/usr/include/d/4.8/std/parallelism.d is in libphobos-4.8-dev 4.8.4-2ubuntu1~14.04.4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 | /**
$(D std._parallelism) implements high-level primitives for SMP _parallelism.
These include parallel foreach, parallel reduce, parallel eager map, pipelining
and future/promise _parallelism. $(D std._parallelism) is recommended when the
same operation is to be executed in parallel on different data, or when a
function is to be executed in a background thread and its result returned to a
well-defined main thread. For communication between arbitrary threads, see
$(D std.concurrency).
$(D std._parallelism) is based on the concept of a $(D Task). A $(D Task) is an
object that represents the fundamental unit of work in this library and may be
executed in parallel with any other $(D Task). Using $(D Task)
directly allows programming with a future/promise paradigm. All other
supported _parallelism paradigms (parallel foreach, map, reduce, pipelining)
represent an additional level of abstraction over $(D Task). They
automatically create one or more $(D Task) objects, or closely related types
that are conceptually identical but not part of the public API.
After creation, a $(D Task) may be executed in a new thread, or submitted
to a $(D TaskPool) for execution. A $(D TaskPool) encapsulates a task queue
and its worker threads. Its purpose is to efficiently map a large
number of $(D Task)s onto a smaller number of threads. A task queue is a
FIFO queue of $(D Task) objects that have been submitted to the
$(D TaskPool) and are awaiting execution. A worker thread is a thread that
is associated with exactly one task queue. It executes the $(D Task) at the
front of its queue when the queue has work available, or sleeps when
no work is available. Each task queue is associated with zero or
more worker threads. If the result of a $(D Task) is needed before execution
by a worker thread has begun, the $(D Task) can be removed from the task queue
and executed immediately in the thread where the result is needed.
Warning: Unless marked as $(D @trusted) or $(D @safe), artifacts in
this module allow implicit data sharing between threads and cannot
guarantee that client code is free from low level data races.
Synopsis:
---
import std.algorithm, std.parallelism, std.range;
void main() {
// Parallel reduce can be combined with
// std.algorithm.map to interesting effect.
// The following example (thanks to Russel Winder)
// calculates pi by quadrature using
// std.algorithm.map and TaskPool.reduce.
// getTerm is evaluated in parallel as needed by
// TaskPool.reduce.
//
// Timings on an Athlon 64 X2 dual core machine:
//
// TaskPool.reduce: 12.170 s
// std.algorithm.reduce: 24.065 s
immutable n = 1_000_000_000;
immutable delta = 1.0 / n;
real getTerm(int i)
{
immutable x = ( i - 0.5 ) * delta;
return delta / ( 1.0 + x * x ) ;
}
immutable pi = 4.0 * taskPool.reduce!"a + b"(
std.algorithm.map!getTerm(iota(n))
);
}
---
Source: $(PHOBOSSRC std/_parallelism.d)
Author: David Simcha
Copyright: Copyright (c) 2009-2011, David Simcha.
License: $(WEB boost.org/LICENSE_1_0.txt, Boost License 1.0)
*/
module std.parallelism;
import core.atomic;
import core.cpuid;
import core.exception;
import core.memory;
import core.sync.condition;
import core.thread;
import std.algorithm;
import std.conv;
import std.exception;
import std.functional;
import std.math;
import std.range;
import std.traits;
import std.typecons;
import std.typetuple;
version(OSX)
{
version = useSysctlbyname;
}
else version(FreeBSD)
{
version = useSysctlbyname;
}
version(Windows)
{
// BUGS: Only works on Windows 2000 and above.
import core.sys.windows.windows;
struct SYSTEM_INFO
{
union
{
DWORD dwOemId;
struct
{
WORD wProcessorArchitecture;
WORD wReserved;
}
}
DWORD dwPageSize;
LPVOID lpMinimumApplicationAddress;
LPVOID lpMaximumApplicationAddress;
LPVOID dwActiveProcessorMask;
DWORD dwNumberOfProcessors;
DWORD dwProcessorType;
DWORD dwAllocationGranularity;
WORD wProcessorLevel;
WORD wProcessorRevision;
}
private extern(Windows) void GetSystemInfo(void*);
shared static this()
{
SYSTEM_INFO si;
GetSystemInfo(&si);
totalCPUs = max(1, cast(uint) si.dwNumberOfProcessors);
}
}
else version(linux)
{
import core.sys.posix.unistd;
shared static this()
{
totalCPUs = cast(uint) sysconf(_SC_NPROCESSORS_ONLN );
}
}
else version(useSysctlbyname)
{
extern(C) int sysctlbyname(
const char *, void *, size_t *, void *, size_t
);
shared static this()
{
version(OSX)
{
auto nameStr = "machdep.cpu.core_count\0".ptr;
}
else version(FreeBSD)
{
auto nameStr = "hw.ncpu\0".ptr;
}
uint ans;
size_t len = uint.sizeof;
sysctlbyname(nameStr, &ans, &len, null, 0);
totalCPUs = ans;
}
}
else
{
static assert(0, "Don't know how to get N CPUs on this OS.");
}
/* Atomics code. These forward to core.atomic, but are written like this
for two reasons:
1. They used to actually contain ASM code and I don' want to have to change
to directly calling core.atomic in a zillion different places.
2. core.atomic has some misc. issues that make my use cases difficult
without wrapping it. If I didn't wrap it, casts would be required
basically everywhere.
*/
private void atomicSetUbyte(ref ubyte stuff, ubyte newVal)
{
//core.atomic.cas(cast(shared) &stuff, stuff, newVal);
atomicStore(*(cast(shared) &stuff), newVal);
}
private ubyte atomicReadUbyte(ref ubyte val)
{
return atomicLoad(*(cast(shared) &val));
}
// This gets rid of the need for a lot of annoying casts in other parts of the
// code, when enums are involved.
private bool atomicCasUbyte(ref ubyte stuff, ubyte testVal, ubyte newVal)
{
return core.atomic.cas(cast(shared) &stuff, testVal, newVal);
}
/*--------------------- Generic helper functions, etc.------------------------*/
private template MapType(R, functions...)
{
static if(functions.length == 0)
{
alias typeof(unaryFun!(functions[0])(ElementType!R.init)) MapType;
}
else
{
alias typeof(adjoin!(staticMap!(unaryFun, functions))
(ElementType!R.init)) MapType;
}
}
private template ReduceType(alias fun, R, E)
{
alias typeof(binaryFun!fun(E.init, ElementType!R.init)) ReduceType;
}
private template noUnsharedAliasing(T)
{
enum bool noUnsharedAliasing = !hasUnsharedAliasing!T;
}
// This template tests whether a function may be executed in parallel from
// @safe code via Task.executeInNewThread(). There is an additional
// requirement for executing it via a TaskPool. (See isSafeReturn).
private template isSafeTask(F)
{
enum bool isSafeTask =
(functionAttributes!F & (FunctionAttribute.safe | FunctionAttribute.trusted)) != 0 &&
(functionAttributes!F & FunctionAttribute.ref_) == 0 &&
(isFunctionPointer!F || !hasUnsharedAliasing!F) &&
allSatisfy!(noUnsharedAliasing, ParameterTypeTuple!F);
}
unittest
{
alias void function() @safe F1;
alias void function() F2;
alias void function(uint, string) @trusted F3;
alias void function(uint, char[]) F4;
static assert( isSafeTask!F1);
static assert(!isSafeTask!F2);
static assert( isSafeTask!F3);
static assert(!isSafeTask!F4);
alias uint[] function(uint, string) pure @trusted F5;
static assert( isSafeTask!F5);
}
// This function decides whether Tasks that meet all of the other requirements
// for being executed from @safe code can be executed on a TaskPool.
// When executing via TaskPool, it's theoretically possible
// to return a value that is also pointed to by a worker thread's thread local
// storage. When executing from executeInNewThread(), the thread that executed
// the Task is terminated by the time the return value is visible in the calling
// thread, so this is a non-issue. It's also a non-issue for pure functions
// since they can't read global state.
private template isSafeReturn(T)
{
static if(!hasUnsharedAliasing!(T.ReturnType))
{
enum isSafeReturn = true;
}
else static if(T.isPure)
{
enum isSafeReturn = true;
}
else
{
enum isSafeReturn = false;
}
}
private template randAssignable(R)
{
enum randAssignable = isRandomAccessRange!R && hasAssignableElements!R;
}
// Work around syntactic ambiguity w.r.t. address of function return vals.
private T* addressOf(T)(ref T val) pure nothrow
{
return &val;
}
private enum TaskStatus : ubyte
{
notStarted,
inProgress,
done
}
private template AliasReturn(alias fun, T...)
{
alias typeof({ T args; return fun(args); }) AliasReturn;
}
// Should be private, but std.algorithm.reduce is used in the zero-thread case
// and won't work w/ private.
template reduceAdjoin(functions...)
{
static if(functions.length == 1)
{
alias binaryFun!(functions[0]) reduceAdjoin;
}
else
{
T reduceAdjoin(T, U)(T lhs, U rhs)
{
alias staticMap!(binaryFun, functions) funs;
foreach(i, Unused; typeof(lhs.expand))
{
lhs.expand[i] = funs[i](lhs.expand[i], rhs);
}
return lhs;
}
}
}
private template reduceFinish(functions...)
{
static if(functions.length == 1)
{
alias binaryFun!(functions[0]) reduceFinish;
}
else
{
T reduceFinish(T)(T lhs, T rhs)
{
alias staticMap!(binaryFun, functions) funs;
foreach(i, Unused; typeof(lhs.expand))
{
lhs.expand[i] = funs[i](lhs.expand[i], rhs.expand[i]);
}
return lhs;
}
}
}
private template isAssignable(T)
{
enum isAssignable = is(typeof({
T a;
T b;
a = b;
}));
}
private template isRoundRobin(R : RoundRobinBuffer!(C1, C2), C1, C2)
{
enum isRoundRobin = true;
}
private template isRoundRobin(T)
{
enum isRoundRobin = false;
}
unittest
{
static assert( isRoundRobin!(RoundRobinBuffer!(void delegate(char[]), bool delegate())));
static assert(!isRoundRobin!(uint));
}
// This is the base "class" for all of the other tasks. Using C-style
// polymorphism to allow more direct control over memory allocation, etc.
private struct AbstractTask
{
AbstractTask* prev;
AbstractTask* next;
// Pointer to a function that executes this task.
void function(void*) runTask;
Throwable exception;
ubyte taskStatus = TaskStatus.notStarted;
bool done() @property
{
if(atomicReadUbyte(taskStatus) == TaskStatus.done)
{
if(exception)
{
throw exception;
}
return true;
}
return false;
}
void job()
{
runTask(&this);
}
}
/**
$(D Task) represents the fundamental unit of work. A $(D Task) may be
executed in parallel with any other $(D Task). Using this struct directly
allows future/promise _parallelism. In this paradigm, a function (or delegate
or other callable) is executed in a thread other than the one it was called
from. The calling thread does not block while the function is being executed.
A call to $(D workForce), $(D yieldForce), or $(D spinForce) is used to
ensure that the $(D Task) has finished executing and to obtain the return
value, if any. These functions and $(D done) also act as full memory barriers,
meaning that any memory writes made in the thread that executed the $(D Task)
are guaranteed to be visible in the calling thread after one of these functions
returns.
The $(XREF parallelism, task) and $(XREF parallelism, scopedTask) functions can
be used to create an instance of this struct. See $(D task) for usage examples.
Function results are returned from $(D yieldForce), $(D spinForce) and
$(D workForce) by ref. If $(D fun) returns by ref, the reference will point
to the returned reference of $(D fun). Otherwise it will point to a
field in this struct.
Copying of this struct is disabled, since it would provide no useful semantics.
If you want to pass this struct around, you should do so by reference or
pointer.
Bugs: Changes to $(D ref) and $(D out) arguments are not propagated to the
call site, only to $(D args) in this struct.
*/
struct Task(alias fun, Args...)
{
AbstractTask base = {runTask : &impl};
alias base this;
private @property AbstractTask* basePtr()
{
return &base;
}
private static void impl(void* myTask)
{
Task* myCastedTask = cast(typeof(this)*) myTask;
static if(is(ReturnType == void))
{
fun(myCastedTask._args);
}
else static if(is(typeof(addressOf(fun(myCastedTask._args)))))
{
myCastedTask.returnVal = addressOf(fun(myCastedTask._args));
}
else
{
myCastedTask.returnVal = fun(myCastedTask._args);
}
}
private TaskPool pool;
private bool isScoped; // True if created with scopedTask.
Args _args;
/**
The arguments the function was called with. Changes to $(D out) and
$(D ref) arguments will be visible here.
*/
static if(__traits(isSame, fun, run))
{
alias _args[1..$] args;
}
else
{
alias _args args;
}
// The purpose of this code is to decide whether functions whose
// return values have unshared aliasing can be executed via
// TaskPool from @safe code. See isSafeReturn.
static if(__traits(isSame, fun, run))
{
static if(isFunctionPointer!(_args[0]))
{
private enum bool isPure =
functionAttributes!(Args[0]) & FunctionAttribute.pure_;
}
else
{
// BUG: Should check this for delegates too, but std.traits
// apparently doesn't allow this. isPure is irrelevant
// for delegates, at least for now since shared delegates
// don't work.
private enum bool isPure = false;
}
}
else
{
// We already know that we can't execute aliases in @safe code, so
// just put a dummy value here.
private enum bool isPure = false;
}
/**
The return type of the function called by this $(D Task). This can be
$(D void).
