This file is indexed.

/usr/include/llvm-3.6/llvm/ExecutionEngine/RuntimeDyld.h is in llvm-3.6-dev 1:3.6-2ubuntu1~trusty2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
//===-- RuntimeDyld.h - Run-time dynamic linker for MC-JIT ------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Interface for the runtime dynamic linker facilities of the MC-JIT.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_EXECUTIONENGINE_RUNTIMEDYLD_H
#define LLVM_EXECUTIONENGINE_RUNTIMEDYLD_H

#include "llvm/ADT/StringRef.h"
#include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
#include "llvm/Support/Memory.h"
#include <memory>

namespace llvm {

namespace object {
  class ObjectFile;
  template <typename T> class OwningBinary;
}

class RuntimeDyldImpl;
class RuntimeDyldCheckerImpl;

class RuntimeDyld {
  friend class RuntimeDyldCheckerImpl;

  RuntimeDyld(const RuntimeDyld &) LLVM_DELETED_FUNCTION;
  void operator=(const RuntimeDyld &) LLVM_DELETED_FUNCTION;

  // RuntimeDyldImpl is the actual class. RuntimeDyld is just the public
  // interface.
  std::unique_ptr<RuntimeDyldImpl> Dyld;
  RTDyldMemoryManager *MM;
  bool ProcessAllSections;
  RuntimeDyldCheckerImpl *Checker;
protected:
  // Change the address associated with a section when resolving relocations.
  // Any relocations already associated with the symbol will be re-resolved.
  void reassignSectionAddress(unsigned SectionID, uint64_t Addr);
public:

  /// \brief Information about the loaded object.
  class LoadedObjectInfo {
    friend class RuntimeDyldImpl;
  public:
    LoadedObjectInfo(RuntimeDyldImpl &RTDyld, unsigned BeginIdx,
                     unsigned EndIdx)
      : RTDyld(RTDyld), BeginIdx(BeginIdx), EndIdx(EndIdx) { }

    virtual ~LoadedObjectInfo() {}

    virtual object::OwningBinary<object::ObjectFile>
    getObjectForDebug(const object::ObjectFile &Obj) const = 0;

    uint64_t getSectionLoadAddress(StringRef Name) const;

  protected:
    virtual void anchor();

    RuntimeDyldImpl &RTDyld;
    unsigned BeginIdx, EndIdx;
  };

  RuntimeDyld(RTDyldMemoryManager *);
  ~RuntimeDyld();

  /// Add the referenced object file to the list of objects to be loaded and
  /// relocated.
  std::unique_ptr<LoadedObjectInfo> loadObject(const object::ObjectFile &O);

  /// Get the address of our local copy of the symbol. This may or may not
  /// be the address used for relocation (clients can copy the data around
  /// and resolve relocatons based on where they put it).
  void *getSymbolAddress(StringRef Name) const;

  /// Get the address of the target copy of the symbol. This is the address
  /// used for relocation.
  uint64_t getSymbolLoadAddress(StringRef Name) const;

  /// Resolve the relocations for all symbols we currently know about.
  void resolveRelocations();

  /// Map a section to its target address space value.
  /// Map the address of a JIT section as returned from the memory manager
  /// to the address in the target process as the running code will see it.
  /// This is the address which will be used for relocation resolution.
  void mapSectionAddress(const void *LocalAddress, uint64_t TargetAddress);

  /// Register any EH frame sections that have been loaded but not previously
  /// registered with the memory manager.  Note, RuntimeDyld is responsible
  /// for identifying the EH frame and calling the memory manager with the
  /// EH frame section data.  However, the memory manager itself will handle
  /// the actual target-specific EH frame registration.
  void registerEHFrames();

  void deregisterEHFrames();

  bool hasError();
  StringRef getErrorString();

  /// By default, only sections that are "required for execution" are passed to
  /// the RTDyldMemoryManager, and other sections are discarded. Passing 'true'
  /// to this method will cause RuntimeDyld to pass all sections to its
  /// memory manager regardless of whether they are "required to execute" in the
  /// usual sense. This is useful for inspecting metadata sections that may not
  /// contain relocations, E.g. Debug info, stackmaps.
  ///
  /// Must be called before the first object file is loaded.
  void setProcessAllSections(bool ProcessAllSections) {
    assert(!Dyld && "setProcessAllSections must be called before loadObject.");
    this->ProcessAllSections = ProcessAllSections;
  }
};

} // end namespace llvm

#endif