This file is indexed.

/usr/include/llvm-3.6/llvm/Analysis/ScalarEvolutionExpressions.h is in llvm-3.6-dev 1:3.6-2ubuntu1~trusty2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
//===- llvm/Analysis/ScalarEvolutionExpressions.h - SCEV Exprs --*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the classes used to represent and build scalar expressions.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H
#define LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H

#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Support/ErrorHandling.h"

namespace llvm {
  class ConstantInt;
  class ConstantRange;
  class DominatorTree;

  enum SCEVTypes {
    // These should be ordered in terms of increasing complexity to make the
    // folders simpler.
    scConstant, scTruncate, scZeroExtend, scSignExtend, scAddExpr, scMulExpr,
    scUDivExpr, scAddRecExpr, scUMaxExpr, scSMaxExpr,
    scUnknown, scCouldNotCompute
  };

  //===--------------------------------------------------------------------===//
  /// SCEVConstant - This class represents a constant integer value.
  ///
  class SCEVConstant : public SCEV {
    friend class ScalarEvolution;

    ConstantInt *V;
    SCEVConstant(const FoldingSetNodeIDRef ID, ConstantInt *v) :
      SCEV(ID, scConstant), V(v) {}
  public:
    ConstantInt *getValue() const { return V; }

    Type *getType() const { return V->getType(); }

    /// Methods for support type inquiry through isa, cast, and dyn_cast:
    static inline bool classof(const SCEV *S) {
      return S->getSCEVType() == scConstant;
    }
  };

  //===--------------------------------------------------------------------===//
  /// SCEVCastExpr - This is the base class for unary cast operator classes.
  ///
  class SCEVCastExpr : public SCEV {
  protected:
    const SCEV *Op;
    Type *Ty;

    SCEVCastExpr(const FoldingSetNodeIDRef ID,
                 unsigned SCEVTy, const SCEV *op, Type *ty);

  public:
    const SCEV *getOperand() const { return Op; }
    Type *getType() const { return Ty; }

    /// Methods for support type inquiry through isa, cast, and dyn_cast:
    static inline bool classof(const SCEV *S) {
      return S->getSCEVType() == scTruncate ||
             S->getSCEVType() == scZeroExtend ||
             S->getSCEVType() == scSignExtend;
    }
  };

  //===--------------------------------------------------------------------===//
  /// SCEVTruncateExpr - This class represents a truncation of an integer value
  /// to a smaller integer value.
  ///
  class SCEVTruncateExpr : public SCEVCastExpr {
    friend class ScalarEvolution;

    SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
                     const SCEV *op, Type *ty);

  public:
    /// Methods for support type inquiry through isa, cast, and dyn_cast:
    static inline bool classof(const SCEV *S) {
      return S->getSCEVType() == scTruncate;
    }
  };

  //===--------------------------------------------------------------------===//
  /// SCEVZeroExtendExpr - This class represents a zero extension of a small
  /// integer value to a larger integer value.
  ///
  class SCEVZeroExtendExpr : public SCEVCastExpr {
    friend class ScalarEvolution;

    SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
                       const SCEV *op, Type *ty);

  public:
    /// Methods for support type inquiry through isa, cast, and dyn_cast:
    static inline bool classof(const SCEV *S) {
      return S->getSCEVType() == scZeroExtend;
    }
  };

  //===--------------------------------------------------------------------===//
  /// SCEVSignExtendExpr - This class represents a sign extension of a small
  /// integer value to a larger integer value.
  ///
  class SCEVSignExtendExpr : public SCEVCastExpr {
    friend class ScalarEvolution;

    SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
                       const SCEV *op, Type *ty);

  public:
    /// Methods for support type inquiry through isa, cast, and dyn_cast:
    static inline bool classof(const SCEV *S) {
      return S->getSCEVType() == scSignExtend;
    }
  };


  //===--------------------------------------------------------------------===//
  /// SCEVNAryExpr - This node is a base class providing common
  /// functionality for n'ary operators.
  ///
  class SCEVNAryExpr : public SCEV {
  protected:
    // Since SCEVs are immutable, ScalarEvolution allocates operand
    // arrays with its SCEVAllocator, so this class just needs a simple
    // pointer rather than a more elaborate vector-like data structure.
    // This also avoids the need for a non-trivial destructor.
    const SCEV *const *Operands;
    size_t NumOperands;

