This file is indexed.

/usr/include/d/4.8/std/mathspecial.d is in libphobos-4.8-dev 4.8.4-2ubuntu1~14.04.4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
// Written in the D programming language.

/**
 * Mathematical Special Functions
 *
 * The technical term 'Special Functions' includes several families of
 * transcendental functions, which have important applications in particular
 * branches of mathematics and physics.
 *
 * The gamma and related functions, and the error function are crucial for
 * mathematical statistics.
 * The Bessel and related functions arise in problems involving wave propagation
 * (especially in optics).
 * Other major categories of special functions include the elliptic integrals
 * (related to the arc length of an ellipse), and the hypergeometric functions.
 *
 * Status:
 *  Many more functions will be added to this module.
 *  The naming convention for the distribution functions (gammaIncomplete, etc)
 *  is not yet finalized and will probably change.
 *
 * Macros:
 *      WIKI = Phobos/StdMathSpecial
 *
 *      TABLE_SV = <table border=1 cellpadding=4 cellspacing=0>
 *              <caption>Special Values</caption>
 *              $0</table>
 *      SVH = $(TR $(TH $1) $(TH $2))
 *      SV  = $(TR $(TD $1) $(TD $2))
 *
 *      NAN = $(RED NAN)
 *      SUP = <span style="vertical-align:super;font-size:smaller">$0</span>
 *      GAMMA = &#915;
 *      THETA = &theta;
 *      INTEGRAL = &#8747;
 *      INTEGRATE = $(BIG &#8747;<sub>$(SMALL $1)</sub><sup>$2</sup>)
 *      POWER = $1<sup>$2</sup>
 *      SUB = $1<sub>$2</sub>
 *      BIGSUM = $(BIG &Sigma; <sup>$2</sup><sub>$(SMALL $1)</sub>)
 *      CHOOSE = $(BIG &#40;) <sup>$(SMALL $1)</sup><sub>$(SMALL $2)</sub> $(BIG &#41;)
 *      PLUSMN = &plusmn;
 *      INFIN = &infin;
 *      PLUSMNINF = &plusmn;&infin;
 *      PI = &pi;
 *      LT = &lt;
 *      GT = &gt;
 *      SQRT = &radic;
 *      HALF = &frac12;
 *
 *
 * Copyright: Based on the CEPHES math library, which is
 *            Copyright (C) 1994 Stephen L. Moshier (moshier@world.std.com).
 * License:   <a href="http://www.boost.org/LICENSE_1_0.txt">Boost License 1.0</a>.
 * Authors:   Stephen L. Moshier (original C code). Conversion to D by Don Clugston
 * Source:    $(PHOBOSSRC std/_mathspecial.d)
 */
module std.mathspecial;
public import std.math;
private import std.internal.math.gammafunction;
private import std.internal.math.errorfunction;

/* ***********************************************
 *            GAMMA AND RELATED FUNCTIONS        *
 * ***********************************************/
//pure nothrow:
/** The Gamma function, $(GAMMA)(x)
 *
 *  $(GAMMA)(x) is a generalisation of the factorial function
 *  to real and complex numbers.
 *  Like x!, $(GAMMA)(x+1) = x * $(GAMMA)(x).
 *
 *  Mathematically, if z.re > 0 then
 *   $(GAMMA)(z) = $(INTEGRATE 0, $(INFIN)) $(POWER t, z-1)$(POWER e, -t) dt
 *
 *  $(TABLE_SV
 *    $(SVH  x,           $(GAMMA)(x) )
 *    $(SV  $(NAN),       $(NAN)      )
 *    $(SV  $(PLUSMN)0.0, $(PLUSMNINF))
 *    $(SV integer > 0,   (x-1)!      )
 *    $(SV integer < 0,   $(NAN)      )
 *    $(SV +$(INFIN),      +$(INFIN)   )
 *    $(SV -$(INFIN),      $(NAN)      )
 *  )
 */
real gamma(real x)
{
    return std.internal.math.gammafunction.gamma(x);
}

