This file is indexed.

/usr/include/llvm-3.6/llvm/IR/PatternMatch.h is in llvm-3.6-dev 1:3.6-2ubuntu1~trusty2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
//===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file provides a simple and efficient mechanism for performing general
// tree-based pattern matches on the LLVM IR.  The power of these routines is
// that it allows you to write concise patterns that are expressive and easy to
// understand.  The other major advantage of this is that it allows you to
// trivially capture/bind elements in the pattern to variables.  For example,
// you can do something like this:
//
//  Value *Exp = ...
//  Value *X, *Y;  ConstantInt *C1, *C2;      // (X & C1) | (Y & C2)
//  if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)),
//                      m_And(m_Value(Y), m_ConstantInt(C2))))) {
//    ... Pattern is matched and variables are bound ...
//  }
//
// This is primarily useful to things like the instruction combiner, but can
// also be useful for static analysis tools or code generators.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_IR_PATTERNMATCH_H
#define LLVM_IR_PATTERNMATCH_H

#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Operator.h"

namespace llvm {
namespace PatternMatch {

template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) {
  return const_cast<Pattern &>(P).match(V);
}

template <typename SubPattern_t> struct OneUse_match {
  SubPattern_t SubPattern;

  OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {}

  template <typename OpTy> bool match(OpTy *V) {
    return V->hasOneUse() && SubPattern.match(V);
  }
};

template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) {
  return SubPattern;
}

template <typename Class> struct class_match {
  template <typename ITy> bool match(ITy *V) { return isa<Class>(V); }
};

/// \brief Match an arbitrary value and ignore it.
inline class_match<Value> m_Value() { return class_match<Value>(); }

/// \brief Match an arbitrary binary operation and ignore it.
inline class_match<BinaryOperator> m_BinOp() {
  return class_match<BinaryOperator>();
}

/// \brief Matches any compare instruction and ignore it.
inline class_match<CmpInst> m_Cmp() { return class_match<CmpInst>(); }

/// \brief Match an arbitrary ConstantInt and ignore it.
inline class_match<ConstantInt> m_ConstantInt() {
  return class_match<ConstantInt>();
}

/// \brief Match an arbitrary undef constant.
inline class_match<UndefValue> m_Undef() { return class_match<UndefValue>(); }

/// \brief Match an arbitrary Constant and ignore it.
inline class_match<Constant> m_Constant() { return class_match<Constant>(); }

/// Matching combinators
template <typename LTy, typename RTy> struct match_combine_or {
  LTy L;
  RTy R;

  match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}

  template <typename ITy> bool match(ITy *V) {
    if (L.match(V))
      return true;
    if (R.match(V))
      return true;
    return false;
  }
};

template <typename LTy, typename RTy> struct match_combine_and {
  LTy L;
  RTy R;

  match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}

  template <typename ITy> bool match(ITy *V) {
    if (L.match(V))
      if (R.match(V))
        return true;
    return false;
  }
};

/// Combine two pattern matchers matching L || R
template <typename LTy, typename RTy>
inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
  return match_combine_or<LTy, RTy>(L, R);
}

/// Combine two pattern matchers matching L && R
template <typename LTy, typename RTy>
inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
  return match_combine_and<LTy, RTy>(L, R);
}

struct match_zero {
  template <typename ITy> bool match(ITy *V) {
    if (const auto *C = dyn_cast<Constant>(V))
      return C->isNullValue();
    return false;
  }
};

/// \brief Match an arbitrary zero/null constant.  This includes
/// zero_initializer for vectors and ConstantPointerNull for pointers.
inline match_zero m_Zero() { return match_zero(); }

struct match_neg_zero {
  template <typename ITy> bool match(ITy *V) {
    if (const auto *C = dyn_cast<Constant>(V))
      return C->isNegativeZeroValue();
    return false;
  }
};

/// \brief Match an arbitrary zero/null constant.  This includes
/// zero_initializer for vectors and ConstantPointerNull for pointers. For
/// floating point constants, this will match negative zero but not positive
/// zero
inline match_neg_zero m_NegZero() { return match_neg_zero(); }