*/
alias typeof(fun(_args)) ReturnType;
static if(!is(ReturnType == void))
{
static if(is(typeof(&fun(_args))))
{
// Ref return.
ReturnType* returnVal;
ref ReturnType fixRef(ReturnType* val)
{
return *val;
}
}
else
{
ReturnType returnVal;
ref ReturnType fixRef(ref ReturnType val)
{
return val;
}
}
}
private void enforcePool()
{
enforce(this.pool !is null, "Job not submitted yet.");
}
private this(Args args)
{
static if(args.length > 0)
{
_args = args;
}
}
// Work around DMD bug 6588, allow immutable elements.
static if(allSatisfy!(isAssignable, Args))
{
typeof(this) opAssign(typeof(this) rhs)
{
foreach(i, Type; typeof(this.tupleof))
{
this.tupleof[i] = rhs.tupleof[i];
}
return this;
}
}
else
{
@disable typeof(this) opAssign(typeof(this) rhs)
{
assert(0);
}
}
/**
If the $(D Task) isn't started yet, execute it in the current thread.
If it's done, return its return value, if any. If it's in progress,
busy spin until it's done, then return the return value. If it threw
an exception, rethrow that exception.
This function should be used when you expect the result of the
$(D Task) to be available on a timescale shorter than that of an OS
context switch.
*/
@property ref ReturnType spinForce() @trusted
{
enforcePool();
this.pool.tryDeleteExecute(basePtr);
while(atomicReadUbyte(this.taskStatus) != TaskStatus.done) {}
if(exception)
{
throw exception;
}
static if(!is(ReturnType == void))
{
return fixRef(this.returnVal);
}
}
/**
If the $(D Task) isn't started yet, execute it in the current thread.
If it's done, return its return value, if any. If it's in progress,
wait on a condition variable. If it threw an exception, rethrow that
exception.
This function should be used for expensive functions, as waiting on a
condition variable introduces latency, but avoids wasted CPU cycles.
*/
@property ref ReturnType yieldForce() @trusted
{
enforcePool();
this.pool.tryDeleteExecute(basePtr);
if(done)
{
static if(is(ReturnType == void))
{
return;
}
else
{
return fixRef(this.returnVal);
}
}
pool.waiterLock();
scope(exit) pool.waiterUnlock();
while(atomicReadUbyte(this.taskStatus) != TaskStatus.done)
{
pool.waitUntilCompletion();
}
if(exception)
{
throw exception;
}
static if(!is(ReturnType == void))
{
return fixRef(this.returnVal);
}
}
/**
If this $(D Task) was not started yet, execute it in the current
thread. If it is finished, return its result. If it is in progress,
execute any other $(D Task) from the $(D TaskPool) instance that
this $(D Task) was submitted to until this one
is finished. If it threw an exception, rethrow that exception.
If no other tasks are available or this $(D Task) was executed using
$(D executeInNewThread), wait on a condition variable.
*/
@property ref ReturnType workForce() @trusted
{
enforcePool();
this.pool.tryDeleteExecute(basePtr);
while(true)
{
if(done) // done() implicitly checks for exceptions.
{
static if(is(ReturnType == void))
{
return;
}
else
{
return fixRef(this.returnVal);
}
}
AbstractTask* job;
{
// Locking explicitly and calling popNoSync() because
// pop() waits on a condition variable if there are no Tasks
// in the queue.
pool.queueLock();
scope(exit) pool.queueUnlock();
job = pool.popNoSync();
}
if(job !is null)
{
version(verboseUnittest)
{
stderr.writeln("Doing workForce work.");
}
pool.doJob(job);
if(done)
{
static if(is(ReturnType == void))
{
return;
}
else
{
return fixRef(this.returnVal);
}
}
}
else
{
version(verboseUnittest)
{
stderr.writeln("Yield from workForce.");
}
return yieldForce;
}
}
}
/**
Returns $(D true) if the $(D Task) is finished executing.
Throws: Rethrows any exception thrown during the execution of the
$(D Task).
*/
@property bool done() @trusted
{
// Explicitly forwarded for documentation purposes.
return base.done;
}
/**
Create a new thread for executing this $(D Task), execute it in the
newly created thread, then terminate the thread. This can be used for
future/promise parallelism. An explicit priority may be given
to the $(D Task). If one is provided, its value is forwarded to
$(D core.thread.Thread.priority). See $(XREF parallelism, task) for
usage example.
*/
void executeInNewThread() @trusted
{
pool = new TaskPool(basePtr);
}
/// Ditto
void executeInNewThread(int priority) @trusted
{
pool = new TaskPool(basePtr, priority);
}
@safe ~this()
{
if(isScoped && pool !is null && taskStatus != TaskStatus.done)
{
yieldForce;
}
}
// When this is uncommented, it somehow gets called on returning from
// scopedTask even though the struct shouldn't be getting copied.
//@disable this(this) {}
}
// Calls $(D fpOrDelegate) with $(D args). This is an
// adapter that makes $(D Task) work with delegates, function pointers and
// functors instead of just aliases.
ReturnType!F run(F, Args...)(F fpOrDelegate, ref Args args)
{
return fpOrDelegate(args);
}
/**
Creates a $(D Task) on the GC heap that calls an alias. This may be executed
via $(D Task.executeInNewThread) or by submitting to a
$(XREF parallelism, TaskPool). A globally accessible instance of
$(D TaskPool) is provided by $(XREF parallelism, taskPool).
Returns: A pointer to the $(D Task).
Examples:
---
// Read two files into memory at the same time.
import std.file;
void main()
{
// Create and execute a Task for reading
// foo.txt.
auto file1Task = task!read("foo.txt");
file1Task.executeInNewThread();
// Read bar.txt in parallel.
auto file2Data = read("bar.txt");
// Get the results of reading foo.txt.
auto file1Data = file1Task.yieldForce;
}
---
---
// Sorts an array using a parallel quick sort algorithm.
// The first partition is done serially. Both recursion
// branches are then executed in parallel.
//
// Timings for sorting an array of 1,000,000 doubles on
// an Athlon 64 X2 dual core machine:
//
// This implementation: 176 milliseconds.
// Equivalent serial implementation: 280 milliseconds
void parallelSort(T)(T[] data)
{
// Sort small subarrays serially.
if(data.length < 100)
{
std.algorithm.sort(data);
return;
}
// Partition the array.
swap(data[$ / 2], data[$ - 1]);
auto pivot = data[$ - 1];
bool lessThanPivot(T elem) { return elem < pivot; }
auto greaterEqual = partition!lessThanPivot(data[0..$ - 1]);
swap(data[$ - greaterEqual.length - 1], data[$ - 1]);
auto less = data[0..$ - greaterEqual.length - 1];
greaterEqual = data[$ - greaterEqual.length..$];
// Execute both recursion branches in parallel.
auto recurseTask = task!parallelSort(greaterEqual);
taskPool.put(recurseTask);
parallelSort(less);
recurseTask.yieldForce;
}
---
*/
auto task(alias fun, Args...)(Args args)
{
return new Task!(fun, Args)(args);
}
/**
Creates a $(D Task) on the GC heap that calls a function pointer, delegate, or
class/struct with overloaded opCall.
Examples:
---
// Read two files in at the same time again,
// but this time use a function pointer instead
// of an alias to represent std.file.read.
import std.file;
void main()
{
// Create and execute a Task for reading
// foo.txt.
auto file1Task = task(&read, "foo.txt");
file1Task.executeInNewThread();
// Read bar.txt in parallel.
auto file2Data = read("bar.txt");
// Get the results of reading foo.txt.
auto file1Data = file1Task.yieldForce;
}
---
Notes: This function takes a non-scope delegate, meaning it can be
used with closures. If you can't allocate a closure due to objects
on the stack that have scoped destruction, see $(D scopedTask), which
takes a scope delegate.
*/
auto task(F, Args...)(F delegateOrFp, Args args)
if(is(typeof(delegateOrFp(args))) && !isSafeTask!F)
{
return new Task!(run, F, Args)(delegateOrFp, args);
}
/**
Version of $(D task) usable from $(D @safe) code. Usage mechanics are
identical to the non-@safe case, but safety introduces some restrictions:
1. $(D fun) must be @safe or @trusted.
2. $(D F) must not have any unshared aliasing as defined by
$(XREF traits, hasUnsharedAliasing). This means it
may not be an unshared delegate or a non-shared class or struct
with overloaded $(D opCall). This also precludes accepting template
alias parameters.
3. $(D Args) must not have unshared aliasing.
4. $(D fun) must not return by reference.
5. The return type must not have unshared aliasing unless $(D fun) is
$(D pure) or the $(D Task) is executed via $(D executeInNewThread) instead
of using a $(D TaskPool).
*/
@trusted auto task(F, Args...)(F fun, Args args)
if(is(typeof(fun(args))) && isSafeTask!F)
{
return new Task!(run, F, Args)(fun, args);
}
/**
These functions allow the creation of $(D Task) objects on the stack rather
than the GC heap. The lifetime of a $(D Task) created by $(D scopedTask)
cannot exceed the lifetime of the scope it was created in.
$(D scopedTask) might be preferred over $(D task):
1. When a $(D Task) that calls a delegate is being created and a closure
cannot be allocated due to objects on the stack that have scoped
destruction. The delegate overload of $(D scopedTask) takes a $(D scope)
delegate.
2. As a micro-optimization, to avoid the heap allocation associated with
$(D task) or with the creation of a closure.
Usage is otherwise identical to $(D task).
Notes: $(D Task) objects created using $(D scopedTask) will automatically
call $(D Task.yieldForce) in their destructor if necessary to ensure
the $(D Task) is complete before the stack frame they reside on is destroyed.
*/
auto scopedTask(alias fun, Args...)(Args args)
{
auto ret = Task!(fun, Args)(args);
ret.isScoped = true;
return ret;
}
/// Ditto
auto scopedTask(F, Args...)(scope F delegateOrFp, Args args)
if(is(typeof(delegateOrFp(args))) && !isSafeTask!F)
{
auto ret = Task!(run, F, Args)(delegateOrFp, args);
ret.isScoped = true;
return ret;
}
/// Ditto
@trusted auto scopedTask(F, Args...)(F fun, Args args)
if(is(typeof(fun(args))) && isSafeTask!F)
{
auto ret = Task!(run, F, Args)(fun, args);
ret.isScoped = true;
return ret;
}
/**
The total number of CPU cores available on the current machine, as reported by
the operating system.
*/
immutable uint totalCPUs;
/*
This class serves two purposes:
1. It distinguishes std.parallelism threads from other threads so that
the std.parallelism daemon threads can be terminated.
2. It adds a reference to the pool that the thread is a member of,
which is also necessary to allow the daemon threads to be properly
terminated.
*/
private final class ParallelismThread : Thread
{
this(void delegate() dg)
{
super(dg);
}
TaskPool pool;
}
// Kill daemon threads.
shared static ~this()
{
auto allThreads = Thread.getAll();
foreach(thread; allThreads)
{
auto pthread = cast(ParallelismThread) thread;
if(pthread is null) continue;
auto pool = pthread.pool;
if(!pool.isDaemon) continue;
pool.stop();
pthread.join();
}
}
/**
This class encapsulates a task queue and a set of worker threads. Its purpose
is to efficiently map a large number of $(D Task)s onto a smaller number of
threads. A task queue is a FIFO queue of $(D Task) objects that have been
submitted to the $(D TaskPool) and are awaiting execution. A worker thread is a
thread that executes the $(D Task) at the front of the queue when one is
available and sleeps when the queue is empty.
This class should usually be used via the global instantiation
available via the $(XREF parallelism, taskPool) property.
Occasionally it is useful to explicitly instantiate a $(D TaskPool):
1. When you want $(D TaskPool) instances with multiple priorities, for example
a low priority pool and a high priority pool.
2. When the threads in the global task pool are waiting on a synchronization
primitive (for example a mutex), and you want to parallelize the code that
needs to run before these threads can be resumed.
*/
final class TaskPool
{
private:
// A pool can either be a regular pool or a single-task pool. A
// single-task pool is a dummy pool that's fired up for
// Task.executeInNewThread().
bool isSingleTask;
ParallelismThread[] pool;
Thread singleTaskThread;
AbstractTask* head;
AbstractTask* tail;
PoolState status = PoolState.running;
Condition workerCondition;
Condition waiterCondition;
Mutex queueMutex;
Mutex waiterMutex; // For waiterCondition
// The instanceStartIndex of the next instance that will be created.
__gshared static size_t nextInstanceIndex = 1;
// The index of the current thread.
static size_t threadIndex;
// The index of the first thread in this instance.
immutable size_t instanceStartIndex;
// The index that the next thread to be initialized in this pool will have.
size_t nextThreadIndex;
enum PoolState : ubyte
{
running,
finishing,
stopNow
}
void doJob(AbstractTask* job)
{
assert(job.taskStatus == TaskStatus.inProgress);
assert(job.next is null);
assert(job.prev is null);
scope(exit)
{
if(!isSingleTask)
{
waiterLock();
scope(exit) waiterUnlock();
notifyWaiters();
}
}
try
{
job.job();
}
catch(Throwable e)
{
job.exception = e;
}
atomicSetUbyte(job.taskStatus, TaskStatus.done);
}
// This function is used for dummy pools created by Task.executeInNewThread().
void doSingleTask()
{
// No synchronization. Pool is guaranteed to only have one thread,
// and the queue is submitted to before this thread is created.
assert(head);
auto t = head;
t.next = t.prev = head = null;
doJob(t);
}
// This function performs initialization for each thread that affects
// thread local storage and therefore must be done from within the
// worker thread. It then calls executeWorkLoop().
void startWorkLoop()
{
// Initialize thread index.