    SCEVNAryExpr(const FoldingSetNodeIDRef ID,
                 enum SCEVTypes T, const SCEV *const *O, size_t N)
      : SCEV(ID, T), Operands(O), NumOperands(N) {}

  public:
    size_t getNumOperands() const { return NumOperands; }
    const SCEV *getOperand(unsigned i) const {
      assert(i < NumOperands && "Operand index out of range!");
      return Operands[i];
    }

    typedef const SCEV *const *op_iterator;
    typedef iterator_range<op_iterator> op_range;
    op_iterator op_begin() const { return Operands; }
    op_iterator op_end() const { return Operands + NumOperands; }
    op_range operands() const {
      return make_range(op_begin(), op_end());
    }

    Type *getType() const { return getOperand(0)->getType(); }

    NoWrapFlags getNoWrapFlags(NoWrapFlags Mask = NoWrapMask) const {
      return (NoWrapFlags)(SubclassData & Mask);
    }

    /// Methods for support type inquiry through isa, cast, and dyn_cast:
    static inline bool classof(const SCEV *S) {
      return S->getSCEVType() == scAddExpr ||
             S->getSCEVType() == scMulExpr ||
             S->getSCEVType() == scSMaxExpr ||
             S->getSCEVType() == scUMaxExpr ||
             S->getSCEVType() == scAddRecExpr;
    }
  };

  //===--------------------------------------------------------------------===//
  /// SCEVCommutativeExpr - This node is the base class for n'ary commutative
  /// operators.
  ///
  class SCEVCommutativeExpr : public SCEVNAryExpr {
  protected:
    SCEVCommutativeExpr(const FoldingSetNodeIDRef ID,
                        enum SCEVTypes T, const SCEV *const *O, size_t N)
      : SCEVNAryExpr(ID, T, O, N) {}

  public:
    /// Methods for support type inquiry through isa, cast, and dyn_cast:
    static inline bool classof(const SCEV *S) {
      return S->getSCEVType() == scAddExpr ||
             S->getSCEVType() == scMulExpr ||
             S->getSCEVType() == scSMaxExpr ||
             S->getSCEVType() == scUMaxExpr;
    }

    /// Set flags for a non-recurrence without clearing previously set flags.
    void setNoWrapFlags(NoWrapFlags Flags) {
      SubclassData |= Flags;
    }
  };


  //===--------------------------------------------------------------------===//
  /// SCEVAddExpr - This node represents an addition of some number of SCEVs.
  ///
  class SCEVAddExpr : public SCEVCommutativeExpr {
    friend class ScalarEvolution;

    SCEVAddExpr(const FoldingSetNodeIDRef ID,
                const SCEV *const *O, size_t N)
      : SCEVCommutativeExpr(ID, scAddExpr, O, N) {
    }

  public:
    Type *getType() const {
      // Use the type of the last operand, which is likely to be a pointer
      // type, if there is one. This doesn't usually matter, but it can help
      // reduce casts when the expressions are expanded.
      return getOperand(getNumOperands() - 1)->getType();
    }

    /// Methods for support type inquiry through isa, cast, and dyn_cast:
    static inline bool classof(const SCEV *S) {
      return S->getSCEVType() == scAddExpr;
    }
  };

  //===--------------------------------------------------------------------===//
  /// SCEVMulExpr - This node represents multiplication of some number of SCEVs.
  ///
  class SCEVMulExpr : public SCEVCommutativeExpr {
    friend class ScalarEvolution;

    SCEVMulExpr(const FoldingSetNodeIDRef ID,
                const SCEV *const *O, size_t N)
      : SCEVCommutativeExpr(ID, scMulExpr, O, N) {
    }

  public:
    /// Methods for support type inquiry through isa, cast, and dyn_cast:
    static inline bool classof(const SCEV *S) {
      return S->getSCEVType() == scMulExpr;
    }
  };