/// \brief - Match an arbitrary zero/null constant.  This includes
/// zero_initializer for vectors and ConstantPointerNull for pointers. For
/// floating point constants, this will match negative zero and positive zero
inline match_combine_or<match_zero, match_neg_zero> m_AnyZero() {
  return m_CombineOr(m_Zero(), m_NegZero());
}

struct apint_match {
  const APInt *&Res;
  apint_match(const APInt *&R) : Res(R) {}
  template <typename ITy> bool match(ITy *V) {
    if (auto *CI = dyn_cast<ConstantInt>(V)) {
      Res = &CI->getValue();
      return true;
    }
    if (V->getType()->isVectorTy())
      if (const auto *C = dyn_cast<Constant>(V))
        if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) {
          Res = &CI->getValue();
          return true;
        }
    return false;
  }
};

/// \brief Match a ConstantInt or splatted ConstantVector, binding the
/// specified pointer to the contained APInt.
inline apint_match m_APInt(const APInt *&Res) { return Res; }

template <int64_t Val> struct constantint_match {
  template <typename ITy> bool match(ITy *V) {
    if (const auto *CI = dyn_cast<ConstantInt>(V)) {
      const APInt &CIV = CI->getValue();
      if (Val >= 0)
        return CIV == static_cast<uint64_t>(Val);
      // If Val is negative, and CI is shorter than it, truncate to the right
      // number of bits.  If it is larger, then we have to sign extend.  Just
      // compare their negated values.
      return -CIV == -Val;
    }
    return false;
  }
};

/// \brief Match a ConstantInt with a specific value.
template <int64_t Val> inline constantint_match<Val> m_ConstantInt() {
  return constantint_match<Val>();
}

/// \brief This helper class is used to match scalar and vector constants that
/// satisfy a specified predicate.
template <typename Predicate> struct cst_pred_ty : public Predicate {
  template <typename ITy> bool match(ITy *V) {
    if (const auto *CI = dyn_cast<ConstantInt>(V))
      return this->isValue(CI->getValue());
    if (V->getType()->isVectorTy())
      if (const auto *C = dyn_cast<Constant>(V))
        if (const auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
          return this->isValue(CI->getValue());
    return false;
  }
};

/// \brief This helper class is used to match scalar and vector constants that
/// satisfy a specified predicate, and bind them to an APInt.
template <typename Predicate> struct api_pred_ty : public Predicate {
  const APInt *&Res;
  api_pred_ty(const APInt *&R) : Res(R) {}
  template <typename ITy> bool match(ITy *V) {
    if (const auto *CI = dyn_cast<ConstantInt>(V))
      if (this->isValue(CI->getValue())) {
        Res = &CI->getValue();
        return true;
      }
    if (V->getType()->isVectorTy())
      if (const auto *C = dyn_cast<Constant>(V))
        if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
          if (this->isValue(CI->getValue())) {
            Res = &CI->getValue();
            return true;
          }

    return false;
  }
};

struct is_one {
  bool isValue(const APInt &C) { return C == 1; }
};

/// \brief Match an integer 1 or a vector with all elements equal to 1.
inline cst_pred_ty<is_one> m_One() { return cst_pred_ty<is_one>(); }
inline api_pred_ty<is_one> m_One(const APInt *&V) { return V; }

struct is_all_ones {
  bool isValue(const APInt &C) { return C.isAllOnesValue(); }
};

/// \brief Match an integer or vector with all bits set to true.
inline cst_pred_ty<is_all_ones> m_AllOnes() {
  return cst_pred_ty<is_all_ones>();
}
inline api_pred_ty<is_all_ones> m_AllOnes(const APInt *&V) { return V; }

struct is_sign_bit {
  bool isValue(const APInt &C) { return C.isSignBit(); }
};

/// \brief Match an integer or vector with only the sign bit(s) set.
inline cst_pred_ty<is_sign_bit> m_SignBit() {
  return cst_pred_ty<is_sign_bit>();
}
inline api_pred_ty<is_sign_bit> m_SignBit(const APInt *&V) { return V; }

struct is_power2 {
  bool isValue(const APInt &C) { return C.isPowerOf2(); }
};

