(G, V, Y, NewG).
warshall([X-Neibs|G], V, Y, [X-Neibs|NewG]) :- !,
	warshall(G, V, Y, NewG).
warshall([], _, _, []).
 
 
 
p_transpose([], []) :- !.
p_transpose([From-To|Edges], [To-From|Transpose]) :-
	p_transpose(Edges, Transpose).
 
 
 
transpose(S_Graph, Transpose) :-
	s_transpose(S_Graph, Base, Base, Transpose).
 
s_transpose(S_Graph, Transpose) :-
	s_transpose(S_Graph, Base, Base, Transpose).
 
s_transpose([], [], Base, Base) :- !.
s_transpose([Vertex-Neibs|Graph], [Vertex-[]|RestBase], Base, Transpose) :-
	s_transpose(Graph, RestBase, Base, SoFar),
	transpose_s(SoFar, Neibs, Vertex, Transpose).
 
transpose_s([Neib-Trans|SoFar], [Neib|Neibs], Vertex,
		[Neib-[Vertex|Trans]|Transpose]) :- !,
	transpose_s(SoFar, Neibs, Vertex, Transpose).
transpose_s([Head|SoFar], Neibs, Vertex, [Head|Transpose]) :- !,
	transpose_s(SoFar, Neibs, Vertex, Transpose).
transpose_s([], [], _, []).
 
 
 
%   p_member(X, Y, P_Graph)
%   tests whether the edge (X,Y) occurs in the graph.  This always
%   costs O(|E|) time.  Here, as in all the operations in this file,
%   vertex labels are assumed to be ground terms, or at least to be
%   sufficiently instantiated that no two of them have a common instance.
 
p_member(X, Y, P_Graph) :-
	nonvar(X), nonvar(Y), !,
	memberchk(X-Y, P_Graph).
p_member(X, Y, P_Graph) :-
	member(X-Y, P_Graph).
 
%   s_member(X, Y, S_Graph)
%   tests whether the edge (X,Y) occurs in the graph.  If either
%   X or Y is instantiated, the check is order |V| rather than
%   order |E|.
 
s_member(X, Y, S_Graph) :-
	var(X), var(Y), !,
	member(X-Neibs, S_Graph),
	member(Y, Neibs).
s_member(X, Y, S_Graph) :-
	var(X), !,
	member(X-Neibs, S_Graph),
	memberchk(Y, Neibs).
s_member(X, Y, S_Graph) :-
	var(Y), !,
	memberchk(X-Neibs, S_Graph),
	member(Y, Neibs).
s_member(X, Y, S_Graph) :-
	memberchk(X-Neibs, S_Graph),
	memberchk(Y, Neibs).
 
 
%   compose(G1, G2, Composition)
%   calculates the composition of two S-form graphs, which need not
%   have the same set of vertices.
 
compose(G1, G2, Composition) :-
	vertices(G1, V1),
	vertices(G2, V2),
	ord_union(V1, V2, V),
	compose(V, G1, G2, Composition).
 
 
compose([], _, _, []) :- !.
compose([Vertex|Vertices], [Vertex-Neibs|G1], G2, [Vertex-Comp|Composition]) :- !,
	compose1(Neibs, G2, [], Comp),
	compose(Vertices, G1, G2, Composition).
compose([Vertex|Vertices], G1, G2, [Vertex-[]|Composition]) :-
	compose(Vertices, G1, G2, Composition).
 
 
compose1([V1|Vs1], [V2-N2|G2], SoFar, Comp) :-
	compare(Rel, V1, V2), !,
	compose1(Rel, V1, Vs1, V2, N2, G2, SoFar, Comp).
compose1(_, _, Comp, Comp).
 
 
compose1(<, _, Vs1, V2, N2, G2, SoFar, Comp) :- !,
	compose1(Vs1, [V2-N2|G2], SoFar, Comp).
compose1(>, V1, Vs1, _, _, G2, SoFar, Comp) :- !,
	compose1([V1|Vs1], G2, SoFar, Comp).
compose1(=, V1, Vs1, V1, N2, G2, SoFar, Comp) :-
	ord_union(N2, SoFar, Next),
	compose1(Vs1, G2, Next, Comp).
 