{
queueLock();
scope(exit) queueUnlock();
threadIndex = nextThreadIndex;
nextThreadIndex++;
}
executeWorkLoop();
}
// This is the main work loop that worker threads spend their time in
// until they terminate. It's also entered by non-worker threads when
// finish() is called with the blocking variable set to true.
void executeWorkLoop()
{
while(atomicReadUbyte(status) != PoolState.stopNow)
{
AbstractTask* task = pop();
if (task is null)
{
if(atomicReadUbyte(status) == PoolState.finishing)
{
atomicSetUbyte(status, PoolState.stopNow);
return;
}
}
else
{
doJob(task);
}
}
}
// Pop a task off the queue.
AbstractTask* pop()
{
queueLock();
scope(exit) queueUnlock();
auto ret = popNoSync();
while(ret is null && status == PoolState.running)
{
wait();
ret = popNoSync();
}
return ret;
}
AbstractTask* popNoSync()
out(returned)
{
/* If task.prev and task.next aren't null, then another thread
* can try to delete this task from the pool after it's
* alreadly been deleted/popped.
*/
if(returned !is null)
{
assert(returned.next is null);
assert(returned.prev is null);
}
}
body
{
if(isSingleTask) return null;
AbstractTask* returned = head;
if (head !is null)
{
head = head.next;
returned.prev = null;
returned.next = null;
returned.taskStatus = TaskStatus.inProgress;
}
if(head !is null)
{
head.prev = null;
}
return returned;
}
// Push a task onto the queue.
void abstractPut(AbstractTask* task)
{
queueLock();
scope(exit) queueUnlock();
abstractPutNoSync(task);
}
void abstractPutNoSync(AbstractTask* task)
in
{
assert(task);
}
out
{
assert(tail.prev !is tail);
assert(tail.next is null, text(tail.prev, '\t', tail.next));
if(tail.prev !is null)
{
assert(tail.prev.next is tail, text(tail.prev, '\t', tail.next));
}
}
body
{
// Not using enforce() to save on function call overhead since this
// is a performance critical function.
if(status != PoolState.running)
{
throw new Error(
"Cannot submit a new task to a pool after calling " ~
"finish() or stop()."
);
}
task.next = null;
if (head is null) //Queue is empty.
{
head = task;
tail = task;
tail.prev = null;
}
else {
assert(tail);
task.prev = tail;
tail.next = task;
tail = task;
}
notify();
}
void abstractPutGroupNoSync(AbstractTask* h, AbstractTask* t)
{
if(status != PoolState.running)
{
throw new Error(
"Cannot submit a new task to a pool after calling " ~
"finish() or stop()."
);
}
if(head is null)
{
head = h;
tail = t;
}
else
{
h.prev = tail;
tail.next = h;
tail = t;
}
notifyAll();
}
void tryDeleteExecute(AbstractTask* toExecute)
{
if(isSingleTask) return;
if( !deleteItem(toExecute) )
{
return;
}
try
{
toExecute.job();
}
catch(Exception e)
{
toExecute.exception = e;
}
atomicSetUbyte(toExecute.taskStatus, TaskStatus.done);
}
bool deleteItem(AbstractTask* item)
{
queueLock();
scope(exit) queueUnlock();
return deleteItemNoSync(item);
}
bool deleteItemNoSync(AbstractTask* item)
{
if(item.taskStatus != TaskStatus.notStarted)
{
return false;
}
item.taskStatus = TaskStatus.inProgress;
if(item is head)
{
// Make sure head gets set properly.
popNoSync();
return true;
}
if(item is tail)
{
tail = tail.prev;
if(tail !is null)
{
tail.next = null;
}
item.next = null;
item.prev = null;
return true;
}
if(item.next !is null)
{
assert(item.next.prev is item); // Check queue consistency.
item.next.prev = item.prev;
}
if(item.prev !is null)
{
assert(item.prev.next is item); // Check queue consistency.
item.prev.next = item.next;
}
item.next = null;
item.prev = null;
return true;
}
void queueLock()
{
assert(queueMutex);
if(!isSingleTask) queueMutex.lock();
}
void queueUnlock()
{
assert(queueMutex);
if(!isSingleTask) queueMutex.unlock();
}
void waiterLock()
{
if(!isSingleTask) waiterMutex.lock();
}
void waiterUnlock()
{
if(!isSingleTask) waiterMutex.unlock();
}
void wait()
{
if(!isSingleTask) workerCondition.wait();
}
void notify()
{
if(!isSingleTask) workerCondition.notify();
}
void notifyAll()
{
if(!isSingleTask) workerCondition.notifyAll();
}
void waitUntilCompletion()
{
if(isSingleTask)
{
singleTaskThread.join();
}
else
{
waiterCondition.wait();
}
}
void notifyWaiters()
{
if(!isSingleTask) waiterCondition.notifyAll();
}
// Private constructor for creating dummy pools that only have one thread,
// only execute one Task, and then terminate. This is used for
// Task.executeInNewThread().
this(AbstractTask* task, int priority = int.max)
{
assert(task);
// Dummy value, not used.
instanceStartIndex = 0;
this.isSingleTask = true;
task.taskStatus = TaskStatus.inProgress;
this.head = task;
singleTaskThread = new Thread(&doSingleTask);
singleTaskThread.start();
if(priority != int.max)
{
singleTaskThread.priority = priority;
}
}
public:
// This is used in parallel_algorithm but is too unstable to document
// as public API.
size_t defaultWorkUnitSize(size_t rangeLen) const pure nothrow @safe
{
if(this.size == 0)
{
return rangeLen;
}
immutable size_t eightSize = 4 * (this.size + 1);
auto ret = (rangeLen / eightSize) + ((rangeLen % eightSize == 0) ? 0 : 1);
return max(ret, 1);
}
/**
Default constructor that initializes a $(D TaskPool) with
$(D totalCPUs) - 1 worker threads. The minus 1 is included because the
main thread will also be available to do work.
Note: On single-core machines, the primitives provided by $(D TaskPool)
operate transparently in single-threaded mode.
*/
this() @trusted
{
this(totalCPUs - 1);
}
/**
Allows for custom number of worker threads.
*/
this(size_t nWorkers) @trusted
{
synchronized(TaskPool.classinfo)
{
instanceStartIndex = nextInstanceIndex;
// The first worker thread to be initialized will have this index,
// and will increment it. The second worker to be initialized will
// have this index plus 1.
nextThreadIndex = instanceStartIndex;
nextInstanceIndex += nWorkers;
}
queueMutex = new Mutex(this);
waiterMutex = new Mutex();
workerCondition = new Condition(queueMutex);
waiterCondition = new Condition(waiterMutex);
pool = new ParallelismThread[nWorkers];
foreach(ref poolThread; pool)
{
poolThread = new ParallelismThread(&startWorkLoop);
poolThread.pool = this;
poolThread.start();
}
}
/**
Implements a parallel foreach loop over a range. This works by implicitly
creating and submitting one $(D Task) to the $(D TaskPool) for each worker
thread. A work unit is a set of consecutive elements of $(D range) to
be processed by a worker thread between communication with any other
thread. The number of elements processed per work unit is controlled by the
$(D workUnitSize) parameter. Smaller work units provide better load
balancing, but larger work units avoid the overhead of communicating
with other threads frequently to fetch the next work unit. Large work
units also avoid false sharing in cases where the range is being modified.
The less time a single iteration of the loop takes, the larger
$(D workUnitSize) should be. For very expensive loop bodies,
$(D workUnitSize) should be 1. An overload that chooses a default work
unit size is also available.
Examples:
---
// Find the logarithm of every number from 1 to
// 10_000_000 in parallel.
auto logs = new double[10_000_000];
// Parallel foreach works with or without an index
// variable. It can be iterate by ref if range.front
// returns by ref.
// Iterate over logs using work units of size 100.
foreach(i, ref elem; taskPool.parallel(logs, 100))
{
elem = log(i + 1.0);
}
// Same thing, but use the default work unit size.
//
// Timings on an Athlon 64 X2 dual core machine:
//
// Parallel foreach: 388 milliseconds
// Regular foreach: 619 milliseconds
foreach(i, ref elem; taskPool.parallel(logs))
{
elem = log(i + 1.0);
}
---
Notes:
The memory usage of this implementation is guaranteed to be constant
in $(D range.length).
Breaking from a parallel foreach loop via a break, labeled break,
labeled continue, return or goto statement throws a
$(D ParallelForeachError).
In the case of non-random access ranges, parallel foreach buffers lazily
to an array of size $(D workUnitSize) before executing the parallel portion
of the loop. The exception is that, if a parallel foreach is executed
over a range returned by $(D asyncBuf) or $(D map), the copying is elided
and the buffers are simply swapped. In this case $(D workUnitSize) is
ignored and the work unit size is set to the buffer size of $(D range).
A memory barrier is guaranteed to be executed on exit from the loop,
so that results produced by all threads are visible in the calling thread.
$(B Exception Handling):
When at least one exception is thrown from inside a parallel foreach loop,
the submission of additional $(D Task) objects is terminated as soon as
possible, in a non-deterministic manner. All executing or
enqueued work units are allowed to complete. Then, all exceptions that
were thrown by any work unit are chained using $(D Throwable.next) and
rethrown. The order of the exception chaining is non-deterministic.
*/
ParallelForeach!R parallel(R)(R range, size_t workUnitSize)
{
enforce(workUnitSize > 0, "workUnitSize must be > 0.");
alias ParallelForeach!R RetType;
return RetType(this, range, workUnitSize);
}
/// Ditto
ParallelForeach!R parallel(R)(R range)
{
static if(hasLength!R)
{
// Default work unit size is such that we would use 4x as many
// slots as are in this thread pool.
size_t workUnitSize = defaultWorkUnitSize(range.length);
return parallel(range, workUnitSize);
}
else
{
// Just use a really, really dumb guess if the user is too lazy to
// specify.
return parallel(range, 512);
}
}
/**
Eager parallel map. The eagerness of this function means it has less
overhead than the lazily evaluated $(D TaskPool.map) and should be
preferred where the memory requirements of eagerness are acceptable.
$(D functions) are the functions to be evaluated, passed as template alias
parameters in a style similar to $(XREF algorithm, map). The first
argument must be a random access range.
---
auto numbers = iota(100_000_000.0);
// Find the square roots of numbers.
//
// Timings on an Athlon 64 X2 dual core machine:
//
// Parallel eager map: 0.802 s
// Equivalent serial implementation: 1.768 s
auto squareRoots = taskPool.amap!sqrt(numbers);
---
Immediately after the range argument, an optional work unit size argument
may be provided. Work units as used by $(D amap) are identical to those
defined for parallel foreach. If no work unit size is provided, the
default work unit size is used.
---
// Same thing, but make work unit size 100.
auto squareRoots = taskPool.amap!sqrt(numbers, 100);
---
An output range for returning the results may be provided as the last
argument. If one is not provided, an array of the proper type will be
allocated on the garbage collected heap. If one is provided, it must be a
random access range with assignable elements, must have reference
semantics with respect to assignment to its elements, and must have the
same length as the input range. Writing to adjacent elements from
different threads must be safe.
---
// Same thing, but explicitly allocate an array
// to return the results in. The element type
// of the array may be either the exact type
// returned by functions or an implicit conversion
// target.
auto squareRoots = new float[numbers.length];
taskPool.amap!sqrt(numbers, squareRoots);
// Multiple functions, explicit output range, and
// explicit work unit size.
auto results = new Tuple!(float, real)[numbers.length];
taskPool.amap!(sqrt, log)(numbers, 100, results);
---
Note:
A memory barrier is guaranteed to be executed after all results are written
but before returning so that results produced by all threads are visible
in the calling thread.
Tips:
To perform the mapping operation in place, provide the same range for the
input and output range.
To parallelize the copying of a range with expensive to evaluate elements
to an array, pass an identity function (a function that just returns
whatever argument is provided to it) to $(D amap).
$(B Exception Handling):
When at least one exception is thrown from inside the map functions,
the submission of additional $(D Task) objects is terminated as soon as
possible, in a non-deterministic manner. All currently executing or
enqueued work units are allowed to complete. Then, all exceptions that
were thrown from any work unit are chained using $(D Throwable.next) and
rethrown. The order of the exception chaining is non-deterministic.
*/
template amap(functions...)
