This file is indexed.

/usr/share/liblouis/tables/marburg.ctb is in liblouis-data 2.5.3-2ubuntu1.5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# liblouis: Marburg maths  Table for mathematics
#
#  Based on the Linux screenreader BRLTTY, copyright (C) 1999-2006 by
#  The BRLTTY Team
#
#  Copyright (C) 2004, 2005, 2006
#  ViewPlus Technologies, Inc. www.viewplus.com
#  and
#  JJB Software, Inc. www.jjb-software.com
#  All rights reserved
#
#  This file is free software; you can redistribute it and/or modify it
#   under the terms of the Lesser or Library GNU General Public License 
#  as published by the
#  Free Software Foundation; either version 3, or (at your option) any
#  later version.
# 
#  This file is distributed in the hope that it will be useful, but
#  WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
#  Library GNU General Public License for more details.
#
#  You should have received a copy of the Library GNU General Public 
#  License along with this program; see the file COPYING.  If not, write 
#  to
#  the Free Software Foundation, 51 Franklin Street, Fifth Floor,
#  Boston, MA 02110-1301, USA.
#
#  Maintained by John J. Boyer john.boyer@jjb-software.com
# Updated 6-18-08 by Mike Sivill <mike.sivill@viewplus.com>

include marburg_single_cell_defs.cti
include marburg_unicode_defs.cti
# grouping definitions are character-definition rules
grouping mrow \x0001\x0002 1e,2e
grouping mfrac \x0003\x0004 3e,4e
grouping brackets \x0005\x0006 126,345

# Braille indicators
numsign 3456
capsign 6
begcaps 6-6
endcaps 6-3
singleletterital 4
singleletterbold 4

# litdigit opcodes must be in this table, not the single-cell table.
include litdigits6Dots.uti

# No letsign but endnum for letters a-j.
endnum a 56-1
endnum b 56-12
endnum c 56-14
endnum d 56-145
endnum e 56-15
endnum f 56-124
endnum g 56-1245
endnum h 56-125
endnum i 56-24
endnum j 56-245

# Ordinary translation entries
always = a-56-2356
always + a-56-235
always > a-135-a
always < a-246-a
always % 25-1234
always $ 256
always & 4-12346
always ~ 45-156
always ! 6-236
prepunc " 236
postpunc " 356
postpunc ' 3
always '' 36
always ''' 36-3
midnum , 3
postpunc , 6-2
always , 3
always # 35-2345 print number sign before number
always ( 126
always ) 345
pass2 [{mrow]@126/@345}mrow ?
pass2 @126[{mrow]/}mrow@345 ?
decpoint . 2
always ... 3-3-3
hyphen - 36
postpunc . 6-256
postpunc ; 6-23
postpunc : 6-25
postpunc ? 6-236
endnum % 4-356
midnum * 4-16
repeated \s 0
repeated \x00a0 a

# swap opcodes for replacement and testing.
swapcd dropped 0123456789 356,2,23,25,456,26,235,2356,236,35
swapdd upnum 245,1,12,14,145,15,124,1245,125,24 0,0,0,0,0,0,0,0,0,0
swapdd lownum 356,2,23,25,256,26,235,2356,236,35 0,0,0,0,0,0,0,0,0,0

# now we start doing the real work

# Correction rules
correct {mrow$ld1-20[}mrow] ?
correct "\eb"[{mrow]/}mrow"\ee" ?
context "\eb"[]$l"\ee" @56
context "\eb"[]","$l"\ee" @56
context {mfrac$d1-10[]"@456-34"$d1-10}mfrac #1=1
# context []"@456-34"$d1-10}mfrac #1=1
context []"@346"$d1-10"@12456" #1=1
context []"@16"$d1-10"@12456" #1=1
# context []"@146"$d1-10 #1=1
context #1=1$d1-10 #1=0%dropped 

# exactdots opcodes for dot patterns in ukmaths.sem
exactdots @126
exactdots @345
exactdots @123456
exactdots @346
exactdots @16
exactdots @23456
exactdots @34
exactdots @456-34
exactdots @12456
exactdots @146

# Function names and abbreviations
word cos 1246-14
word grad 1246-1245
word cosh 1246-125-14
word sinh 1246-125-234
word tanh 1246-125-2345
word cosech 1246-125-126
word coth 1246-125-1256
word sech 1246-125-36
word log 1246-123
word sin 1246-234
word tan 1246-2345
word cosec 1246-126
word curl 1246-146
word div 1246-1456
word cot 1246-1256
word arccosh 1246-236-14
word arcsinh 1246-236-234
word arctanh 1246-236-2345
word arccosech 1246-236-126
word arccoth 1246-236-1256
word arcsech 1246-236-36
word sec 1246-36
word arccos 1246-4-14
word antilog 1246-4-123
word arcsin 1246-4-234
word arctan 1246-4-2345
word arccosec 1246-4-126
word arccot 1246-4-1256
word arcsec 1246-4-25
word colog 1246-45-123

# pass2 processing
pass2 [@3456]%lownum1-10 ?
pass2 [@456-34-3456]%lownum1-10 ?

# pass3 processing
pass3 @346%lownum1-10[@12456] ?
pass3 @16[%lownum1-10]@12456 *
pass3 {mfrac[@3456%upnum1-10%lownum1-10]}mfrac *