 
/*  NOT USED AFTER ALL
%   raakau(Vertices, InitialValue, Tree)
%   takes an *ordered* list of verticies and an initial value, and
%   makes a very special sort of tree out of them, which represents
%   a function sending each vertex to the initial value.  Note that
%   in the third clause for raakau/6 Z can never be 0, this means
%   that it doesn't matter *what* "greatest member" is reported for
%   empty trees.
 
raakau(Vertices, InitialValue, Tree) :-
	length(Vertices, N),
	raakau(N, Vertices, _, _, InitialValue, Tree).
 
 
raakau(0, Vs, Vs, 0, I, t) :- !.
raakau(1, [V|Vs], Vs, V, I, t(V,I)) :- !.
raakau(N, Vi, Vo, W, I, t(V,W,I,L,R)) :-
	A is (N-1)/2,
	Z is (N-1)-A,	%  Z >= 1
	raakau(A, Vi, [V|Vm], _, I, L),
	raakau(Z, Vm, Vo, W, I, R).
 
 
%   incdec(OldTree, Labels, Incr, NewTree)
%   adds Incr to the value associated with each element of Labels
%   in OldTree, producing a new tree.  OldTree must have been produced
%   either by raakau or by incdec, Labels must be in ascedning order,
%   and must be a subset of the labels of the tree.
 
incdec(OldTree, Labels, Incr, NewTree) :-
	incdec(OldTree, NewTree, Labels, _, Incr).
 
 
incdec(t(V,M), t(V,N), [V|L], L, I) :- !,
	N is M+I.
incdec(t(V,W,M,L1,R1), t(V,W,N,L2,R2), Li, Lo, I) :-
	(   Li = [Hi|_], Hi @< V, !,
		incdec(L1, L2, Li, Lm, I)
	;   L2 = L1, Lm = Li
	),
	(   Lm = [V|Lr], !,
		N is M+I
	;   Lr = Lm, N = M
	),
	(   Lr = [Hr|_], Hr @=< W, !,
		incdec(R1, R2, Lr, Lo, I)
	;   R2 = R1, Lo = Lr
	).
/*  END UNUSED CODE */
 
 
 
top_sort(Graph, Sorted) :-
	vertices_and_zeros(Graph, Vertices, Counts0),
	count_edges(Graph, Vertices, Counts0, Counts1),
	select_zeros(Counts1, Vertices, Zeros),
	top_sort(Zeros, Sorted, Graph, Vertices, Counts1).
 
top_sort(Graph, Sorted0, Sorted) :-
	vertices_and_zeros(Graph, Vertices, Counts0),
	count_edges(Graph, Vertices, Counts0, Counts1),
	select_zeros(Counts1, Vertices, Zeros),
	top_sort(Zeros, Sorted, Sorted0, Graph, Vertices, Counts1).
 
 
vertices_and_zeros([], [], []) :- !.
vertices_and_zeros([Vertex-_|Graph], [Vertex|Vertices], [0|Zeros]) :-
	vertices_and_zeros(Graph, Vertices, Zeros).
 
 
count_edges([], _, Counts, Counts) :- !.
count_edges([_-Neibs|Graph], Vertices, Counts0, Counts2) :-
	incr_list(Neibs, Vertices, Counts0, Counts1),
	count_edges(Graph, Vertices, Counts1, Counts2).
 
 
incr_list([], _, Counts, Counts) :- !.
incr_list([V1|Neibs], [V2|Vertices], [M|Counts0], [N|Counts1]) :- V1 == V2, !,
	N is M+1,
	incr_list(Neibs, Vertices, Counts0, Counts1).
incr_list(Neibs, [_|Vertices], [N|Counts0], [N|Counts1]) :-
	incr_list(Neibs, Vertices, Counts0, Counts1).
 
 
select_zeros([], [], []) :- !.
select_zeros([0|Counts], [Vertex|Vertices], [Vertex|Zeros]) :- !,
	select_zeros(Counts, Vertices, Zeros).
select_zeros([_|Counts], [_|Vertices], Zeros) :-
	select_zeros(Counts, Vertices, Zeros).
 