  //===--------------------------------------------------------------------===//
  /// SCEVUDivExpr - This class represents a binary unsigned division operation.
  ///
  class SCEVUDivExpr : public SCEV {
    friend class ScalarEvolution;

    const SCEV *LHS;
    const SCEV *RHS;
    SCEVUDivExpr(const FoldingSetNodeIDRef ID, const SCEV *lhs, const SCEV *rhs)
      : SCEV(ID, scUDivExpr), LHS(lhs), RHS(rhs) {}

  public:
    const SCEV *getLHS() const { return LHS; }
    const SCEV *getRHS() const { return RHS; }

    Type *getType() const {
      // In most cases the types of LHS and RHS will be the same, but in some
      // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
      // depend on the type for correctness, but handling types carefully can
      // avoid extra casts in the SCEVExpander. The LHS is more likely to be
      // a pointer type than the RHS, so use the RHS' type here.
      return getRHS()->getType();
    }

    /// Methods for support type inquiry through isa, cast, and dyn_cast:
    static inline bool classof(const SCEV *S) {
      return S->getSCEVType() == scUDivExpr;
    }
  };


  //===--------------------------------------------------------------------===//
  /// SCEVAddRecExpr - This node represents a polynomial recurrence on the trip
  /// count of the specified loop.  This is the primary focus of the
  /// ScalarEvolution framework; all the other SCEV subclasses are mostly just
  /// supporting infrastructure to allow SCEVAddRecExpr expressions to be
  /// created and analyzed.
  ///
  /// All operands of an AddRec are required to be loop invariant.
  ///
  class SCEVAddRecExpr : public SCEVNAryExpr {
    friend class ScalarEvolution;

    const Loop *L;

    SCEVAddRecExpr(const FoldingSetNodeIDRef ID,
                   const SCEV *const *O, size_t N, const Loop *l)
      : SCEVNAryExpr(ID, scAddRecExpr, O, N), L(l) {}

  public:
    const SCEV *getStart() const { return Operands[0]; }
    const Loop *getLoop() const { return L; }

    /// getStepRecurrence - This method constructs and returns the recurrence
    /// indicating how much this expression steps by.  If this is a polynomial
    /// of degree N, it returns a chrec of degree N-1.
    /// We cannot determine whether the step recurrence has self-wraparound.
    const SCEV *getStepRecurrence(ScalarEvolution &SE) const {
      if (isAffine()) return getOperand(1);
      return SE.getAddRecExpr(SmallVector<const SCEV *, 3>(op_begin()+1,
                                                           op_end()),
                              getLoop(), FlagAnyWrap);
    }

    /// isAffine - Return true if this represents an expression
    /// A + B*x where A and B are loop invariant values.
    bool isAffine() const {
      // We know that the start value is invariant.  This expression is thus
      // affine iff the step is also invariant.
      return getNumOperands() == 2;
    }

    /// isQuadratic - Return true if this represents an expression
    /// A + B*x + C*x^2 where A, B and C are loop invariant values.
    /// This corresponds to an addrec of the form {L,+,M,+,N}
    bool isQuadratic() const {
      return getNumOperands() == 3;
    }

    /// Set flags for a recurrence without clearing any previously set flags.
    /// For AddRec, either NUW or NSW implies NW. Keep track of this fact here
    /// to make it easier to propagate flags.
    void setNoWrapFlags(NoWrapFlags Flags) {
      if (Flags & (FlagNUW | FlagNSW))
        Flags = ScalarEvolution::setFlags(Flags, FlagNW);
      SubclassData |= Flags;
    }

    /// evaluateAtIteration - Return the value of this chain of recurrences at
    /// the specified iteration number.
    const SCEV *evaluateAtIteration(const SCEV *It, ScalarEvolution &SE) const;

    /// getNumIterationsInRange - Return the number of iterations of this loop
    /// that produce values in the specified constant range.  Another way of
    /// looking at this is that it returns the first iteration number where the
    /// value is not in the condition, thus computing the exit count.  If the
    /// iteration count can't be computed, an instance of SCEVCouldNotCompute is
    /// returned.
    const SCEV *getNumIterationsInRange(ConstantRange Range,
                                       ScalarEvolution &SE) const;

    /// getPostIncExpr - Return an expression representing the value of
    /// this expression one iteration of the loop ahead.
    const SCEVAddRecExpr *getPostIncExpr(ScalarEvolution &SE) const {
      return cast<SCEVAddRecExpr>(SE.getAddExpr(this, getStepRecurrence(SE)));
    }