{
///
auto amap(Args...)(Args args)
if(isRandomAccessRange!(Args[0]))
{
static if(functions.length == 1)
{
alias unaryFun!(functions[0]) fun;
}
else
{
alias adjoin!(staticMap!(unaryFun, functions)) fun;
}
alias args[0] range;
immutable len = range.length;
static if(
Args.length > 1 &&
randAssignable!(Args[$ - 1]) &&
is(MapType!(Args[0], functions) : ElementType!(Args[$ - 1]))
)
{
alias args[$ - 1] buf;
alias args[0..$ - 1] args2;
alias Args[0..$ - 1] Args2;
enforce(buf.length == len,
text("Can't use a user supplied buffer that's the wrong "
"size. (Expected :", len, " Got: ", buf.length));
}
else static if(randAssignable!(Args[$ - 1]) && Args.length > 1)
{
static assert(0, "Wrong buffer type.");
}
else
{
auto buf = uninitializedArray!(MapType!(Args[0], functions)[])(len);
alias args args2;
alias Args Args2;
}
if(!len) return buf;
static if(isIntegral!(Args2[$ - 1]))
{
static assert(args2.length == 2);
auto workUnitSize = cast(size_t) args2[1];
}
else
{
static assert(args2.length == 1, Args);
auto workUnitSize = defaultWorkUnitSize(range.length);
}
alias typeof(range) R;
if(workUnitSize > len)
{
workUnitSize = len;
}
// Handle as a special case:
if(size == 0)
{
size_t index = 0;
foreach(elem; range)
{
buf[index++] = fun(elem);
}
return buf;
}
// Effectively -1: chunkIndex + 1 == 0:
shared size_t workUnitIndex = size_t.max;
shared bool shouldContinue = true;
void doIt()
{
scope(failure)
{
// If an exception is thrown, all threads should bail.
atomicStore(shouldContinue, false);
}
while(atomicLoad(shouldContinue))
{
immutable myUnitIndex = atomicOp!"+="(workUnitIndex, 1);
immutable start = workUnitSize * myUnitIndex;
if(start >= len)
{
atomicStore(shouldContinue, false);
break;
}
immutable end = min(len, start + workUnitSize);
foreach(i; start..end)
{
buf[i] = fun(range[i]);
}
}
}
submitAndExecute(this, &doIt);
return buf;
}
}
/**
A semi-lazy parallel map that can be used for pipelining. The map
functions are evaluated for the first $(D bufSize) elements and stored in a
buffer and made available to $(D popFront). Meanwhile, in the
background a second buffer of the same size is filled. When the first
buffer is exhausted, it is swapped with the second buffer and filled while
the values from what was originally the second buffer are read. This
implementation allows for elements to be written to the buffer without
the need for atomic operations or synchronization for each write, and
enables the mapping function to be evaluated efficiently in parallel.
$(D map) has more overhead than the simpler procedure used by $(D amap)
but avoids the need to keep all results in memory simultaneously and works
with non-random access ranges.
Params:
source = The input range to be mapped. If $(D source) is not random
access it will be lazily buffered to an array of size $(D bufSize) before
the map function is evaluated. (For an exception to this rule, see Notes.)
bufSize = The size of the buffer to store the evaluated elements.
workUnitSize = The number of elements to evaluate in a single
$(D Task). Must be less than or equal to $(D bufSize), and
should be a fraction of $(D bufSize) such that all worker threads can be
used. If the default of size_t.max is used, workUnitSize will be set to
the pool-wide default.
Returns: An input range representing the results of the map. This range
has a length iff $(D source) has a length.
Notes:
If a range returned by $(D map) or $(D asyncBuf) is used as an input to
$(D map), then as an optimization the copying from the output buffer
of the first range to the input buffer of the second range is elided, even
though the ranges returned by $(D map) and $(D asyncBuf) are non-random
access ranges. This means that the $(D bufSize) parameter passed to the
current call to $(D map) will be ignored and the size of the buffer
will be the buffer size of $(D source).
Examples:
---
// Pipeline reading a file, converting each line
// to a number, taking the logarithms of the numbers,
// and performing the additions necessary to find
// the sum of the logarithms.
auto lineRange = File("numberList.txt").byLine();
auto dupedLines = std.algorithm.map!"a.idup"(lineRange);
auto nums = taskPool.map!(to!double)(dupedLines);
auto logs = taskPool.map!log10(nums);
double sum = 0;
foreach(elem; logs)
{
sum += elem;
}
---
$(B Exception Handling):
Any exceptions thrown while iterating over $(D source)
or computing the map function are re-thrown on a call to $(D popFront) or,
if thrown during construction, are simply allowed to propagate to the
caller. In the case of exceptions thrown while computing the map function,
the exceptions are chained as in $(D TaskPool.amap).
*/
template map(functions...)
{
///
auto
map(S)(S source, size_t bufSize = 100, size_t workUnitSize = size_t.max)
if(isInputRange!S)
{
enforce(workUnitSize == size_t.max || workUnitSize <= bufSize,
"Work unit size must be smaller than buffer size.");
static if(functions.length == 1)
{
alias unaryFun!(functions[0]) fun;
}
else
{
alias adjoin!(staticMap!(unaryFun, functions)) fun;
}
static final class Map
{
// This is a class because the task needs to be located on the
// heap and in the non-random access case source needs to be on
// the heap, too.
private:
enum bufferTrick = is(typeof(source.buf1)) &&
is(typeof(source.bufPos)) &&
is(typeof(source.doBufSwap()));
alias MapType!(S, functions) E;
E[] buf1, buf2;
S source;
TaskPool pool;
Task!(run, E[] delegate(E[]), E[]) nextBufTask;
size_t workUnitSize;
size_t bufPos;
bool lastTaskWaited;
static if(isRandomAccessRange!S)
{
alias S FromType;
void popSource()
{
static if(__traits(compiles, source[0..source.length]))
{
source = source[min(buf1.length, source.length)..source.length];
}
else static if(__traits(compiles, source[0..$]))
{
source = source[min(buf1.length, source.length)..$];
}
else
{
static assert(0, "S must have slicing for Map."
~ " " ~ S.stringof ~ " doesn't.");
}
}
}
else static if(bufferTrick)
{
// Make sure we don't have the buffer recycling overload of
// asyncBuf.
static if(
is(typeof(source.source)) &&
isRoundRobin!(typeof(source.source))
)
{
static assert(0, "Cannot execute a parallel map on " ~
"the buffer recycling overload of asyncBuf."
);
}
alias typeof(source.buf1) FromType;
FromType from;
// Just swap our input buffer with source's output buffer.
// No need to copy element by element.
FromType dumpToFrom()
{
assert(source.buf1.length <= from.length);
from.length = source.buf1.length;
swap(source.buf1, from);
// Just in case this source has been popped before
// being sent to map:
from = from[source.bufPos..$];
static if(is(typeof(source._length)))
{
source._length -= (from.length - source.bufPos);
}
source.doBufSwap();
return from;
}
}
else
{
alias ElementType!S[] FromType;
// The temporary array that data is copied to before being
// mapped.
FromType from;
FromType dumpToFrom()
{
assert(from !is null);
size_t i;
for(; !source.empty && i < from.length; source.popFront())
{
from[i++] = source.front;
}
from = from[0..i];
return from;
}
}
static if(hasLength!S)
{
size_t _length;
public @property size_t length() const pure nothrow @safe
{
return _length;
}
}
this(S source, size_t bufSize, size_t workUnitSize, TaskPool pool)
{
static if(bufferTrick)
{
bufSize = source.buf1.length;
}
buf1.length = bufSize;
buf2.length = bufSize;
static if(!isRandomAccessRange!S)
{
from.length = bufSize;
}
this.workUnitSize = (workUnitSize == size_t.max) ?
pool.defaultWorkUnitSize(bufSize) : workUnitSize;
this.source = source;
this.pool = pool;
static if(hasLength!S)
{
_length = source.length;
}
buf1 = fillBuf(buf1);
submitBuf2();
}
// The from parameter is a dummy and ignored in the random access
// case.
E[] fillBuf(E[] buf)
{
static if(isRandomAccessRange!S)
{
auto toMap = take(source, buf.length);
scope(success) popSource();
}
else
{
auto toMap = dumpToFrom();
}
buf = buf[0..min(buf.length, toMap.length)];
// Handle as a special case:
if(pool.size == 0)
{
size_t index = 0;
foreach(elem; toMap)
{
buf[index++] = fun(elem);
}
return buf;
}
pool.amap!functions(toMap, workUnitSize, buf);
return buf;
}
void submitBuf2()
in
{
assert(nextBufTask.prev is null);
assert(nextBufTask.next is null);
} body
{
// Hack to reuse the task object.
nextBufTask = typeof(nextBufTask).init;
nextBufTask._args[0] = &fillBuf;
nextBufTask._args[1] = buf2;
pool.put(nextBufTask);
}
void doBufSwap()
{
if(lastTaskWaited)
{
// Then the source is empty. Signal it here.
buf1 = null;
buf2 = null;
static if(!isRandomAccessRange!S)
{
from = null;
}
return;
}
buf2 = buf1;
buf1 = nextBufTask.yieldForce;
bufPos = 0;
if(source.empty)
{
lastTaskWaited = true;
}
else
{
submitBuf2();
}
}
public:
@property auto front()
{
return buf1[bufPos];
}
void popFront()
{
static if(hasLength!S)
{
_length--;
}
bufPos++;
if(bufPos >= buf1.length)
{
doBufSwap();
}
}
static if(std.range.isInfinite!S)
{
enum bool empty = false;
}
else
{
bool empty() @property
{
// popFront() sets this when source is empty
return buf1.length == 0;
}
}
}
return new Map(source, bufSize, workUnitSize, this);
}
}
/**
Given a $(D source) range that is expensive to iterate over, returns an
input range that asynchronously buffers the contents of
$(D source) into a buffer of $(D bufSize) elements in a worker thread,
while making prevously buffered elements from a second buffer, also of size
$(D bufSize), available via the range interface of the returned
object. The returned range has a length iff $(D hasLength!S).
$(D asyncBuf) is useful, for example, when performing expensive operations
on the elements of ranges that represent data on a disk or network.
Examples:
---
import std.conv, std.stdio;
void main()
{
// Fetch lines of a file in a background thread
// while processing prevously fetched lines,
// dealing with byLine's buffer recycling by
// eagerly duplicating every line.
auto lines = File("foo.txt").byLine();
auto duped = std.algorithm.map!"a.idup"(lines);
// Fetch more lines in the background while we
// process the lines already read into memory
// into a matrix of doubles.
double[][] matrix;
auto asyncReader = taskPool.asyncBuf(duped);
foreach(line; asyncReader)
{
auto ls = line.split("\t");
matrix ~= to!(double[])(ls);
}
}
---
$(B Exception Handling):
Any exceptions thrown while iterating over $(D source) are re-thrown on a
call to $(D popFront) or, if thrown during construction, simply
allowed to propagate to the caller.
*/
auto asyncBuf(S)(S source, size_t bufSize = 100) if(isInputRange!S)
{
static final class AsyncBuf
{
// This is a class because the task and source both need to be on
// the heap.
// The element type of S.
alias ElementType!S E; // Needs to be here b/c of forward ref bugs.
private:
E[] buf1, buf2;
S source;
TaskPool pool;
Task!(run, E[] delegate(E[]), E[]) nextBufTask;
size_t bufPos;
bool lastTaskWaited;
static if(hasLength!S)
{
size_t _length;
// Available if hasLength!S.
public @property size_t length() const pure nothrow @safe
{
return _length;
}
}
this(S source, size_t bufSize, TaskPool pool)
{
buf1.length = bufSize;
buf2.length = bufSize;
this.source = source;
this.pool = pool;
static if(hasLength!S)
{
_length = source.length;
}
buf1 = fillBuf(buf1);
submitBuf2();
}
E[] fillBuf(E[] buf)
{
assert(buf !is null);
size_t i;
for(; !source.empty && i < buf.length; source.popFront())
{
buf[i++] = source.front;
}
buf = buf[0..i];
return buf;
}
void submitBuf2()
in
{
assert(nextBufTask.prev is null);
assert(nextBufTask.next is null);
} body
{
// Hack to reuse the task object.
nextBufTask = typeof(nextBufTask).init;
nextBufTask._args[0] = &fillBuf;
nextBufTask._args[1] = buf2;
pool.put(nextBufTask);
}
void doBufSwap()
{
if(lastTaskWaited)
{
// Then source is empty. Signal it here.
buf1 = null;
buf2 = null;
return;
}
buf2 = buf1;
buf1 = nextBufTask.yieldForce;
bufPos = 0;
if(source.empty)
{
lastTaskWaited = true;
}
else
{
submitBuf2();
}
}
public:
E front() @property
{
return buf1[bufPos];
}
void popFront()
{
static if(hasLength!S)
{
_length--;
}
bufPos++;
if(bufPos >= buf1.length)
{
doBufSwap();
}
}
static if(std.range.isInfinite!S)
{
enum bool empty = false;
}
else
{
///
bool empty() @property
{
// popFront() sets this when source is empty:
return buf1.length == 0;
}
}
}
return new AsyncBuf(source, bufSize, this);
}
/**
Given a callable object $(D next) that writes to a user-provided buffer and
a second callable object $(D empty) that determines whether more data is
available to write via $(D next), returns an input range that
asynchronously calls $(D next) with a set of size $(D nBuffers) of buffers
and makes the results available in the order they were obtained via the
input range interface of the returned object. Similarly to the
input range overload of $(D asyncBuf), the first half of the buffers
are made available via the range interface while the second half are
filled and vice-versa.
Params:
next = A callable object that takes a single argument that must be an array
with mutable elements. When called, $(D next) writes data to
the array provided by the caller.
empty = A callable object that takes no arguments and returns a type
implicitly convertible to $(D bool). This is used to signify
that no more data is available to be obtained by calling $(D next).
initialBufSize = The initial size of each buffer. If $(D next) takes its
array by reference, it may resize the buffers.
nBuffers = The number of buffers to cycle through when calling $(D next).
Examples:
---
// Fetch lines of a file in a background
// thread while processing prevously fetched
// lines, without duplicating any lines.
auto file = File("foo.txt");
void next(ref char[] buf)
{
file.readln(buf);
}
// Fetch more lines in the background while we
// process the lines already read into memory
// into a matrix of doubles.
double[][] matrix;
auto asyncReader = taskPool.asyncBuf(&next, &file.eof);
foreach(line; asyncReader)
{
auto ls = line.split("\t");
matrix ~= to!(double[])(ls);
}
---
$(B Exception Handling):
Any exceptions thrown while iterating over $(D range) are re-thrown on a
call to $(D popFront).
Warning:
Using the range returned by this function in a parallel foreach loop
will not work because buffers may be overwritten while the task that
processes them is in queue. This is checked for at compile time
and will result in a static assertion failure.