/** Natural logarithm of the gamma function, $(GAMMA)(x)
 *
 * Returns the base e (2.718...) logarithm of the absolute
 * value of the gamma function of the argument.
 *
 * For reals, logGamma is equivalent to log(fabs(gamma(x))).
 *
 *  $(TABLE_SV
 *    $(SVH  x,             logGamma(x)   )
 *    $(SV  $(NAN),         $(NAN)      )
 *    $(SV integer <= 0,    +$(INFIN)    )
 *    $(SV $(PLUSMNINF),    +$(INFIN)    )
 *  )
 */
real logGamma(real x)
{
    return std.internal.math.gammafunction.logGamma(x);
}

/** The sign of $(GAMMA)(x).
 *
 * Returns -1 if $(GAMMA)(x) < 0,  +1 if $(GAMMA)(x) > 0,
 * $(NAN) if sign is indeterminate.
 *
 * Note that this function can be used in conjunction with logGamma(x) to
 * evaluate gamma for very large values of x.
 */
real sgnGamma(real x)
{
    /* Author: Don Clugston. */
    if (isNaN(x)) return x;
    if (x > 0) return 1.0;
    if (x < -1/real.epsilon)
    {
        // Large negatives lose all precision
        return real.nan;
    }
    long n = rndtol(x);
    if (x == n) {
        return x == 0 ?  copysign(1, x) : real.nan;
    }
    return n & 1 ? 1.0 : -1.0;
}

unittest {
    assert(sgnGamma(5.0) == 1.0);
    assert(isNaN(sgnGamma(-3.0)));
    assert(sgnGamma(-0.1) == -1.0);
    assert(sgnGamma(-55.1) == 1.0);
    assert(isNaN(sgnGamma(-real.infinity)));
    assert(isIdentical(sgnGamma(NaN(0xABC)), NaN(0xABC)));
}

/** Beta function
 *
 * The beta function is defined as
 *
 * beta(x, y) = ($(GAMMA)(x) * $(GAMMA)(y)) / $(GAMMA)(x + y)
 */
real beta(real x, real y)
{
    if ((x+y)> MAXGAMMA) {
        return exp(logGamma(x) + logGamma(y) - logGamma(x+y));
    } else return gamma(x) * gamma(y) / gamma(x+y);
}

unittest {
    assert(isIdentical(beta(NaN(0xABC), 4), NaN(0xABC)));
    assert(isIdentical(beta(2, NaN(0xABC)), NaN(0xABC)));
}

/** Digamma function
 *
 *  The digamma function is the logarithmic derivative of the gamma function.
 *
 *  digamma(x) = d/dx logGamma(x)
 */
real digamma(real x)
{
    return std.internal.math.gammafunction.digamma(x);
}

/** Incomplete beta integral
 *
 * Returns incomplete beta integral of the arguments, evaluated
 * from zero to x. The regularized incomplete beta function is defined as
 *
 * betaIncomplete(a, b, x) = $(GAMMA)(a + b) / ( $(GAMMA)(a) $(GAMMA)(b) ) *
 * $(INTEGRATE 0, x) $(POWER t, a-1)$(POWER (1-t), b-1) dt
 *
 * and is the same as the the cumulative distribution function.
 *
 * The domain of definition is 0 <= x <= 1.  In this
 * implementation a and b are restricted to positive values.
 * The integral from x to 1 may be obtained by the symmetry
 * relation
 *
 *    betaIncompleteCompl(a, b, x )  =  betaIncomplete( b, a, 1-x )
 *
 * The integral is evaluated by a continued fraction expansion
 * or, when b * x is small, by a power series.
 */
real betaIncomplete(real a, real b, real x )
{
    return std.internal.math.gammafunction.betaIncomplete(a, b, x);
}

/** Inverse of incomplete beta integral
 *
 * Given y, the function finds x such that
 *
 *  betaIncomplete(a, b, x) == y
 *
 *  Newton iterations or interval halving is used.
 */
real betaIncompleteInverse(real a, real b, real y )
{
    return std.internal.math.gammafunction.betaIncompleteInv(a, b, y);
}