 
 
top_sort([], [], Graph, _, Counts) :- !,
	vertices_and_zeros(Graph, _, Counts).
top_sort([Zero|Zeros], [Zero|Sorted], Graph, Vertices, Counts1) :-
	graph_memberchk(Zero-Neibs, Graph),
	decr_list(Neibs, Vertices, Counts1, Counts2, Zeros, NewZeros),
	top_sort(NewZeros, Sorted, Graph, Vertices, Counts2).
 
top_sort([], Sorted0, Sorted0, Graph, _, Counts) :- !,
	vertices_and_zeros(Graph, _, Counts).
top_sort([Zero|Zeros], [Zero|Sorted], Sorted0, Graph, Vertices, Counts1) :-
	graph_memberchk(Zero-Neibs, Graph),
	decr_list(Neibs, Vertices, Counts1, Counts2, Zeros, NewZeros),
	top_sort(NewZeros, Sorted, Sorted0, Graph, Vertices, Counts2).
 
graph_memberchk(Element1-Edges, [Element2-Edges2|_]) :- Element1 == Element2, !,
	Edges = Edges2.
graph_memberchk(Element, [_|Rest]) :-
        graph_memberchk(Element, Rest).

 
decr_list([], _, Counts, Counts, Zeros, Zeros) :- !.
decr_list([V1|Neibs], [V2|Vertices], [1|Counts1], [0|Counts2], Zi, Zo) :- V1 == V2, !,
	decr_list(Neibs, Vertices, Counts1, Counts2, [V2|Zi], Zo).
decr_list([V1|Neibs], [V2|Vertices], [N|Counts1], [M|Counts2], Zi, Zo) :- V1 == V2, !,
	M is N-1,
	decr_list(Neibs, Vertices, Counts1, Counts2, Zi, Zo).
decr_list(Neibs, [_|Vertices], [N|Counts1], [N|Counts2], Zi, Zo) :-
	decr_list(Neibs, Vertices, Counts1, Counts2, Zi, Zo).
 
 
 
neighbors(V,[V0-Neig|_],Neig) :- V == V0, !.
neighbors(V,[_|G],Neig) :- 
	neighbors(V,G,Neig).

neighbours(V,[V0-Neig|_],Neig) :- V == V0, !.
neighbours(V,[_|G],Neig) :- 
	neighbours(V,G,Neig).


%
% Simple two-step algorithm. You could be smarter, I suppose.
%
complement(G, NG) :-
	vertices(G,Vs),
	complement(G,Vs,NG).

complement([], _, []).
complement([V-Ns|G], Vs, [V-INs|NG]) :-
	ord_add_element(Ns,V,Ns1),
	ord_subtract(Vs,Ns1,INs),
	complement(G, Vs, NG).



reachable(N, G, Rs) :-
	reachable([N], G, [N], Rs).

reachable([], _, Rs, Rs).
reachable([N|Ns], G, Rs0, RsF) :-
	neighbours(N, G, Nei),
	ord_union(Rs0, Nei, Rs1, D),
	append(Ns, D, Nsi),
	reachable(Nsi, G, Rs1, RsF).

%%	ugraph_union(+Set1, +Set2, ?Union)
%   
%	Is true when Union is the union of Set1 and Set2. This code is a
%	copy of set union

ugraph_union(Set1, [], Set1) :- !.
ugraph_union([], Set2, Set2) :- !.
ugraph_union([Head1-E1|Tail1], [Head2-E2|Tail2], Union) :-
	compare(Order, Head1, Head2),
	ugraph_union(Order, Head1-E1, Tail1, Head2-E2, Tail2, Union).

ugraph_union(=, Head-E1, Tail1, _-E2, Tail2, [Head-Es|Union]) :-
	ord_union(E1, E2, Es),
	ugraph_union(Tail1, Tail2, Union).
ugraph_union(<, Head1, Tail1, Head2, Tail2, [Head1|Union]) :-
	ugraph_union(Tail1, [Head2|Tail2], Union).
ugraph_union(>, Head1, Tail1, Head2, Tail2, [Head2|Union]) :-
	ugraph_union([Head1|Tail1], Tail2, Union).