*/
auto asyncBuf(C1, C2)(C1 next, C2 empty, size_t initialBufSize = 0, size_t nBuffers = 100)
if(is(typeof(C2.init()) : bool) &&
ParameterTypeTuple!C1.length == 1 &&
ParameterTypeTuple!C2.length == 0 &&
isArray!(ParameterTypeTuple!C1[0])
) {
auto roundRobin = RoundRobinBuffer!(C1, C2)(next, empty, initialBufSize, nBuffers);
return asyncBuf(roundRobin, nBuffers / 2);
}
/**
Parallel reduce on a random access range. Except as otherwise noted, usage
is similar to $(XREF algorithm, _reduce). This function works by splitting
the range to be reduced into work units, which are slices to be reduced in
parallel. Once the results from all work units are computed, a final serial
reduction is performed on these results to compute the final answer.
Therefore, care must be taken to choose the seed value appropriately.
Because the reduction is being performed in parallel,
$(D functions) must be associative. For notational simplicity, let # be an
infix operator representing $(D functions). Then, (a # b) # c must equal
a # (b # c). Floating point addition is not associative
even though addition in exact arithmetic is. Summing floating
point numbers using this function may give different results than summing
serially. However, for many practical purposes floating point addition
can be treated as associative.
Note that, since $(D functions) are assumed to be associative, additional
optimizations are made to the serial portion of the reduction algorithm.
These take advantage of the instruction level parallelism of modern CPUs,
in addition to the thread-level parallelism that the rest of this
module exploits. This can lead to better than linear speedups relative
to $(XREF algorithm, _reduce), especially for fine-grained benchmarks
like dot products.
An explicit seed may be provided as the first argument. If
provided, it is used as the seed for all work units and for the final
reduction of results from all work units. Therefore, if it is not the
identity value for the operation being performed, results may differ from
those generated by $(XREF algorithm, _reduce) or depending on how many work
units are used. The next argument must be the range to be reduced.
---
// Find the sum of squares of a range in parallel, using
// an explicit seed.
//
// Timings on an Athlon 64 X2 dual core machine:
//
// Parallel reduce: 72 milliseconds
// Using std.algorithm.reduce instead: 181 milliseconds
auto nums = iota(10_000_000.0f);
auto sumSquares = taskPool.reduce!"a + b"(
0.0, std.algorithm.map!"a * a"(nums)
);
---
If no explicit seed is provided, the first element of each work unit
is used as a seed. For the final reduction, the result from the first
work unit is used as the seed.
---
// Find the sum of a range in parallel, using the first
// element of each work unit as the seed.
auto sum = taskPool.reduce!"a + b"(nums);
---
An explicit work unit size may be specified as the last argument.
Specifying too small a work unit size will effectively serialize the
reduction, as the final reduction of the result of each work unit will
dominate computation time. If $(D TaskPool.size) for this instance
is zero, this parameter is ignored and one work unit is used.
---
// Use a work unit size of 100.
auto sum2 = taskPool.reduce!"a + b"(nums, 100);
// Work unit size of 100 and explicit seed.
auto sum3 = taskPool.reduce!"a + b"(0.0, nums, 100);
---
Parallel reduce supports multiple functions, like
$(D std.algorithm.reduce).
---
// Find both the min and max of nums.
auto minMax = taskPool.reduce!(min, max)(nums);
assert(minMax[0] == reduce!min(nums));
assert(minMax[1] == reduce!max(nums));
---
$(B Exception Handling):
After this function is finished executing, any exceptions thrown
are chained together via $(D Throwable.next) and rethrown. The chaining
order is non-deterministic.
*/
template reduce(functions...)
{
///
auto reduce(Args...)(Args args)
{
alias reduceAdjoin!functions fun;
alias reduceFinish!functions finishFun;
static if(isIntegral!(Args[$ - 1]))
{
size_t workUnitSize = cast(size_t) args[$ - 1];
alias args[0..$ - 1] args2;
alias Args[0..$ - 1] Args2;
}
else
{
alias args args2;
alias Args Args2;
}
auto makeStartValue(Type)(Type e)
{
static if(functions.length == 1)
{
return e;
}
else
{
typeof(adjoin!(staticMap!(binaryFun, functions))(e, e)) seed = void;
foreach (i, T; seed.Types)
{
auto p = (cast(void*) &seed.expand[i])
[0 .. seed.expand[i].sizeof];
emplace!T(p, e);
}
return seed;
}
}
static if(args2.length == 2)
{
static assert(isInputRange!(Args2[1]));
alias args2[1] range;
alias args2[0] seed;
enum explicitSeed = true;
static if(!is(typeof(workUnitSize)))
{
size_t workUnitSize = defaultWorkUnitSize(range.length);
}
}
else
{
static assert(args2.length == 1);
alias args2[0] range;
static if(!is(typeof(workUnitSize)))
{
size_t workUnitSize = defaultWorkUnitSize(range.length);
}
enforce(!range.empty,
"Cannot reduce an empty range with first element as start value.");
auto seed = makeStartValue(range.front);
enum explicitSeed = false;
range.popFront();
}
alias typeof(seed) E;
alias typeof(range) R;
E reduceOnRange(R range, size_t lowerBound, size_t upperBound)
{
// This is for exploiting instruction level parallelism by
// using multiple accumulator variables within each thread,
// since we're assuming functions are associative anyhow.
// This is so that loops can be unrolled automatically.
enum ilpTuple = TypeTuple!(0, 1, 2, 3, 4, 5);
enum nILP = ilpTuple.length;
immutable subSize = (upperBound - lowerBound) / nILP;
if(subSize <= 1)
{
// Handle as a special case.
static if(explicitSeed)
{
E result = seed;
}
else
{
E result = makeStartValue(range[lowerBound]);
lowerBound++;
}
foreach(i; lowerBound..upperBound)
{
result = fun(result, range[i]);
}
return result;
}
assert(subSize > 1);
E[nILP] results;
size_t[nILP] offsets;
foreach(i; ilpTuple)
{
offsets[i] = lowerBound + subSize * i;
static if(explicitSeed)
{
results[i] = seed;
}
else
{
results[i] = makeStartValue(range[offsets[i]]);
offsets[i]++;
}
}
immutable nLoop = subSize - (!explicitSeed);
foreach(i; 0..nLoop)
{
foreach(j; ilpTuple)
{
results[j] = fun(results[j], range[offsets[j]]);
offsets[j]++;
}
}
// Finish the remainder.
foreach(i; nILP * subSize + lowerBound..upperBound)
{
results[$ - 1] = fun(results[$ - 1], range[i]);
}
foreach(i; ilpTuple[1..$])
{
results[0] = finishFun(results[0], results[i]);
}
return results[0];
}
immutable len = range.length;
if(len == 0)
{
return seed;
}
if(this.size == 0)
{
return finishFun(seed, reduceOnRange(range, 0, len));
}
// Unlike the rest of the functions here, I can't use the Task object
// recycling trick here because this has to work on non-commutative
// operations. After all the tasks are done executing, fun() has to
// be applied on the results of these to get a final result, but
// it can't be evaluated out of order.
if(workUnitSize > len)
{
workUnitSize = len;
}
immutable size_t nWorkUnits = (len / workUnitSize) + ((len % workUnitSize == 0) ? 0 : 1);
assert(nWorkUnits * workUnitSize >= len);
alias Task!(run, typeof(&reduceOnRange), R, size_t, size_t) RTask;
RTask[] tasks;
// Can't use alloca() due to Bug 3753. Use a fixed buffer
// backed by malloc().
enum maxStack = 2_048;
byte[maxStack] buf = void;
immutable size_t nBytesNeeded = nWorkUnits * RTask.sizeof;
import core.stdc.stdlib;
if(nBytesNeeded < maxStack)
{
tasks = (cast(RTask*) buf.ptr)[0..nWorkUnits];
}
else
{
auto ptr = cast(RTask*) malloc(nBytesNeeded);
if(!ptr)
{
throw new OutOfMemoryError(
"Out of memory in std.parallelism."
);
}
tasks = ptr[0..nWorkUnits];
}
scope(exit)
{
if(nBytesNeeded > maxStack)
{
free(tasks.ptr);
}
}
tasks[] = RTask.init;
// Hack to take the address of a nested function w/o
// making a closure.
static auto scopedAddress(D)(scope D del)
{
return del;
}
size_t curPos = 0;
void useTask(ref RTask task)
{
task.pool = this;
task._args[0] = scopedAddress(&reduceOnRange);
task._args[3] = min(len, curPos + workUnitSize); // upper bound.
task._args[1] = range; // range
task._args[2] = curPos; // lower bound.
curPos += workUnitSize;
}
foreach(ref task; tasks)
{
useTask(task);
}
foreach(i; 1..tasks.length - 1)
{
tasks[i].next = tasks[i + 1].basePtr;
tasks[i + 1].prev = tasks[i].basePtr;
}
if(tasks.length > 1)
{
queueLock();
scope(exit) queueUnlock();
abstractPutGroupNoSync(
tasks[1].basePtr,
tasks[$ - 1].basePtr
);
}
if(tasks.length > 0)
{
try
{
tasks[0].job();
}
catch(Throwable e)
{
tasks[0].exception = e;
}
tasks[0].taskStatus = TaskStatus.done;
// Try to execute each of these in the current thread
foreach(ref task; tasks[1..$])
{
tryDeleteExecute(task.basePtr);
}
}
// Now that we've tried to execute every task, they're all either
// done or in progress. Force all of them.
E result = seed;
Throwable firstException, lastException;
foreach(ref task; tasks)
{
try
{
task.yieldForce;
}
catch(Throwable e)
{
addToChain(e, firstException, lastException);
continue;
}
if(!firstException) result = finishFun(result, task.returnVal);
}
if(firstException) throw firstException;
return result;
}
}
/**
Gets the index of the current thread relative to this $(D TaskPool). Any
thread not in this pool will receive an index of 0. The worker threads in
this pool receive unique indices of 1 through $(D this.size).
This function is useful for maintaining worker-local resources.
Examples:
---
// Execute a loop that computes the greatest common
// divisor of every number from 0 through 999 with
// 42 in parallel. Write the results out to
// a set of files, one for each thread. This allows
// results to be written out without any synchronization.
import std.conv, std.range, std.numeric, std.stdio;
void main()
{
auto filesHandles = new File[taskPool.size + 1];
scope(exit) {
foreach(ref handle; fileHandles) {
handle.close();
}
}
foreach(i, ref handle; fileHandles)
{
handle = File("workerResults" ~ to!string(i) ~ ".txt");
}
foreach(num; parallel(iota(1_000)))
{
auto outHandle = fileHandles[taskPool.workerIndex];
outHandle.writeln(num, '\t', gcd(num, 42));
}
}
---
*/
size_t workerIndex() @property @safe const nothrow
{
immutable rawInd = threadIndex;
return (rawInd >= instanceStartIndex && rawInd < instanceStartIndex + size) ?
(rawInd - instanceStartIndex + 1) : 0;
}
/**
Struct for creating worker-local storage. Worker-local storage is
thread-local storage that exists only for worker threads in a given
$(D TaskPool) plus a single thread outside the pool. It is allocated on the
garbage collected heap in a way that avoids _false sharing, and doesn't
necessarily have global scope within any thread. It can be accessed from
any worker thread in the $(D TaskPool) that created it, and one thread
outside this $(D TaskPool). All threads outside the pool that created a
given instance of worker-local storage share a single slot.
Since the underlying data for this struct is heap-allocated, this struct
has reference semantics when passed between functions.
The main uses cases for $(D WorkerLocalStorageStorage) are:
1. Performing parallel reductions with an imperative, as opposed to
functional, programming style. In this case, it's useful to treat
$(D WorkerLocalStorageStorage) as local to each thread for only the parallel
portion of an algorithm.
2. Recycling temporary buffers across iterations of a parallel foreach loop.
Examples:
---
// Calculate pi as in our synopsis example, but
// use an imperative instead of a functional style.
immutable n = 1_000_000_000;
immutable delta = 1.0L / n;
auto sums = taskPool.workerLocalStorage(0.0L);
foreach(i; parallel(iota(n)))
{
immutable x = ( i - 0.5L ) * delta;
immutable toAdd = delta / ( 1.0 + x * x );
sums.get += toAdd;
}
// Add up the results from each worker thread.
real pi = 0;
foreach(threadResult; sums.toRange)
{
pi += 4.0L * threadResult;
}
---
*/
static struct WorkerLocalStorage(T)
{
private:
TaskPool pool;
size_t size;
static immutable size_t cacheLineSize;
size_t elemSize;
bool* stillThreadLocal;
shared static this()
{
size_t lineSize = 0;
foreach(cachelevel; datacache)
{
if(cachelevel.lineSize > lineSize && cachelevel.lineSize < uint.max)
{
lineSize = cachelevel.lineSize;
}
}
cacheLineSize = lineSize;
}
static size_t roundToLine(size_t num) pure nothrow
{
if(num % cacheLineSize == 0)
{
return num;
}
else {
return ((num / cacheLineSize) + 1) * cacheLineSize;
}
}
void* data;
void initialize(TaskPool pool)
{
this.pool = pool;
size = pool.size + 1;
stillThreadLocal = new bool;
*stillThreadLocal = true;
// Determines whether the GC should scan the array.
auto blkInfo = (typeid(T).flags & 1) ?
cast(GC.BlkAttr) 0 :
GC.BlkAttr.NO_SCAN;
immutable nElem = pool.size + 1;
elemSize = roundToLine(T.sizeof);
// The + 3 is to pad one full cache line worth of space on either side
// of the data structure to make sure false sharing with completely
// unrelated heap data is prevented, and to provide enough padding to
// make sure that data is cache line-aligned.
data = GC.malloc(elemSize * (nElem + 3), blkInfo) + elemSize;
// Cache line align data ptr.
data = cast(void*) roundToLine(cast(size_t) data);
foreach(i; 0..nElem)
{
this.opIndex(i) = T.init;
}
}
ref T opIndex(size_t index)
{
assert(index < size, text(index, '\t', uint.max));
return *(cast(T*) (data + elemSize * index));
}
void opIndexAssign(T val, size_t index)
{
assert(index < size);
*(cast(T*) (data + elemSize * index)) = val;
}
public:
/**
Get the current thread's instance. Returns by ref.
