/usr/include/llvm-3.6/llvm/CodeGen/GCStrategy.h is in llvm-3.6-dev 1:3.6-2ubuntu1~trusty2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 | //===-- llvm/CodeGen/GCStrategy.h - Garbage collection ----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// GCStrategy coordinates code generation algorithms and implements some itself
// in order to generate code compatible with a target code generator as
// specified in a function's 'gc' attribute. Algorithms are enabled by setting
// flags in a subclass's constructor, and some virtual methods can be
// overridden.
//
// GCStrategy is relevant for implementations using either gc.root or
// gc.statepoint based lowering strategies, but is currently focused mostly on
// options for gc.root. This will change over time.
//
// When requested by a subclass of GCStrategy, the gc.root implementation will
// populate GCModuleInfo and GCFunctionInfo with that about each Function in
// the Module that opts in to garbage collection. Specifically:
//
// - Safe points
// Garbage collection is generally only possible at certain points in code.
// GCStrategy can request that the collector insert such points:
//
// - At and after any call to a subroutine
// - Before returning from the current function
// - Before backwards branches (loops)
//
// - Roots
// When a reference to a GC-allocated object exists on the stack, it must be
// stored in an alloca registered with llvm.gcoot.
//
// This information can used to emit the metadata tables which are required by
// the target garbage collector runtime.
//
// When used with gc.statepoint, information about safepoint and roots can be
// found in the binary StackMap section after code generation. Safepoint
// placement is currently the responsibility of the frontend, though late
// insertion support is planned. gc.statepoint does not currently support
// custom stack map formats; such can be generated by parsing the standard
// stack map section if desired.
//
// The read and write barrier support can be used with either implementation.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_GCSTRATEGY_H
#define LLVM_CODEGEN_GCSTRATEGY_H
#include "llvm/ADT/Optional.h"
#include "llvm/CodeGen/GCMetadata.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/Support/Registry.h"
#include <string>
namespace llvm {
/// GCStrategy describes a garbage collector algorithm's code generation
/// requirements, and provides overridable hooks for those needs which cannot
/// be abstractly described. GCStrategy objects currently must be looked up
/// through the GCModuleInfo analysis pass. They are owned by the analysis
/// pass and recreated every time that pass is invalidated.
class GCStrategy {
private:
std::string Name;
friend class GCModuleInfo;
protected:
bool UseStatepoints; /// Uses gc.statepoints as opposed to gc.roots,
/// if set, none of the other options can be
/// anything but their default values.
unsigned NeededSafePoints; ///< Bitmask of required safe points.
bool CustomReadBarriers; ///< Default is to insert loads.
bool CustomWriteBarriers; ///< Default is to insert stores.
bool CustomRoots; ///< Default is to pass through to backend.
bool CustomSafePoints; ///< Default is to use NeededSafePoints
///< to find safe points.
bool InitRoots; ///< If set, roots are nulled during lowering.
bool UsesMetadata; ///< If set, backend must emit metadata tables.
public:
GCStrategy();
virtual ~GCStrategy() {}
/// Return the name of the GC strategy. This is the value of the collector
/// name string specified on functions which use this strategy.
const std::string &getName() const { return Name; }
/// By default, write barriers are replaced with simple store
/// instructions. If true, then performCustomLowering must instead lower
/// them.
bool customWriteBarrier() const { return CustomWriteBarriers; }
/// By default, read barriers are replaced with simple load
/// instructions. If true, then performCustomLowering must instead lower
/// them.
bool customReadBarrier() const { return CustomReadBarriers; }
/// Returns true if this strategy is expecting the use of gc.statepoints,
/// and false otherwise.
bool useStatepoints() const { return UseStatepoints; }
/** @name Statepoint Specific Properties */
///@{
/// If the value specified can be reliably distinguished, returns true for
/// pointers to GC managed locations and false for pointers to non-GC
/// managed locations. Note a GCStrategy can always return 'None' (i.e. an
/// empty optional indicating it can't reliably distinguish.
virtual Optional<bool> isGCManagedPointer(const Value *V) const {
return None;
}
///@}
/** @name GCRoot Specific Properties
* These properties and overrides only apply to collector strategies using
* GCRoot.
*/
///@{
/// True if safe points of any kind are required. By default, none are
/// recorded.
bool needsSafePoints() const {
return CustomSafePoints || NeededSafePoints != 0;
}
/// True if the given kind of safe point is required. By default, none are
/// recorded.
bool needsSafePoint(GC::PointKind Kind) const {
return (NeededSafePoints & 1 << Kind) != 0;
}
/// By default, roots are left for the code generator so it can generate a
/// stack map. If true, then performCustomLowering must delete them.
bool customRoots() const { return CustomRoots; }
/// By default, the GC analysis will find safe points according to
/// NeededSafePoints. If true, then findCustomSafePoints must create them.
bool customSafePoints() const { return CustomSafePoints; }
/// If set, gcroot intrinsics should initialize their allocas to null
/// before the first use. This is necessary for most GCs and is enabled by
/// default.
bool initializeRoots() const { return InitRoots; }
/// If set, appropriate metadata tables must be emitted by the back-end
/// (assembler, JIT, or otherwise). For statepoint, this method is
/// currently unsupported. The stackmap information can be found in the
/// StackMap section as described in the documentation.
bool usesMetadata() const { return UsesMetadata; }
///@}
/// initializeCustomLowering/performCustomLowering - If any of the actions
/// are set to custom, performCustomLowering must be overriden to transform
/// the corresponding actions to LLVM IR. initializeCustomLowering is
/// optional to override. These are the only GCStrategy methods through
/// which the LLVM IR can be modified. These methods apply mostly to
/// gc.root based implementations, but can be overriden to provide custom
/// barrier lowerings with gc.statepoint as well.
///@{
virtual bool initializeCustomLowering(Module &F) {
// No changes made
return false;
}
virtual bool performCustomLowering(Function &F) {
llvm_unreachable("GCStrategy subclass specified a configuration which"
"requires a custom lowering without providing one");
}
///@}
/// Called if customSafepoints returns true, used only by gc.root
/// implementations.
virtual bool findCustomSafePoints(GCFunctionInfo& FI, MachineFunction& MF) {
llvm_unreachable("GCStrategy subclass specified a configuration which"
"requests custom safepoint identification without"
"providing an implementation for such");
}
};
/// Subclasses of GCStrategy are made available for use during compilation by
/// adding them to the global GCRegistry. This can done either within the
/// LLVM source tree or via a loadable plugin. An example registeration
/// would be:
/// static GCRegistry::Add<CustomGC> X("custom-name",
/// "my custom supper fancy gc strategy");
///
/// Note that to use a custom GCMetadataPrinter w/gc.roots, you must also
/// register your GCMetadataPrinter subclass with the
/// GCMetadataPrinterRegistery as well.
typedef Registry<GCStrategy> GCRegistry;
}
#endif
|