    /// Methods for support type inquiry through isa, cast, and dyn_cast:
    static inline bool classof(const SCEV *S) {
      return S->getSCEVType() == scAddRecExpr;
    }

    /// Collect parametric terms occurring in step expressions.
    void collectParametricTerms(ScalarEvolution &SE,
                                SmallVectorImpl<const SCEV *> &Terms) const;

    /// Return in Subscripts the access functions for each dimension in Sizes.
    void computeAccessFunctions(ScalarEvolution &SE,
                                SmallVectorImpl<const SCEV *> &Subscripts,
                                SmallVectorImpl<const SCEV *> &Sizes) const;

    /// Split this SCEVAddRecExpr into two vectors of SCEVs representing the
    /// subscripts and sizes of an array access.
    ///
    /// The delinearization is a 3 step process: the first two steps compute the
    /// sizes of each subscript and the third step computes the access functions
    /// for the delinearized array:
    ///
    /// 1. Find the terms in the step functions
    /// 2. Compute the array size
    /// 3. Compute the access function: divide the SCEV by the array size
    ///    starting with the innermost dimensions found in step 2. The Quotient
    ///    is the SCEV to be divided in the next step of the recursion. The
    ///    Remainder is the subscript of the innermost dimension. Loop over all
    ///    array dimensions computed in step 2.
    ///
    /// To compute a uniform array size for several memory accesses to the same
    /// object, one can collect in step 1 all the step terms for all the memory
    /// accesses, and compute in step 2 a unique array shape. This guarantees
    /// that the array shape will be the same across all memory accesses.
    ///
    /// FIXME: We could derive the result of steps 1 and 2 from a description of
    /// the array shape given in metadata.
    ///
    /// Example:
    ///
    /// A[][n][m]
    ///
    /// for i
    ///   for j
    ///     for k
    ///       A[j+k][2i][5i] =
    ///
    /// The initial SCEV:
    ///
    /// A[{{{0,+,2*m+5}_i, +, n*m}_j, +, n*m}_k]
    ///
    /// 1. Find the different terms in the step functions:
    /// -> [2*m, 5, n*m, n*m]
    ///
    /// 2. Compute the array size: sort and unique them
    /// -> [n*m, 2*m, 5]
    /// find the GCD of all the terms = 1
    /// divide by the GCD and erase constant terms
    /// -> [n*m, 2*m]
    /// GCD = m
    /// divide by GCD -> [n, 2]
    /// remove constant terms
    /// -> [n]
    /// size of the array is A[unknown][n][m]
    ///
    /// 3. Compute the access function
    /// a. Divide {{{0,+,2*m+5}_i, +, n*m}_j, +, n*m}_k by the innermost size m
    /// Quotient: {{{0,+,2}_i, +, n}_j, +, n}_k
    /// Remainder: {{{0,+,5}_i, +, 0}_j, +, 0}_k
    /// The remainder is the subscript of the innermost array dimension: [5i].
    ///
    /// b. Divide Quotient: {{{0,+,2}_i, +, n}_j, +, n}_k by next outer size n
    /// Quotient: {{{0,+,0}_i, +, 1}_j, +, 1}_k
    /// Remainder: {{{0,+,2}_i, +, 0}_j, +, 0}_k
    /// The Remainder is the subscript of the next array dimension: [2i].
    ///
    /// The subscript of the outermost dimension is the Quotient: [j+k].
    ///
    /// Overall, we have: A[][n][m], and the access function: A[j+k][2i][5i].
    void delinearize(ScalarEvolution &SE,
                     SmallVectorImpl<const SCEV *> &Subscripts,
                     SmallVectorImpl<const SCEV *> &Sizes,
                     const SCEV *ElementSize) const;
  };

  //===--------------------------------------------------------------------===//
  /// SCEVSMaxExpr - This class represents a signed maximum selection.
  ///
  class SCEVSMaxExpr : public SCEVCommutativeExpr {
    friend class ScalarEvolution;

    SCEVSMaxExpr(const FoldingSetNodeIDRef ID,
                 const SCEV *const *O, size_t N)
      : SCEVCommutativeExpr(ID, scSMaxExpr, O, N) {
      // Max never overflows.
      setNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW));
    }

  public:
    /// Methods for support type inquiry through isa, cast, and dyn_cast:
    static inline bool classof(const SCEV *S) {
      return S->getSCEVType() == scSMaxExpr;
    }
  };