/** Incomplete gamma integral and its complement
 *
 * These functions are defined by
 *
 *   gammaIncomplete = ( $(INTEGRATE 0, x) $(POWER e, -t) $(POWER t, a-1) dt )/ $(GAMMA)(a)
 *
 *  gammaIncompleteCompl(a,x)   =   1 - gammaIncomplete(a,x)
 * = ($(INTEGRATE x, $(INFIN)) $(POWER e, -t) $(POWER t, a-1) dt )/ $(GAMMA)(a)
 *
 * In this implementation both arguments must be positive.
 * The integral is evaluated by either a power series or
 * continued fraction expansion, depending on the relative
 * values of a and x.
 */
real gammaIncomplete(real a, real x )
in {
   assert(x >= 0);
   assert(a > 0);
}
body {
    return std.internal.math.gammafunction.gammaIncomplete(a, x);
}

/** ditto */
real gammaIncompleteCompl(real a, real x )
in {
   assert(x >= 0);
   assert(a > 0);
}
body {
    return std.internal.math.gammafunction.gammaIncompleteCompl(a, x);
}

/** Inverse of complemented incomplete gamma integral
 *
 * Given a and p, the function finds x such that
 *
 *  gammaIncompleteCompl( a, x ) = p.
 */
real gammaIncompleteComplInverse(real a, real p)
in {
  assert(p >= 0 && p <= 1);
  assert(a > 0);
}
body {
    return std.internal.math.gammafunction.gammaIncompleteComplInv(a, p);
}


/* ***********************************************
 *     ERROR FUNCTIONS & NORMAL DISTRIBUTION     *
 * ***********************************************/

 /** Error function
 *
 * The integral is
 *
 *  erf(x) =  2/ $(SQRT)($(PI))
 *     $(INTEGRATE 0, x) exp( - $(POWER t, 2)) dt
 *
 * The magnitude of x is limited to about 106.56 for IEEE 80-bit
 * arithmetic; 1 or -1 is returned outside this range.
 */
real erf(real x)
{
    return std.internal.math.errorfunction.erf(x);
}

/** Complementary error function
 *
 * erfc(x) = 1 - erf(x)
 *         = 2/ $(SQRT)($(PI))
 *     $(INTEGRATE x, $(INFIN)) exp( - $(POWER t, 2)) dt
 *
 * This function has high relative accuracy for
 * values of x far from zero. (For values near zero, use erf(x)).
 */
real erfc(real x)
{
    return std.internal.math.errorfunction.erfc(x);
}


/** Normal distribution function.
 *
 * The normal (or Gaussian, or bell-shaped) distribution is
 * defined as:
 *
 * normalDist(x) = 1/$(SQRT) $(PI) $(INTEGRATE -$(INFIN), x) exp( - $(POWER t, 2)/2) dt
 *   = 0.5 + 0.5 * erf(x/sqrt(2))
 *   = 0.5 * erfc(- x/sqrt(2))
 *
 * To maintain accuracy at values of x near 1.0, use
 *      normalDistribution(x) = 1.0 - normalDistribution(-x).
 *
 * References:
 * $(LINK http://www.netlib.org/cephes/ldoubdoc.html),
 * G. Marsaglia, "Evaluating the Normal Distribution",
 * Journal of Statistical Software <b>11</b>, (July 2004).
 */
real normalDistribution(real x)
{
    return std.internal.math.errorfunction.normalDistributionImpl(x);
}

/** Inverse of Normal distribution function
 *
 * Returns the argument, x, for which the area under the
 * Normal probability density function (integrated from
 * minus infinity to x) is equal to p.
 */
real normalDistributionInverse(real p)
in {
  assert(p>=0.0L && p<=1.0L, "Domain error");
}
body
{
    return std.internal.math.errorfunction.normalDistributionInvImpl(p);
}