Note that calling $(D get) from any thread
outside the $(D TaskPool) that created this instance will return the
same reference, so an instance of worker-local storage should only be
accessed from one thread outside the pool that created it. If this
rule is violated, undefined behavior will result.
If assertions are enabled and $(D toRange) has been called, then this
WorkerLocalStorage instance is no longer worker-local and an assertion
failure will result when calling this method. This is not checked
when assertions are disabled for performance reasons.
*/
ref T get() @property
{
assert(*stillThreadLocal,
"Cannot call get() on this instance of WorkerLocalStorage " ~
"because it is no longer worker-local."
);
return opIndex(pool.workerIndex);
}
/**
Assign a value to the current thread's instance. This function has
the same caveats as its overload.
*/
void get(T val) @property
{
assert(*stillThreadLocal,
"Cannot call get() on this instance of WorkerLocalStorage " ~
"because it is no longer worker-local."
);
opIndexAssign(val, pool.workerIndex);
}
/**
Returns a range view of the values for all threads, which can be used
to further process the results of each thread after running the parallel
part of your algorithm. Do not use this method in the parallel portion
of your algorithm.
Calling this function sets a flag indicating that this struct is no
longer worker-local, and attempting to use the $(D get) method again
will result in an assertion failure if assertions are enabled.
*/
WorkerLocalStorageRange!T toRange() @property
{
if(*stillThreadLocal)
{
*stillThreadLocal = false;
// Make absolutely sure results are visible to all threads.
// This is probably not necessary since some other
// synchronization primitive will be used to signal that the
// parallel part of the algorithm is done, but the
// performance impact should be negligible, so it's better
// to be safe.
ubyte barrierDummy;
atomicSetUbyte(barrierDummy, 1);
}
return WorkerLocalStorageRange!T(this);
}
}
/**
Range primitives for worker-local storage. The purpose of this is to
access results produced by each worker thread from a single thread once you
are no longer using the worker-local storage from multiple threads.
Do not use this struct in the parallel portion of your algorithm.
The proper way to instantiate this object is to call
$(D WorkerLocalStorage.toRange). Once instantiated, this object behaves
as a finite random-access range with assignable, lvalue elemends and
a length equal to the number of worker threads in the $(D TaskPool) that
created it plus 1.
*/
static struct WorkerLocalStorageRange(T)
{
private:
WorkerLocalStorage!T workerLocalStorage;
size_t _length;
size_t beginOffset;
this(WorkerLocalStorage!T wl)
{
this.workerLocalStorage = wl;
_length = wl.size;
}
public:
ref T front() @property
{
return this[0];
}
ref T back() @property
{
return this[_length - 1];
}
void popFront()
{
if(_length > 0)
{
beginOffset++;
_length--;
}
}
void popBack()
{
if(_length > 0)
{
_length--;
}
}
typeof(this) save() @property
{
return this;
}
ref T opIndex(size_t index)
{
assert(index < _length);
return workerLocalStorage[index + beginOffset];
}
void opIndexAssign(T val, size_t index)
{
assert(index < _length);
workerLocalStorage[index] = val;
}
typeof(this) opSlice(size_t lower, size_t upper)
{
assert(upper <= _length);
auto newWl = this.workerLocalStorage;
newWl.data += lower * newWl.elemSize;
newWl.size = upper - lower;
return typeof(this)(newWl);
}
bool empty() @property
{
return length == 0;
}
size_t length() @property
{
return _length;
}
}
/**
Creates an instance of worker-local storage, initialized with a given
value. The value is $(D lazy) so that you can, for example, easily
create one instance of a class for each worker. For usage example,
see the $(D WorkerLocalStorage) struct.
*/
WorkerLocalStorage!T workerLocalStorage(T)(lazy T initialVal = T.init)
{
WorkerLocalStorage!T ret;
ret.initialize(this);
foreach(i; 0..size + 1)
{
ret[i] = initialVal;
}
// Memory barrier to make absolutely sure that what we wrote is
// visible to worker threads.
ubyte barrierDummy;
atomicSetUbyte(barrierDummy, 0);
return ret;
}
/**
Signals to all worker threads to terminate as soon as they are finished
with their current $(D Task), or immediately if they are not executing a
$(D Task). $(D Task)s that were in queue will not be executed unless
a call to $(D Task.workForce), $(D Task.yieldForce) or $(D Task.spinForce)
causes them to be executed.
Use only if you have waitied on every $(D Task) and therefore know the
queue is empty, or if you speculatively executed some tasks and no longer
need the results.
*/
void stop() @trusted
{
queueLock();
scope(exit) queueUnlock();
atomicSetUbyte(status, PoolState.stopNow);
notifyAll();
}
/**
Signals worker threads to terminate when the queue becomes empty.
If blocking argument is true, wait for all worker threads to terminate
before returning. This option might be used in applications where
task results are never consumed-- e.g. when $(D TaskPool) is employed as a
rudimentary scheduler for tasks which communicate by means other than
return values.
Warning: Calling this function with $(D blocking = true) from a worker
thread that is a member of the same $(D TaskPool) that
$(D finish) is being called on will result in a deadlock.
*/
void finish(bool blocking = false) @trusted
{
{
queueLock();
scope(exit) queueUnlock();
atomicCasUbyte(status, PoolState.running, PoolState.finishing);
notifyAll();
}
if (blocking)
{
// Use this thread as a worker until everything is finished.
executeWorkLoop();
foreach(t; pool)
{
// Maybe there should be something here to prevent a thread
// from calling join() on itself if this function is called
// from a worker thread in the same pool, but:
//
// 1. Using an if statement to skip join() would result in
// finish() returning without all tasks being finished.
//
// 2. If an exception were thrown, it would bubble up to the
// Task from which finish() was called and likely be
// swallowed.
t.join();
}
}
}
/// Returns the number of worker threads in the pool.
@property size_t size() @safe const pure nothrow
{
return pool.length;
}
/**
Put a $(D Task) object on the back of the task queue. The $(D Task)
object may be passed by pointer or reference.
Example:
---
import std.file;
// Create a task.
auto t = task!read("foo.txt");
// Add it to the queue to be executed.
taskPool.put(t);
---
Notes:
@trusted overloads of this function are called for $(D Task)s if
$(XREF traits, hasUnsharedAliasing) is false for the $(D Task)'s
return type or the function the $(D Task) executes is $(D pure).
$(D Task) objects that meet all other requirements specified in the
$(D @trusted) overloads of $(D task) and $(D scopedTask) may be created
and executed from $(D @safe) code via $(D Task.executeInNewThread) but
not via $(D TaskPool).
While this function takes the address of variables that may
be on the stack, some overloads are marked as @trusted.
$(D Task) includes a destructor that waits for the task to complete
before destroying the stack frame it is allocated on. Therefore,
it is impossible for the stack frame to be destroyed before the task is
complete and no longer referenced by a $(D TaskPool).
*/
void put(alias fun, Args...)(ref Task!(fun, Args) task)
if(!isSafeReturn!(typeof(task)))
{
task.pool = this;
abstractPut(task.basePtr);
}
/// Ditto
void put(alias fun, Args...)(Task!(fun, Args)* task)
if(!isSafeReturn!(typeof(*task)))
{
enforce(task !is null, "Cannot put a null Task on a TaskPool queue.");
put(*task);
}
@trusted void put(alias fun, Args...)(ref Task!(fun, Args) task)
if(isSafeReturn!(typeof(task)))
{
task.pool = this;
abstractPut(task.basePtr);
}
@trusted void put(alias fun, Args...)(Task!(fun, Args)* task)
if(isSafeReturn!(typeof(*task)))
{
enforce(task !is null, "Cannot put a null Task on a TaskPool queue.");
put(*task);
}
/**
These properties control whether the worker threads are daemon threads.
A daemon thread is automatically terminated when all non-daemon threads
have terminated. A non-daemon thread will prevent a program from
terminating as long as it has not terminated.
If any $(D TaskPool) with non-daemon threads is active, either $(D stop)
or $(D finish) must be called on it before the program can terminate.
The worker treads in the $(D TaskPool) instance returned by the
$(D taskPool) property are daemon by default. The worker threads of
manually instantiated task pools are non-daemon by default.
Note: For a size zero pool, the getter arbitrarily returns true and the
setter has no effect.
*/
bool isDaemon() @property @trusted
{
queueLock();
scope(exit) queueUnlock();
return (size == 0) ? true : pool[0].isDaemon;
}
/// Ditto
void isDaemon(bool newVal) @property @trusted
{
queueLock();
scope(exit) queueUnlock();
foreach(thread; pool)
{
thread.isDaemon = newVal;
}
}
/**
These functions allow getting and setting the OS scheduling priority of
the worker threads in this $(D TaskPool). They forward to
$(D core.thread.Thread.priority), so a given priority value here means the
same thing as an identical priority value in $(D core.thread).
Note: For a size zero pool, the getter arbitrarily returns
$(D core.thread.Thread.PRIORITY_MIN) and the setter has no effect.
*/
int priority() @property @trusted
{
return (size == 0) ? core.thread.Thread.PRIORITY_MIN :
pool[0].priority;
}
/// Ditto
void priority(int newPriority) @property @trusted
{
if(size > 0)
{
foreach(t; pool)
{
t.priority = newPriority;
}
}
}
}
/**
Returns a lazily initialized global instantiation of $(D TaskPool).
This function can safely be called concurrently from multiple non-worker
threads. The worker threads in this pool are daemon threads, meaning that it
is not necessary to call $(D TaskPool.stop) or $(D TaskPool.finish) before
terminating the main thread.
*/
@property TaskPool taskPool() @trusted
{
static bool initialized;
__gshared static TaskPool pool;
if(!initialized)
{
synchronized(TaskPool.classinfo)
{
if(!pool)
{
pool = new TaskPool(defaultPoolThreads);
pool.isDaemon = true;
}
}
initialized = true;
}
return pool;
}
private shared uint _defaultPoolThreads;
shared static this()
{
atomicStore(_defaultPoolThreads, totalCPUs - 1);
}
/**
These properties get and set the number of worker threads in the $(D TaskPool)
instance returned by $(D taskPool). The default value is $(D totalCPUs) - 1.
Calling the setter after the first call to $(D taskPool) does not changes
number of worker threads in the instance returned by $(D taskPool).
*/
@property uint defaultPoolThreads() @trusted
{
return atomicLoad(_defaultPoolThreads);
}
/// Ditto
@property void defaultPoolThreads(uint newVal) @trusted
{
atomicStore(_defaultPoolThreads, newVal);
}
/**
Convenience functions that forwards to $(D taskPool.parallel). The
purpose of these is to make parallel foreach less verbose and more
readable.
Example:
---
// Find the logarithm of every number from
// 1 to 1_000_000 in parallel, using the
// default TaskPool instance.
auto logs = new double[1_000_000];
foreach(i, ref elem; parallel(logs)) {
elem = log(i + 1.0);
}
---
*/
ParallelForeach!R parallel(R)(R range)
{
return taskPool.parallel(range);
}
/// Ditto
ParallelForeach!R parallel(R)(R range, size_t workUnitSize)
{
return taskPool.parallel(range, workUnitSize);
}
// Thrown when a parallel foreach loop is broken from.
class ParallelForeachError : Error
{
this()
{
super("Cannot break from a parallel foreach loop using break, return, "
~ "labeled break/continue or goto statements.");
}
}
/*------Structs that implement opApply for parallel foreach.------------------*/
private template randLen(R)
{
enum randLen = isRandomAccessRange!R && hasLength!R;
}
private void submitAndExecute(
TaskPool pool,
scope void delegate() doIt
)
{
immutable nThreads = pool.size + 1;
alias typeof(scopedTask(doIt)) PTask;
import core.stdc.stdlib;
import core.stdc.string : memcpy;
// The logical thing to do would be to just use alloca() here, but that
// causes problems on Windows for reasons that I don't understand
// (tentatively a compiler bug) and definitely doesn't work on Posix due
// to Bug 3753. Therefore, allocate a fixed buffer and fall back to
// malloc() if someone's using a ridiculous amount of threads. Also,
// the using a byte array instead of a PTask array as the fixed buffer
// is to prevent d'tors from being called on uninitialized excess PTask
// instances.
enum nBuf = 64;
byte[nBuf * PTask.sizeof] buf = void;
PTask[] tasks;
if(nThreads <= nBuf)
{
tasks = (cast(PTask*) buf.ptr)[0..nThreads];
}
else
{
auto ptr = cast(PTask*) malloc(nThreads * PTask.sizeof);
if(!ptr) throw new OutOfMemoryError("Out of memory in std.parallelism.");
tasks = ptr[0..nThreads];
}
scope(exit)
{
if(nThreads > nBuf)
{
free(tasks.ptr);
}
}
foreach(ref t; tasks)
{
// This silly looking code is necessary to prevent d'tors from being
// called on uninitialized objects.
auto temp = scopedTask(doIt);
core.stdc.string.memcpy(&t, &temp, PTask.sizeof);
// This has to be done to t after copying, not temp before copying.