/// \brief Match an integer or vector power of 2.
inline cst_pred_ty<is_power2> m_Power2() { return cst_pred_ty<is_power2>(); }
inline api_pred_ty<is_power2> m_Power2(const APInt *&V) { return V; }

struct is_maxsignedvalue {
  bool isValue(const APInt &C) { return C.isMaxSignedValue(); }
};

inline cst_pred_ty<is_maxsignedvalue> m_MaxSignedValue() { return cst_pred_ty<is_maxsignedvalue>(); }
inline api_pred_ty<is_maxsignedvalue> m_MaxSignedValue(const APInt *&V) { return V; }

template <typename Class> struct bind_ty {
  Class *&VR;
  bind_ty(Class *&V) : VR(V) {}

  template <typename ITy> bool match(ITy *V) {
    if (auto *CV = dyn_cast<Class>(V)) {
      VR = CV;
      return true;
    }
    return false;
  }
};

/// \brief Match a value, capturing it if we match.
inline bind_ty<Value> m_Value(Value *&V) { return V; }

/// \brief Match a binary operator, capturing it if we match.
inline bind_ty<BinaryOperator> m_BinOp(BinaryOperator *&I) { return I; }

/// \brief Match a ConstantInt, capturing the value if we match.
inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; }

/// \brief Match a Constant, capturing the value if we match.
inline bind_ty<Constant> m_Constant(Constant *&C) { return C; }

/// \brief Match a ConstantFP, capturing the value if we match.
inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; }

/// \brief Match a specified Value*.
struct specificval_ty {
  const Value *Val;
  specificval_ty(const Value *V) : Val(V) {}

  template <typename ITy> bool match(ITy *V) { return V == Val; }
};

/// \brief Match if we have a specific specified value.
inline specificval_ty m_Specific(const Value *V) { return V; }

/// \brief Match a specified floating point value or vector of all elements of
/// that value.
struct specific_fpval {
  double Val;
  specific_fpval(double V) : Val(V) {}

  template <typename ITy> bool match(ITy *V) {
    if (const auto *CFP = dyn_cast<ConstantFP>(V))
      return CFP->isExactlyValue(Val);
    if (V->getType()->isVectorTy())
      if (const auto *C = dyn_cast<Constant>(V))
        if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
          return CFP->isExactlyValue(Val);
    return false;
  }
};

/// \brief Match a specific floating point value or vector with all elements
/// equal to the value.
inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); }

/// \brief Match a float 1.0 or vector with all elements equal to 1.0.
inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); }

struct bind_const_intval_ty {
  uint64_t &VR;
  bind_const_intval_ty(uint64_t &V) : VR(V) {}

  template <typename ITy> bool match(ITy *V) {
    if (const auto *CV = dyn_cast<ConstantInt>(V))
      if (CV->getBitWidth() <= 64) {
        VR = CV->getZExtValue();
        return true;
      }
    return false;
  }
};

/// \brief Match a specified integer value or vector of all elements of that
// value.
struct specific_intval {
  uint64_t Val;
  specific_intval(uint64_t V) : Val(V) {}

  template <typename ITy> bool match(ITy *V) {
    const auto *CI = dyn_cast<ConstantInt>(V);
    if (!CI && V->getType()->isVectorTy())
      if (const auto *C = dyn_cast<Constant>(V))
        CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue());

    if (CI && CI->getBitWidth() <= 64)
      return CI->getZExtValue() == Val;

    return false;
  }
};

/// \brief Match a specific integer value or vector with all elements equal to
/// the value.
inline specific_intval m_SpecificInt(uint64_t V) { return specific_intval(V); }

/// \brief Match a ConstantInt and bind to its value.  This does not match
/// ConstantInts wider than 64-bits.
inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; }

//===----------------------------------------------------------------------===//
// Matcher for any binary operator.
//
template <typename LHS_t, typename RHS_t> struct AnyBinaryOp_match {
  LHS_t L;
  RHS_t R;

  AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}

  template <typename OpTy> bool match(OpTy *V) {
    if (auto *I = dyn_cast<BinaryOperator>(V))
      return L.match(I->getOperand(0)) && R.match(I->getOperand(1));
    return false;
  }
};

template <typename LHS, typename RHS>
inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) {
  return AnyBinaryOp_match<LHS, RHS>(L, R);
}

//===----------------------------------------------------------------------===//
// Matchers for specific binary operators.
//

template <typename LHS_t, typename RHS_t, unsigned Opcode>
struct BinaryOp_match {
  LHS_t L;
  RHS_t R;

  BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}

  template <typename OpTy> bool match(OpTy *V) {
    if (V->getValueID() == Value::InstructionVal + Opcode) {
      auto *I = cast<BinaryOperator>(V);
      return L.match(I->getOperand(0)) && R.match(I->getOperand(1));
    }
    if (auto *CE = dyn_cast<ConstantExpr>(V))
      return CE->getOpcode() == Opcode && L.match(CE->getOperand(0)) &&
             R.match(CE->getOperand(1));
    return false;
  }
};

template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::Add> m_Add(const LHS &L,
                                                        const RHS &R) {
  return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R);
}

template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::FAdd> m_FAdd(const LHS &L,
                                                          const RHS &R) {
  return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R);
}

template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::Sub> m_Sub(const LHS &L,
                                                        const RHS &R) {
  return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R);
}

template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::FSub> m_FSub(const LHS &L,
                                                          const RHS &R) {
  return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R);
}

template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::Mul> m_Mul(const LHS &L,
                                                        const RHS &R) {
  return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R);
}

template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::FMul> m_FMul(const LHS &L,
                                                          const RHS &R) {
  return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R);
}

template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::UDiv> m_UDiv(const LHS &L,
                                                          const RHS &R) {
  return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R);
}

template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::SDiv> m_SDiv(const LHS &L,
                                                          const RHS &R) {
  return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R);
}

template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::FDiv> m_FDiv(const LHS &L,
                                                          const RHS &R) {
  return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R);
}

template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::URem> m_URem(const LHS &L,
                                                          const RHS &R) {
  return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R);
}

template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::SRem> m_SRem(const LHS &L,
                                                          const RHS &R) {
  return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R);
}

template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::FRem> m_FRem(const LHS &L,
                                                          const RHS &R) {
  return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R);
}

template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::And> m_And(const LHS &L,
                                                        const RHS &R) {
  return BinaryOp_match<LHS, RHS, Instruction::And>(L, R);
}

template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::Or> m_Or(const LHS &L,
                                                      const RHS &R) {
  return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R);
}

template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::Xor> m_Xor(const LHS &L,
                                                        const RHS &R) {
  return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R);
}

template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::Shl> m_Shl(const LHS &L,
                                                        const RHS &R) {
  return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R);
}

template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::LShr> m_LShr(const LHS &L,
                                                          const RHS &R) {
  return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R);
}

template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::AShr> m_AShr(const LHS &L,
                                                          const RHS &R) {
  return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R);
}

template <typename LHS_t, typename RHS_t, unsigned Opcode,
          unsigned WrapFlags = 0>
struct OverflowingBinaryOp_match {
  LHS_t L;
  RHS_t R;

  OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS)
      : L(LHS), R(RHS) {}

  template <typename OpTy> bool match(OpTy *V) {
    if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) {
      if (Op->getOpcode() != Opcode)
        return false;
      if (WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap &&
          !Op->hasNoUnsignedWrap())
        return false;
      if (WrapFlags & OverflowingBinaryOperator::NoSignedWrap &&
          !Op->hasNoSignedWrap())
        return false;
      return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1));
    }
    return false;
  }
};

template <typename LHS, typename RHS>
inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
                                 OverflowingBinaryOperator::NoSignedWrap>
m_NSWAdd(const LHS &L, const RHS &R) {
  return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
                                   OverflowingBinaryOperator::NoSignedWrap>(
      L, R);
}
template <typename LHS, typename RHS>
inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
                                 OverflowingBinaryOperator::NoSignedWrap>
m_NSWSub(const LHS &L, const RHS &R) {
  return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
                                   OverflowingBinaryOperator::NoSignedWrap>(
      L, R);
}
template <typename LHS, typename RHS>
inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
                                 OverflowingBinaryOperator::NoSignedWrap>
m_NSWMul(const LHS &L, const RHS &R) {
  return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
                                   OverflowingBinaryOperator::NoSignedWrap>(
      L, R);
}
template <typename LHS, typename RHS>
inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
                                 OverflowingBinaryOperator::NoSignedWrap>
m_NSWShl(const LHS &L, const RHS &R) {
  return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
                                   OverflowingBinaryOperator::NoSignedWrap>(
      L, R);
}