  //===--------------------------------------------------------------------===//
  /// SCEVUMaxExpr - This class represents an unsigned maximum selection.
  ///
  class SCEVUMaxExpr : public SCEVCommutativeExpr {
    friend class ScalarEvolution;

    SCEVUMaxExpr(const FoldingSetNodeIDRef ID,
                 const SCEV *const *O, size_t N)
      : SCEVCommutativeExpr(ID, scUMaxExpr, O, N) {
      // Max never overflows.
      setNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW));
    }

  public:
    /// Methods for support type inquiry through isa, cast, and dyn_cast:
    static inline bool classof(const SCEV *S) {
      return S->getSCEVType() == scUMaxExpr;
    }
  };

  //===--------------------------------------------------------------------===//
  /// SCEVUnknown - This means that we are dealing with an entirely unknown SCEV
  /// value, and only represent it as its LLVM Value.  This is the "bottom"
  /// value for the analysis.
  ///
  class SCEVUnknown : public SCEV, private CallbackVH {
    friend class ScalarEvolution;

    // Implement CallbackVH.
    void deleted() override;
    void allUsesReplacedWith(Value *New) override;

    /// SE - The parent ScalarEvolution value. This is used to update
    /// the parent's maps when the value associated with a SCEVUnknown
    /// is deleted or RAUW'd.
    ScalarEvolution *SE;

    /// Next - The next pointer in the linked list of all
    /// SCEVUnknown instances owned by a ScalarEvolution.
    SCEVUnknown *Next;

    SCEVUnknown(const FoldingSetNodeIDRef ID, Value *V,
                ScalarEvolution *se, SCEVUnknown *next) :
      SCEV(ID, scUnknown), CallbackVH(V), SE(se), Next(next) {}

  public:
    Value *getValue() const { return getValPtr(); }

    /// isSizeOf, isAlignOf, isOffsetOf - Test whether this is a special
    /// constant representing a type size, alignment, or field offset in
    /// a target-independent manner, and hasn't happened to have been
    /// folded with other operations into something unrecognizable. This
    /// is mainly only useful for pretty-printing and other situations
    /// where it isn't absolutely required for these to succeed.
    bool isSizeOf(Type *&AllocTy) const;
    bool isAlignOf(Type *&AllocTy) const;
    bool isOffsetOf(Type *&STy, Constant *&FieldNo) const;

    Type *getType() const { return getValPtr()->getType(); }

    /// Methods for support type inquiry through isa, cast, and dyn_cast:
    static inline bool classof(const SCEV *S) {
      return S->getSCEVType() == scUnknown;
    }
  };

  /// SCEVVisitor - This class defines a simple visitor class that may be used
  /// for various SCEV analysis purposes.
  template<typename SC, typename RetVal=void>
  struct SCEVVisitor {
    RetVal visit(const SCEV *S) {
      switch (S->getSCEVType()) {
      case scConstant:
        return ((SC*)this)->visitConstant((const SCEVConstant*)S);
      case scTruncate:
        return ((SC*)this)->visitTruncateExpr((const SCEVTruncateExpr*)S);
      case scZeroExtend:
        return ((SC*)this)->visitZeroExtendExpr((const SCEVZeroExtendExpr*)S);
      case scSignExtend:
        return ((SC*)this)->visitSignExtendExpr((const SCEVSignExtendExpr*)S);
      case scAddExpr:
        return ((SC*)this)->visitAddExpr((const SCEVAddExpr*)S);
      case scMulExpr:
        return ((SC*)this)->visitMulExpr((const SCEVMulExpr*)S);
      case scUDivExpr:
        return ((SC*)this)->visitUDivExpr((const SCEVUDivExpr*)S);
      case scAddRecExpr:
        return ((SC*)this)->visitAddRecExpr((const SCEVAddRecExpr*)S);
      case scSMaxExpr:
        return ((SC*)this)->visitSMaxExpr((const SCEVSMaxExpr*)S);
      case scUMaxExpr:
        return ((SC*)this)->visitUMaxExpr((const SCEVUMaxExpr*)S);
      case scUnknown:
        return ((SC*)this)->visitUnknown((const SCEVUnknown*)S);
      case scCouldNotCompute:
        return ((SC*)this)->visitCouldNotCompute((const SCEVCouldNotCompute*)S);
      default:
        llvm_unreachable("Unknown SCEV type!");
      }
    }