// Otherwise, temp's destructor will sit here and wait for the
// task to finish.
t.pool = pool;
}
foreach(i; 1..tasks.length - 1)
{
tasks[i].next = tasks[i + 1].basePtr;
tasks[i + 1].prev = tasks[i].basePtr;
}
if(tasks.length > 1)
{
pool.queueLock();
scope(exit) pool.queueUnlock();
pool.abstractPutGroupNoSync(
tasks[1].basePtr,
tasks[$ - 1].basePtr
);
}
if(tasks.length > 0)
{
try
{
tasks[0].job();
}
catch(Throwable e)
{
tasks[0].exception = e;
}
tasks[0].taskStatus = TaskStatus.done;
// Try to execute each of these in the current thread
foreach(ref task; tasks[1..$])
{
pool.tryDeleteExecute(task.basePtr);
}
}
Throwable firstException, lastException;
foreach(i, ref task; tasks)
{
try
{
task.yieldForce;
}
catch(Throwable e)
{
addToChain(e, firstException, lastException);
continue;
}
}
if(firstException) throw firstException;
}
void foreachErr()
{
throw new ParallelForeachError();
}
int doSizeZeroCase(R, Delegate)(ref ParallelForeach!R p, Delegate dg)
{
with(p)
{
int res = 0;
size_t index = 0;
// The explicit ElementType!R in the foreach loops is necessary for
// correct behavior when iterating over strings.
static if(hasLvalueElements!R)
{
foreach(ref ElementType!R elem; range)
{
static if(ParameterTypeTuple!dg.length == 2)
{
res = dg(index, elem);
}
else
{
res = dg(elem);
}
if(res) foreachErr();
index++;
}
}
else
{
foreach(ElementType!R elem; range)
{
static if(ParameterTypeTuple!dg.length == 2)
{
res = dg(index, elem);
}
else
{
res = dg(elem);
}
if(res) foreachErr();
index++;
}
}
return res;
}
}
private enum string parallelApplyMixinRandomAccess = q{
// Handle empty thread pool as special case.
if(pool.size == 0)
{
return doSizeZeroCase(this, dg);
}
// Whether iteration is with or without an index variable.
enum withIndex = ParameterTypeTuple!(typeof(dg)).length == 2;
shared size_t workUnitIndex = size_t.max; // Effectively -1: chunkIndex + 1 == 0
immutable len = range.length;
if(!len) return 0;
shared bool shouldContinue = true;
void doIt()
{
scope(failure)
{
// If an exception is thrown, all threads should bail.
atomicStore(shouldContinue, false);
}
while(atomicLoad(shouldContinue))
{
immutable myUnitIndex = atomicOp!"+="(workUnitIndex, 1);
immutable start = workUnitSize * myUnitIndex;
if(start >= len)
{
atomicStore(shouldContinue, false);
break;
}
immutable end = min(len, start + workUnitSize);
foreach(i; start..end)
{
static if(withIndex)
{
if(dg(i, range[i])) foreachErr();
}
else
{
if(dg(range[i])) foreachErr();
}
}
}
}
submitAndExecute(pool, &doIt);
return 0;
};
enum string parallelApplyMixinInputRange = q{
// Handle empty thread pool as special case.
if(pool.size == 0)
{
return doSizeZeroCase(this, dg);
}
// Whether iteration is with or without an index variable.
enum withIndex = ParameterTypeTuple!(typeof(dg)).length == 2;
// This protects the range while copying it.
auto rangeMutex = new Mutex();
shared bool shouldContinue = true;
// The total number of elements that have been popped off range.
// This is updated only while protected by rangeMutex;
size_t nPopped = 0;
static if(
is(typeof(range.buf1)) &&
is(typeof(range.bufPos)) &&
is(typeof(range.doBufSwap()))
)
{
// Make sure we don't have the buffer recycling overload of
// asyncBuf.
static if(
is(typeof(range.source)) &&
isRoundRobin!(typeof(range.source))
)
{
static assert(0, "Cannot execute a parallel foreach loop on " ~
"the buffer recycling overload of asyncBuf.");
}
enum bool bufferTrick = true;
}
else
{
enum bool bufferTrick = false;
}
void doIt()
{
scope(failure)
{
// If an exception is thrown, all threads should bail.
atomicStore(shouldContinue, false);
}
static if(hasLvalueElements!R)
{
alias ElementType!R*[] Temp;
Temp temp;
// Returns: The previous value of nPopped.
size_t makeTemp()
{
if(temp is null)
{
temp = uninitializedArray!Temp(workUnitSize);
}
rangeMutex.lock();
scope(exit) rangeMutex.unlock();
size_t i = 0;
for(; i < workUnitSize && !range.empty; range.popFront(), i++)
{
temp[i] = addressOf(range.front);
}
temp = temp[0..i];
auto ret = nPopped;
nPopped += temp.length;
return ret;
}
}
else
{
alias ElementType!R[] Temp;
Temp temp;
// Returns: The previous value of nPopped.
static if(!bufferTrick) size_t makeTemp()
{
if(temp is null)
{
temp = uninitializedArray!Temp(workUnitSize);
}
rangeMutex.lock();
scope(exit) rangeMutex.unlock();
size_t i = 0;
for(; i < workUnitSize && !range.empty; range.popFront(), i++)
{
temp[i] = range.front;
}
temp = temp[0..i];
auto ret = nPopped;
nPopped += temp.length;
return ret;
}
static if(bufferTrick) size_t makeTemp()
{
rangeMutex.lock();
scope(exit) rangeMutex.unlock();
// Elide copying by just swapping buffers.
temp.length = range.buf1.length;
swap(range.buf1, temp);
// This is necessary in case popFront() has been called on
// range before entering the parallel foreach loop.
temp = temp[range.bufPos..$];
static if(is(typeof(range._length)))
{
range._length -= (temp.length - range.bufPos);
}
range.doBufSwap();
auto ret = nPopped;
nPopped += temp.length;
return ret;
}
}
while(atomicLoad(shouldContinue))
{
auto overallIndex = makeTemp();
if(temp.empty)
{
atomicStore(shouldContinue, false);
break;
}
foreach(i; 0..temp.length)
{
scope(success) overallIndex++;
static if(hasLvalueElements!R)
{
static if(withIndex)
{
if(dg(overallIndex, *temp[i])) foreachErr();
}
else
{
if(dg(*temp[i])) foreachErr();
}
}
else
{
static if(withIndex)
{
if(dg(overallIndex, temp[i])) foreachErr();
}
else
{
if(dg(temp[i])) foreachErr();
}
}
}
}
}
submitAndExecute(pool, &doIt);
return 0;
};
// Calls e.next until the end of the chain is found.
private Throwable findLastException(Throwable e) pure nothrow
{
if(e is null) return null;
while(e.next)
{
e = e.next;
}
return e;
}
// Adds e to the exception chain.
private void addToChain(
Throwable e,
ref Throwable firstException,
ref Throwable lastException
) pure nothrow
{
if(firstException)
{
assert(lastException);
lastException.next = e;
lastException = findLastException(e);
}
else
{
firstException = e;
lastException = findLastException(e);
}
}
private struct ParallelForeach(R)
{
TaskPool pool;
R range;
size_t workUnitSize;
alias ElementType!R E;
static if(hasLvalueElements!R)
{
alias int delegate(ref E) NoIndexDg;
alias int delegate(size_t, ref E) IndexDg;
}
else
{
alias int delegate(E) NoIndexDg;
alias int delegate(size_t, E) IndexDg;
}
int opApply(scope NoIndexDg dg)
{
static if(randLen!R)
{
mixin(parallelApplyMixinRandomAccess);
}
else
{
mixin(parallelApplyMixinInputRange);
}
}
int opApply(scope IndexDg dg)
{
static if(randLen!R)
{
mixin(parallelApplyMixinRandomAccess);
}
else
{
mixin(parallelApplyMixinInputRange);
}
}
}
/*
This struct buffers the output of a callable that outputs data into a
user-supplied buffer into a set of buffers of some fixed size. It allows these
buffers to be accessed with an input range interface. This is used internally
in the buffer-recycling overload of TaskPool.asyncBuf, which creates an
instance and forwards it to the input range overload of asyncBuf.
*/
private struct RoundRobinBuffer(C1, C2)
{
// No need for constraints because they're already checked for in asyncBuf.
alias ParameterTypeTuple!(C1.init)[0] Array;
alias typeof(Array.init[0]) T;
T[][] bufs;
size_t index;
C1 nextDel;
C2 emptyDel;
bool _empty;
bool primed;
this(
C1 nextDel,
C2 emptyDel,
size_t initialBufSize,
size_t nBuffers
) {
this.nextDel = nextDel;
this.emptyDel = emptyDel;
bufs.length = nBuffers;
foreach(ref buf; bufs)
{
buf.length = initialBufSize;
}
}
void prime()
in
{
assert(!empty);
}
body
{
scope(success) primed = true;
nextDel(bufs[index]);
}
T[] front() @property
in
{
assert(!empty);
}
body
{
if(!primed) prime();
return bufs[index];
}
void popFront()
{
if(empty || emptyDel())
{
_empty = true;
return;
}
index = (index + 1) % bufs.length;
primed = false;
}
bool empty() @property const pure nothrow @safe
{
return _empty;
}
}
version(unittest)
{
// This was the only way I could get nested maps to work.
__gshared TaskPool poolInstance;
import std.stdio;
}
// These test basic functionality but don't stress test for threading bugs.
// These are the tests that should be run every time Phobos is compiled.
unittest
{
poolInstance = new TaskPool(2);
scope(exit) poolInstance.stop();
// The only way this can be verified is manually.
stderr.writeln("totalCPUs = ", totalCPUs);
auto oldPriority = poolInstance.priority;
poolInstance.priority = Thread.PRIORITY_MAX;
assert(poolInstance.priority == Thread.PRIORITY_MAX);
poolInstance.priority = Thread.PRIORITY_MIN;
assert(poolInstance.priority == Thread.PRIORITY_MIN);
poolInstance.priority = oldPriority;
assert(poolInstance.priority == oldPriority);
static void refFun(ref uint num)
{
num++;
}
uint x;
// Test task().
auto t = task!refFun(x);
poolInstance.put(t);
t.yieldForce;
assert(t.args[0] == 1);
auto t2 = task(&refFun, x);
poolInstance.put(t2);
t2.yieldForce;
assert(t2.args[0] == 1);
// Test scopedTask().
auto st = scopedTask!refFun(x);
poolInstance.put(st);
st.yieldForce;
assert(st.args[0] == 1);
auto st2 = scopedTask(&refFun, x);
poolInstance.put(st2);
st2.yieldForce;
assert(st2.args[0] == 1);
// Test executeInNewThread().
auto ct = scopedTask!refFun(x);
ct.executeInNewThread(Thread.PRIORITY_MAX);
ct.yieldForce;
assert(ct.args[0] == 1);
// Test ref return.
uint toInc = 0;
static ref T makeRef(T)(ref T num)
{
return num;
}
auto t3 = task!makeRef(toInc);
taskPool.put(t3);
assert(t3.args[0] == 0);
t3.spinForce++;
assert(t3.args[0] == 1);
static void testSafe() @safe {
static int bump(int num)
{
return num + 1;
}
auto safePool = new TaskPool(0);
auto t = task(&bump, 1);
taskPool.put(t);
assert(t.yieldForce == 2);
auto st = scopedTask(&bump, 1);
taskPool.put(st);
assert(st.yieldForce == 2);
safePool.stop();
}
auto arr = [1,2,3,4,5];
auto nums = new uint[5];
auto nums2 = new uint[5];
foreach(i, ref elem; poolInstance.parallel(arr))
{
elem++;
nums[i] = cast(uint) i + 2;
nums2[i] = elem;
}
assert(nums == [2,3,4,5,6], text(nums));
assert(nums2 == nums, text(nums2));
assert(arr == nums, text(arr));
// Test const/immutable arguments.
static int add(int lhs, int rhs)
{
return lhs + rhs;
}
immutable addLhs = 1;
immutable addRhs = 2;
auto addTask = task(&add, addLhs, addRhs);
auto addScopedTask = scopedTask(&add, addLhs, addRhs);
poolInstance.put(addTask);
poolInstance.put(addScopedTask);
assert(addTask.yieldForce == 3);
assert(addScopedTask.yieldForce == 3);
// Test parallel foreach with non-random access range.
auto range = filter!"a != 666"([0, 1, 2, 3, 4]);
foreach(i, elem; poolInstance.parallel(range))
{
nums[i] = cast(uint) i;
}
assert(nums == [0,1,2,3,4]);
auto logs = new double[1_000_000];
foreach(i, ref elem; poolInstance.parallel(logs))
{
elem = log(i + 1.0);
}
foreach(i, elem; logs)
{
assert(approxEqual(elem, cast(double) log(i + 1)));
}
assert(poolInstance.amap!"a * a"([1,2,3,4,5]) == [1,4,9,16,25]);
assert(poolInstance.amap!"a * a"([1,2,3,4,5], new long[5]) == [1,4,9,16,25]);
assert(poolInstance.amap!("a * a", "-a")([1,2,3]) ==
[tuple(1, -1), tuple(4, -2), tuple(9, -3)]);
auto tupleBuf = new Tuple!(int, int)[3];
poolInstance.amap!("a * a", "-a")([1,2,3], tupleBuf);
assert(tupleBuf == [tuple(1, -1), tuple(4, -2), tuple(9, -3)]);
poolInstance.amap!("a * a", "-a")([1,2,3], 5, tupleBuf);
assert(tupleBuf == [tuple(1, -1), tuple(4, -2), tuple(9, -3)]);
// Test amap with a non-array buffer.