template <typename LHS, typename RHS>
inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
                                 OverflowingBinaryOperator::NoUnsignedWrap>
m_NUWAdd(const LHS &L, const RHS &R) {
  return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
                                   OverflowingBinaryOperator::NoUnsignedWrap>(
      L, R);
}
template <typename LHS, typename RHS>
inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
                                 OverflowingBinaryOperator::NoUnsignedWrap>
m_NUWSub(const LHS &L, const RHS &R) {
  return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
                                   OverflowingBinaryOperator::NoUnsignedWrap>(
      L, R);
}
template <typename LHS, typename RHS>
inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
                                 OverflowingBinaryOperator::NoUnsignedWrap>
m_NUWMul(const LHS &L, const RHS &R) {
  return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
                                   OverflowingBinaryOperator::NoUnsignedWrap>(
      L, R);
}
template <typename LHS, typename RHS>
inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
                                 OverflowingBinaryOperator::NoUnsignedWrap>
m_NUWShl(const LHS &L, const RHS &R) {
  return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
                                   OverflowingBinaryOperator::NoUnsignedWrap>(
      L, R);
}

//===----------------------------------------------------------------------===//
// Class that matches two different binary ops.
//
template <typename LHS_t, typename RHS_t, unsigned Opc1, unsigned Opc2>
struct BinOp2_match {
  LHS_t L;
  RHS_t R;

  BinOp2_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}

  template <typename OpTy> bool match(OpTy *V) {
    if (V->getValueID() == Value::InstructionVal + Opc1 ||
        V->getValueID() == Value::InstructionVal + Opc2) {
      auto *I = cast<BinaryOperator>(V);
      return L.match(I->getOperand(0)) && R.match(I->getOperand(1));
    }
    if (auto *CE = dyn_cast<ConstantExpr>(V))
      return (CE->getOpcode() == Opc1 || CE->getOpcode() == Opc2) &&
             L.match(CE->getOperand(0)) && R.match(CE->getOperand(1));
    return false;
  }
};

/// \brief Matches LShr or AShr.
template <typename LHS, typename RHS>
inline BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::AShr>
m_Shr(const LHS &L, const RHS &R) {
  return BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::AShr>(L, R);
}

/// \brief Matches LShr or Shl.
template <typename LHS, typename RHS>
inline BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::Shl>
m_LogicalShift(const LHS &L, const RHS &R) {
  return BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::Shl>(L, R);
}

/// \brief Matches UDiv and SDiv.
template <typename LHS, typename RHS>
inline BinOp2_match<LHS, RHS, Instruction::SDiv, Instruction::UDiv>
m_IDiv(const LHS &L, const RHS &R) {
  return BinOp2_match<LHS, RHS, Instruction::SDiv, Instruction::UDiv>(L, R);
}

//===----------------------------------------------------------------------===//
// Class that matches exact binary ops.
//
template <typename SubPattern_t> struct Exact_match {
  SubPattern_t SubPattern;

  Exact_match(const SubPattern_t &SP) : SubPattern(SP) {}

  template <typename OpTy> bool match(OpTy *V) {
    if (PossiblyExactOperator *PEO = dyn_cast<PossiblyExactOperator>(V))
      return PEO->isExact() && SubPattern.match(V);
    return false;
  }
};

template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) {
  return SubPattern;
}

//===----------------------------------------------------------------------===//
// Matchers for CmpInst classes
//

template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy>
struct CmpClass_match {
  PredicateTy &Predicate;
  LHS_t L;
  RHS_t R;

  CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS)
      : Predicate(Pred), L(LHS), R(RHS) {}

  template <typename OpTy> bool match(OpTy *V) {
    if (Class *I = dyn_cast<Class>(V))
      if (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) {
        Predicate = I->getPredicate();
        return true;
      }
    return false;
  }
};

template <typename LHS, typename RHS>
inline CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>
m_Cmp(CmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
  return CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(Pred, L, R);
}

template <typename LHS, typename RHS>
inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>
m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
  return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(Pred, L, R);
}

template <typename LHS, typename RHS>
inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>
m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
  return CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(Pred, L, R);
}

//===----------------------------------------------------------------------===//
// Matchers for SelectInst classes
//

template <typename Cond_t, typename LHS_t, typename RHS_t>
struct SelectClass_match {
  Cond_t C;
  LHS_t L;
  RHS_t R;