    RetVal visitCouldNotCompute(const SCEVCouldNotCompute *S) {
      llvm_unreachable("Invalid use of SCEVCouldNotCompute!");
    }
  };

  /// Visit all nodes in the expression tree using worklist traversal.
  ///
  /// Visitor implements:
  ///   // return true to follow this node.
  ///   bool follow(const SCEV *S);
  ///   // return true to terminate the search.
  ///   bool isDone();
  template<typename SV>
  class SCEVTraversal {
    SV &Visitor;
    SmallVector<const SCEV *, 8> Worklist;
    SmallPtrSet<const SCEV *, 8> Visited;

    void push(const SCEV *S) {
      if (Visited.insert(S).second && Visitor.follow(S))
        Worklist.push_back(S);
    }
  public:
    SCEVTraversal(SV& V): Visitor(V) {}

    void visitAll(const SCEV *Root) {
      push(Root);
      while (!Worklist.empty() && !Visitor.isDone()) {
        const SCEV *S = Worklist.pop_back_val();

        switch (S->getSCEVType()) {
        case scConstant:
        case scUnknown:
          break;
        case scTruncate:
        case scZeroExtend:
        case scSignExtend:
          push(cast<SCEVCastExpr>(S)->getOperand());
          break;
        case scAddExpr:
        case scMulExpr:
        case scSMaxExpr:
        case scUMaxExpr:
        case scAddRecExpr: {
          const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
          for (SCEVNAryExpr::op_iterator I = NAry->op_begin(),
                 E = NAry->op_end(); I != E; ++I) {
            push(*I);
          }
          break;
        }
        case scUDivExpr: {
          const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
          push(UDiv->getLHS());
          push(UDiv->getRHS());
          break;
        }
        case scCouldNotCompute:
          llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
        default:
          llvm_unreachable("Unknown SCEV kind!");
        }
      }
    }
  };

  /// Use SCEVTraversal to visit all nodes in the given expression tree.
  template<typename SV>
  void visitAll(const SCEV *Root, SV& Visitor) {
    SCEVTraversal<SV> T(Visitor);
    T.visitAll(Root);
  }

  typedef DenseMap<const Value*, Value*> ValueToValueMap;

  /// The SCEVParameterRewriter takes a scalar evolution expression and updates
  /// the SCEVUnknown components following the Map (Value -> Value).
  struct SCEVParameterRewriter
    : public SCEVVisitor<SCEVParameterRewriter, const SCEV*> {
  public:
    static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE,
                               ValueToValueMap &Map,
                               bool InterpretConsts = false) {
      SCEVParameterRewriter Rewriter(SE, Map, InterpretConsts);
      return Rewriter.visit(Scev);
    }

    SCEVParameterRewriter(ScalarEvolution &S, ValueToValueMap &M, bool C)
      : SE(S), Map(M), InterpretConsts(C) {}

    const SCEV *visitConstant(const SCEVConstant *Constant) {
      return Constant;
    }

    const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) {
      const SCEV *Operand = visit(Expr->getOperand());
      return SE.getTruncateExpr(Operand, Expr->getType());
    }

    const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
      const SCEV *Operand = visit(Expr->getOperand());
      return SE.getZeroExtendExpr(Operand, Expr->getType());
    }

    const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
      const SCEV *Operand = visit(Expr->getOperand());
      return SE.getSignExtendExpr(Operand, Expr->getType());
    }

    const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
      SmallVector<const SCEV *, 2> Operands;
      for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
        Operands.push_back(visit(Expr->getOperand(i)));
      return SE.getAddExpr(Operands);
    }

    const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
      SmallVector<const SCEV *, 2> Operands;
      for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
        Operands.push_back(visit(Expr->getOperand(i)));
      return SE.getMulExpr(Operands);
    }

    const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) {
      return SE.getUDivExpr(visit(Expr->getLHS()), visit(Expr->getRHS()));
    }

    const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
      SmallVector<const SCEV *, 2> Operands;
      for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
        Operands.push_back(visit(Expr->getOperand(i)));
      return SE.getAddRecExpr(Operands, Expr->getLoop(),
                              Expr->getNoWrapFlags());
    }