auto toIndex = new int[5];
auto indexed = std.range.indexed(toIndex, [3, 1, 4, 0, 2]);
poolInstance.amap!"a * 2"([1, 2, 3, 4, 5], indexed);
assert(equal(indexed, [2, 4, 6, 8, 10]));
assert(equal(toIndex, [8, 4, 10, 2, 6]));
poolInstance.amap!"a / 2"(indexed, indexed);
assert(equal(indexed, [1, 2, 3, 4, 5]));
assert(equal(toIndex, [4, 2, 5, 1, 3]));
auto buf = new int[5];
poolInstance.amap!"a * a"([1,2,3,4,5], buf);
assert(buf == [1,4,9,16,25]);
poolInstance.amap!"a * a"([1,2,3,4,5], 4, buf);
assert(buf == [1,4,9,16,25]);
assert(poolInstance.reduce!"a + b"([1]) == 1);
assert(poolInstance.reduce!"a + b"([1,2,3,4]) == 10);
assert(poolInstance.reduce!"a + b"(0.0, [1,2,3,4]) == 10);
assert(poolInstance.reduce!"a + b"(0.0, [1,2,3,4], 1) == 10);
assert(poolInstance.reduce!(min, max)([1,2,3,4]) == tuple(1, 4));
assert(poolInstance.reduce!("a + b", "a * b")(tuple(0, 1), [1,2,3,4]) ==
tuple(10, 24));
immutable serialAns = std.algorithm.reduce!"a + b"(iota(1000));
assert(poolInstance.reduce!"a + b"(0, iota(1000)) == serialAns);
assert(poolInstance.reduce!"a + b"(iota(1000)) == serialAns);
// Test worker-local storage.
auto wl = poolInstance.workerLocalStorage(0);
foreach(i; poolInstance.parallel(iota(1000), 1))
{
wl.get = wl.get + i;
}
auto wlRange = wl.toRange;
auto parallelSum = poolInstance.reduce!"a + b"(wlRange);
assert(parallelSum == 499500);
assert(wlRange[0..1][0] == wlRange[0]);
assert(wlRange[1..2][0] == wlRange[1]);
// Test finish()
{
static void slowFun() { Thread.sleep(dur!"msecs"(1)); }
auto pool1 = new TaskPool();
auto tSlow = task!slowFun();
pool1.put(tSlow);
pool1.finish();
tSlow.yieldForce;
// Can't assert that pool1.status == PoolState.stopNow because status
// doesn't change until after the "done" flag is set and the waiting
// thread is woken up.
auto pool2 = new TaskPool();
auto tSlow2 = task!slowFun();
pool2.put(tSlow2);
pool2.finish(true); // blocking
assert(tSlow2.done);
// Test fix for Bug 8582 by making pool size zero.
auto pool3 = new TaskPool(0);
auto tSlow3 = task!slowFun();
pool3.put(tSlow3);
pool3.finish(true); // blocking
assert(tSlow3.done);
// This is correct because no thread will terminate unless pool2.status
// and pool3.status have already been set to stopNow.
assert(pool2.status == TaskPool.PoolState.stopNow);
assert(pool3.status == TaskPool.PoolState.stopNow);
}
// Test default pool stuff.
assert(taskPool.size == totalCPUs - 1);
nums = new uint[1000];
foreach(i; parallel(iota(1000)))
{
nums[i] = cast(uint) i;
}
assert(equal(nums, iota(1000)));
assert(equal(
poolInstance.map!"a * a"(iota(30_000_001), 10_000),
std.algorithm.map!"a * a"(iota(30_000_001))
));
// The filter is to kill random access and test the non-random access
// branch.
assert(equal(
poolInstance.map!"a * a"(
filter!"a == a"(iota(30_000_001)
), 10_000, 1000),
std.algorithm.map!"a * a"(iota(30_000_001))
));
assert(
reduce!"a + b"(0UL,
poolInstance.map!"a * a"(iota(3_000_001), 10_000)
) ==
reduce!"a + b"(0UL,
std.algorithm.map!"a * a"(iota(3_000_001))
)
);
assert(equal(
iota(1_000_002),
poolInstance.asyncBuf(filter!"a == a"(iota(1_000_002)))
));
{
auto file = File("tempDelMe.txt", "wb");
scope(exit)
{
file.close();
import std.file;
remove("tempDelMe.txt");
}
auto written = [[1.0, 2, 3], [4.0, 5, 6], [7.0, 8, 9]];
foreach(row; written)
{
file.writeln(join(to!(string[])(row), "\t"));
}
file = File("tempDelMe.txt");
void next(ref char[] buf)
{
file.readln(buf);
import std.string;
buf = chomp(buf);
}
double[][] read;
auto asyncReader = taskPool.asyncBuf(&next, &file.eof);
foreach(line; asyncReader)
{
if(line.length == 0) continue;
auto ls = line.split("\t");
read ~= to!(double[])(ls);
}
assert(read == written);
file.close();
}
// Test Map/AsyncBuf chaining.
auto abuf = poolInstance.asyncBuf(iota(-1.0, 3_000_000), 100);
auto temp = poolInstance.map!sqrt(
abuf, 100, 5
);
auto lmchain = poolInstance.map!"a * a"(temp, 100, 5);
lmchain.popFront();
int ii;
foreach( elem; (lmchain))
{
if(!approxEqual(elem, ii))
{
stderr.writeln(ii, '\t', elem);
}
ii++;
}
// Test buffer trick in parallel foreach.
abuf = poolInstance.asyncBuf(iota(-1.0, 1_000_000), 100);
abuf.popFront();
auto bufTrickTest = new size_t[abuf.length];
foreach(i, elem; parallel(abuf))
{
bufTrickTest[i] = i;
}
assert(equal(iota(1_000_000), bufTrickTest));
auto myTask = task!(std.math.abs)(-1);
taskPool.put(myTask);
assert(myTask.spinForce == 1);
// Test that worker local storage from one pool receives an index of 0
// when the index is queried w.r.t. another pool. The only way to do this
// is non-deterministically.
foreach(i; parallel(iota(1000), 1))
{
assert(poolInstance.workerIndex == 0);
}
foreach(i; poolInstance.parallel(iota(1000), 1))
{
assert(taskPool.workerIndex == 0);
}
// Test exception handling.
static void parallelForeachThrow()
{
foreach(elem; parallel(iota(10)))
{
throw new Exception("");
}
}
assertThrown!Exception(parallelForeachThrow());
static int reduceException(int a, int b)
{
throw new Exception("");
}
assertThrown!Exception(
poolInstance.reduce!reduceException(iota(3))
);
static int mapException(int a)
{
throw new Exception("");
}
assertThrown!Exception(
poolInstance.amap!mapException(iota(3))
);
static void mapThrow()
{
auto m = poolInstance.map!mapException(iota(3));
m.popFront();
}
assertThrown!Exception(mapThrow());
struct ThrowingRange
{
@property int front()
{
return 1;
}
void popFront()
{
throw new Exception("");
}
enum bool empty = false;
}
assertThrown!Exception(poolInstance.asyncBuf(ThrowingRange.init));
}
//version = parallelismStressTest;
// These are more like stress tests than real unit tests. They print out
// tons of stuff and should not be run every time make unittest is run.
version(parallelismStressTest)
{
unittest
{
size_t attempt;
for(; attempt < 10; attempt++)
foreach(poolSize; [0, 4])
{
poolInstance = new TaskPool(poolSize);
uint[] numbers = new uint[1_000];
foreach(i; poolInstance.parallel( iota(0, numbers.length)) )
{
numbers[i] = cast(uint) i;
}
// Make sure it works.
foreach(i; 0..numbers.length)
{
assert(numbers[i] == i);
}
stderr.writeln("Done creating nums.");
auto myNumbers = filter!"a % 7 > 0"( iota(0, 1000));
foreach(num; poolInstance.parallel(myNumbers))
{
assert(num % 7 > 0 && num < 1000);
}
stderr.writeln("Done modulus test.");
uint[] squares = poolInstance.amap!"a * a"(numbers, 100);
assert(squares.length == numbers.length);
foreach(i, number; numbers)
{
assert(squares[i] == number * number);
}
stderr.writeln("Done squares.");
auto sumFuture = task!( reduce!"a + b" )(numbers);
poolInstance.put(sumFuture);
ulong sumSquares = 0;
foreach(elem; numbers)
{
sumSquares += elem * elem;
}
uint mySum = sumFuture.spinForce();
assert(mySum == 999 * 1000 / 2);
auto mySumParallel = poolInstance.reduce!"a + b"(numbers);
assert(mySum == mySumParallel);
stderr.writeln("Done sums.");
auto myTask = task(
{
synchronized writeln("Our lives are parallel...Our lives are parallel.");
});
poolInstance.put(myTask);
auto nestedOuter = "abcd";
auto nestedInner = iota(0, 10, 2);
foreach(i, letter; poolInstance.parallel(nestedOuter, 1))
{
foreach(j, number; poolInstance.parallel(nestedInner, 1))
{
synchronized writeln(i, ": ", letter, " ", j, ": ", number);
}
}
poolInstance.stop();
}
assert(attempt == 10);
writeln("Press enter to go to next round of unittests.");
readln();
}
// These unittests are intended more for actual testing and not so much
// as examples.
unittest
{
foreach(attempt; 0..10)
foreach(poolSize; [0, 4])
{
poolInstance = new TaskPool(poolSize);
// Test indexing.
stderr.writeln("Creator Raw Index: ", poolInstance.threadIndex);
assert(poolInstance.workerIndex() == 0);
// Test worker-local storage.
auto workerLocalStorage = poolInstance.workerLocalStorage!uint(1);
foreach(i; poolInstance.parallel(iota(0U, 1_000_000)))
{
workerLocalStorage.get++;
}
assert(reduce!"a + b"(workerLocalStorage.toRange) ==
1_000_000 + poolInstance.size + 1);
// Make sure work is reasonably balanced among threads. This test is
// non-deterministic and is more of a sanity check than something that
// has an absolute pass/fail.
shared(uint)[void*] nJobsByThread;
foreach(thread; poolInstance.pool)
{
nJobsByThread[cast(void*) thread] = 0;
}
nJobsByThread[ cast(void*) Thread.getThis()] = 0;
foreach(i; poolInstance.parallel( iota(0, 1_000_000), 100 ))
{
atomicOp!"+="( nJobsByThread[ cast(void*) Thread.getThis() ], 1);
}
stderr.writeln("\nCurrent thread is: ",
cast(void*) Thread.getThis());
stderr.writeln("Workload distribution: ");
foreach(k, v; nJobsByThread)
{
stderr.writeln(k, '\t', v);
}
// Test whether amap can be nested.
real[][] matrix = new real[][](1000, 1000);
foreach(i; poolInstance.parallel( iota(0, matrix.length) ))
{
foreach(j; poolInstance.parallel( iota(0, matrix[0].length) ))
{
matrix[i][j] = i * j;
}
}
// Get around weird bugs having to do w/ sqrt being an intrinsic:
static real mySqrt(real num)
{
return sqrt(num);
}
static real[] parallelSqrt(real[] nums)
{
return poolInstance.amap!mySqrt(nums);
}
real[][] sqrtMatrix = poolInstance.amap!parallelSqrt(matrix);
foreach(i, row; sqrtMatrix)
{
foreach(j, elem; row)
{
real shouldBe = sqrt( cast(real) i * j);
assert(approxEqual(shouldBe, elem));
sqrtMatrix[i][j] = shouldBe;
}
}
auto saySuccess = task(
{
stderr.writeln(
"Success doing matrix stuff that involves nested pool use.");
});
poolInstance.put(saySuccess);
saySuccess.workForce();
// A more thorough test of amap, reduce: Find the sum of the square roots of
// matrix.
static real parallelSum(real[] input)
{
return poolInstance.reduce!"a + b"(input);
}
auto sumSqrt = poolInstance.reduce!"a + b"(
poolInstance.amap!parallelSum(
sqrtMatrix
)
);
assert(approxEqual(sumSqrt, 4.437e8));
stderr.writeln("Done sum of square roots.");
// Test whether tasks work with function pointers.
auto nanTask = task(&isNaN, 1.0L);
poolInstance.put(nanTask);
assert(nanTask.spinForce == false);
if(poolInstance.size > 0)
{
// Test work waiting.
static void uselessFun()
{
foreach(i; 0..1_000_000) {}
}
auto uselessTasks = new typeof(task(&uselessFun))[1000];
foreach(ref uselessTask; uselessTasks)
{
uselessTask = task(&uselessFun);
}
foreach(ref uselessTask; uselessTasks)
{
poolInstance.put(uselessTask);
}
foreach(ref uselessTask; uselessTasks)
{
uselessTask.workForce();
}
}
// Test the case of non-random access + ref returns.
int[] nums = [1,2,3,4,5];
static struct RemoveRandom
{
int[] arr;
ref int front()
{
return arr.front;
}
void popFront()
{
arr.popFront();
}
bool empty()
{
return arr.empty;
}
}
auto refRange = RemoveRandom(nums);
foreach(ref elem; poolInstance.parallel(refRange))
{
elem++;
}
assert(nums == [2,3,4,5,6], text(nums));
stderr.writeln("Nums: ", nums);
poolInstance.stop();
}
}
}
|