/usr/lib/python2.7/_threading_local.py is in libpython2.7-stdlib 2.7.6-8ubuntu0.5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 | """Thread-local objects.
(Note that this module provides a Python version of the threading.local
class. Depending on the version of Python you're using, there may be a
faster one available. You should always import the `local` class from
`threading`.)
Thread-local objects support the management of thread-local data.
If you have data that you want to be local to a thread, simply create
a thread-local object and use its attributes:
>>> mydata = local()
>>> mydata.number = 42
>>> mydata.number
42
You can also access the local-object's dictionary:
>>> mydata.__dict__
{'number': 42}
>>> mydata.__dict__.setdefault('widgets', [])
[]
>>> mydata.widgets
[]
What's important about thread-local objects is that their data are
local to a thread. If we access the data in a different thread:
>>> log = []
>>> def f():
... items = mydata.__dict__.items()
... items.sort()
... log.append(items)
... mydata.number = 11
... log.append(mydata.number)
>>> import threading
>>> thread = threading.Thread(target=f)
>>> thread.start()
>>> thread.join()
>>> log
[[], 11]
we get different data. Furthermore, changes made in the other thread
don't affect data seen in this thread:
>>> mydata.number
42
Of course, values you get from a local object, including a __dict__
attribute, are for whatever thread was current at the time the
attribute was read. For that reason, you generally don't want to save
these values across threads, as they apply only to the thread they
came from.
You can create custom local objects by subclassing the local class:
>>> class MyLocal(local):
... number = 2
... initialized = False
... def __init__(self, **kw):
... if self.initialized:
... raise SystemError('__init__ called too many times')
... self.initialized = True
... self.__dict__.update(kw)
... def squared(self):
... return self.number ** 2
This can be useful to support default values, methods and
initialization. Note that if you define an __init__ method, it will be
called each time the local object is used in a separate thread. This
is necessary to initialize each thread's dictionary.
Now if we create a local object:
>>> mydata = MyLocal(color='red')
Now we have a default number:
>>> mydata.number
2
an initial color:
>>> mydata.color
'red'
>>> del mydata.color
And a method that operates on the data:
>>> mydata.squared()
4
As before, we can access the data in a separate thread:
>>> log = []
>>> thread = threading.Thread(target=f)
>>> thread.start()
>>> thread.join()
>>> log
[[('color', 'red'), ('initialized', True)], 11]
without affecting this thread's data:
>>> mydata.number
2
>>> mydata.color
Traceback (most recent call last):
...
AttributeError: 'MyLocal' object has no attribute 'color'
Note that subclasses can define slots, but they are not thread
local. They are shared across threads:
>>> class MyLocal(local):
... __slots__ = 'number'
>>> mydata = MyLocal()
>>> mydata.number = 42
>>> mydata.color = 'red'
So, the separate thread:
>>> thread = threading.Thread(target=f)
>>> thread.start()
>>> thread.join()
affects what we see:
>>> mydata.number
11
>>> del mydata
"""
__all__ = ["local"]
# We need to use objects from the threading module, but the threading
# module may also want to use our `local` class, if support for locals
# isn't compiled in to the `thread` module. This creates potential problems
# with circular imports. For that reason, we don't import `threading`
# until the bottom of this file (a hack sufficient to worm around the
# potential problems). Note that almost all platforms do have support for
# locals in the `thread` module, and there is no circular import problem
# then, so problems introduced by fiddling the order of imports here won't
# manifest on most boxes.
class _localbase(object):
__slots__ = '_local__key', '_local__args', '_local__lock'
def __new__(cls, *args, **kw):
self = object.__new__(cls)
key = '_local__key', 'thread.local.' + str(id(self))
object.__setattr__(self, '_local__key', key)
object.__setattr__(self, '_local__args', (args, kw))
object.__setattr__(self, '_local__lock', RLock())
if (args or kw) and (cls.__init__ is object.__init__):
raise TypeError("Initialization arguments are not supported")
# We need to create the thread dict in anticipation of
# __init__ being called, to make sure we don't call it
# again ourselves.
dict = object.__getattribute__(self, '__dict__')
current_thread().__dict__[key] = dict
return self
def _patch(self):
key = object.__getattribute__(self, '_local__key')
d = current_thread().__dict__.get(key)
if d is None:
d = {}
current_thread().__dict__[key] = d
object.__setattr__(self, '__dict__', d)
# we have a new instance dict, so call out __init__ if we have
# one
cls = type(self)
if cls.__init__ is not object.__init__:
args, kw = object.__getattribute__(self, '_local__args')
cls.__init__(self, *args, **kw)
else:
object.__setattr__(self, '__dict__', d)
class local(_localbase):
def __getattribute__(self, name):
lock = object.__getattribute__(self, '_local__lock')
lock.acquire()
try:
_patch(self)
return object.__getattribute__(self, name)
finally:
lock.release()
def __setattr__(self, name, value):
if name == '__dict__':
raise AttributeError(
"%r object attribute '__dict__' is read-only"
% self.__class__.__name__)
lock = object.__getattribute__(self, '_local__lock')
lock.acquire()
try:
_patch(self)
return object.__setattr__(self, name, value)
finally:
lock.release()
def __delattr__(self, name):
if name == '__dict__':
raise AttributeError(
"%r object attribute '__dict__' is read-only"
% self.__class__.__name__)
lock = object.__getattribute__(self, '_local__lock')
lock.acquire()
try:
_patch(self)
return object.__delattr__(self, name)
finally:
lock.release()
def __del__(self):
import threading
key = object.__getattribute__(self, '_local__key')
try:
# We use the non-locking API since we might already hold the lock
# (__del__ can be called at any point by the cyclic GC).
threads = threading._enumerate()
except:
# If enumerating the current threads fails, as it seems to do
# during shutdown, we'll skip cleanup under the assumption
# that there is nothing to clean up.
return
for thread in threads:
try:
__dict__ = thread.__dict__
except AttributeError:
# Thread is dying, rest in peace.
continue
if key in __dict__:
try:
del __dict__[key]
except KeyError:
pass # didn't have anything in this thread
from threading import current_thread, RLock
|