    const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) {
      SmallVector<const SCEV *, 2> Operands;
      for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
        Operands.push_back(visit(Expr->getOperand(i)));
      return SE.getSMaxExpr(Operands);
    }

    const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) {
      SmallVector<const SCEV *, 2> Operands;
      for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
        Operands.push_back(visit(Expr->getOperand(i)));
      return SE.getUMaxExpr(Operands);
    }

    const SCEV *visitUnknown(const SCEVUnknown *Expr) {
      Value *V = Expr->getValue();
      if (Map.count(V)) {
        Value *NV = Map[V];
        if (InterpretConsts && isa<ConstantInt>(NV))
          return SE.getConstant(cast<ConstantInt>(NV));
        return SE.getUnknown(NV);
      }
      return Expr;
    }

    const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
      return Expr;
    }

  private:
    ScalarEvolution &SE;
    ValueToValueMap &Map;
    bool InterpretConsts;
  };

  typedef DenseMap<const Loop*, const SCEV*> LoopToScevMapT;

  /// The SCEVApplyRewriter takes a scalar evolution expression and applies
  /// the Map (Loop -> SCEV) to all AddRecExprs.
  struct SCEVApplyRewriter
    : public SCEVVisitor<SCEVApplyRewriter, const SCEV*> {
  public:
    static const SCEV *rewrite(const SCEV *Scev, LoopToScevMapT &Map,
                               ScalarEvolution &SE) {
      SCEVApplyRewriter Rewriter(SE, Map);
      return Rewriter.visit(Scev);
    }

    SCEVApplyRewriter(ScalarEvolution &S, LoopToScevMapT &M)
      : SE(S), Map(M) {}

    const SCEV *visitConstant(const SCEVConstant *Constant) {
      return Constant;
    }

    const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) {
      const SCEV *Operand = visit(Expr->getOperand());
      return SE.getTruncateExpr(Operand, Expr->getType());
    }

    const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
      const SCEV *Operand = visit(Expr->getOperand());
      return SE.getZeroExtendExpr(Operand, Expr->getType());
    }

    const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
      const SCEV *Operand = visit(Expr->getOperand());
      return SE.getSignExtendExpr(Operand, Expr->getType());
    }

    const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
      SmallVector<const SCEV *, 2> Operands;
      for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
        Operands.push_back(visit(Expr->getOperand(i)));
      return SE.getAddExpr(Operands);
    }

    const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
      SmallVector<const SCEV *, 2> Operands;
      for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
        Operands.push_back(visit(Expr->getOperand(i)));
      return SE.getMulExpr(Operands);
    }

    const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) {
      return SE.getUDivExpr(visit(Expr->getLHS()), visit(Expr->getRHS()));
    }

    const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
      SmallVector<const SCEV *, 2> Operands;
      for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
        Operands.push_back(visit(Expr->getOperand(i)));

      const Loop *L = Expr->getLoop();
      const SCEV *Res = SE.getAddRecExpr(Operands, L, Expr->getNoWrapFlags());

      if (0 == Map.count(L))
        return Res;

      const SCEVAddRecExpr *Rec = (const SCEVAddRecExpr *) Res;
      return Rec->evaluateAtIteration(Map[L], SE);
    }

    const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) {
      SmallVector<const SCEV *, 2> Operands;
      for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
        Operands.push_back(visit(Expr->getOperand(i)));
      return SE.getSMaxExpr(Operands);
    }

    const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) {
      SmallVector<const SCEV *, 2> Operands;
      for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
        Operands.push_back(visit(Expr->getOperand(i)));
      return SE.getUMaxExpr(Operands);
    }

    const SCEV *visitUnknown(const SCEVUnknown *Expr) {
      return Expr;
    }

    const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
      return Expr;
    }

  private:
    ScalarEvolution &SE;
    LoopToScevMapT &Map;
  };

/// Applies the Map (Loop -> SCEV) to the given Scev.
static inline const SCEV *apply(const SCEV *Scev, LoopToScevMapT &Map,
                                ScalarEvolution &SE) {
  return SCEVApplyRewriter::rewrite(Scev, Map, SE);
}

}

#endif