  SelectClass_match(const Cond_t &Cond, const LHS_t &LHS, const RHS_t &RHS)
      : C(Cond), L(LHS), R(RHS) {}

  template <typename OpTy> bool match(OpTy *V) {
    if (auto *I = dyn_cast<SelectInst>(V))
      return C.match(I->getOperand(0)) && L.match(I->getOperand(1)) &&
             R.match(I->getOperand(2));
    return false;
  }
};

template <typename Cond, typename LHS, typename RHS>
inline SelectClass_match<Cond, LHS, RHS> m_Select(const Cond &C, const LHS &L,
                                                  const RHS &R) {
  return SelectClass_match<Cond, LHS, RHS>(C, L, R);
}

/// \brief This matches a select of two constants, e.g.:
/// m_SelectCst<-1, 0>(m_Value(V))
template <int64_t L, int64_t R, typename Cond>
inline SelectClass_match<Cond, constantint_match<L>, constantint_match<R>>
m_SelectCst(const Cond &C) {
  return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>());
}

//===----------------------------------------------------------------------===//
// Matchers for CastInst classes
//

template <typename Op_t, unsigned Opcode> struct CastClass_match {
  Op_t Op;

  CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {}

  template <typename OpTy> bool match(OpTy *V) {
    if (auto *O = dyn_cast<Operator>(V))
      return O->getOpcode() == Opcode && Op.match(O->getOperand(0));
    return false;
  }
};

/// \brief Matches BitCast.
template <typename OpTy>
inline CastClass_match<OpTy, Instruction::BitCast> m_BitCast(const OpTy &Op) {
  return CastClass_match<OpTy, Instruction::BitCast>(Op);
}

/// \brief Matches PtrToInt.
template <typename OpTy>
inline CastClass_match<OpTy, Instruction::PtrToInt> m_PtrToInt(const OpTy &Op) {
  return CastClass_match<OpTy, Instruction::PtrToInt>(Op);
}

/// \brief Matches Trunc.
template <typename OpTy>
inline CastClass_match<OpTy, Instruction::Trunc> m_Trunc(const OpTy &Op) {
  return CastClass_match<OpTy, Instruction::Trunc>(Op);
}

/// \brief Matches SExt.
template <typename OpTy>
inline CastClass_match<OpTy, Instruction::SExt> m_SExt(const OpTy &Op) {
  return CastClass_match<OpTy, Instruction::SExt>(Op);
}

/// \brief Matches ZExt.
template <typename OpTy>
inline CastClass_match<OpTy, Instruction::ZExt> m_ZExt(const OpTy &Op) {
  return CastClass_match<OpTy, Instruction::ZExt>(Op);
}

/// \brief Matches UIToFP.
template <typename OpTy>
inline CastClass_match<OpTy, Instruction::UIToFP> m_UIToFP(const OpTy &Op) {
  return CastClass_match<OpTy, Instruction::UIToFP>(Op);
}

/// \brief Matches SIToFP.
template <typename OpTy>
inline CastClass_match<OpTy, Instruction::SIToFP> m_SIToFP(const OpTy &Op) {
  return CastClass_match<OpTy, Instruction::SIToFP>(Op);
}

//===----------------------------------------------------------------------===//
// Matchers for unary operators
//

template <typename LHS_t> struct not_match {
  LHS_t L;

  not_match(const LHS_t &LHS) : L(LHS) {}

  template <typename OpTy> bool match(OpTy *V) {
    if (auto *O = dyn_cast<Operator>(V))
      if (O->getOpcode() == Instruction::Xor)
        return matchIfNot(O->getOperand(0), O->getOperand(1));
    return false;
  }

private:
  bool matchIfNot(Value *LHS, Value *RHS) {
    return (isa<ConstantInt>(RHS) || isa<ConstantDataVector>(RHS) ||
            // FIXME: Remove CV.
            isa<ConstantVector>(RHS)) &&
           cast<Constant>(RHS)->isAllOnesValue() && L.match(LHS);
  }
};

template <typename LHS> inline not_match<LHS> m_Not(const LHS &L) { return L; }

template <typename LHS_t> struct neg_match {
  LHS_t L;

  neg_match(const LHS_t &LHS) : L(LHS) {}

  template <typename OpTy> bool match(OpTy *V) {
    if (auto *O = dyn_cast<Operator>(V))
      if (O->getOpcode() == Instruction::Sub)
        return matchIfNeg(O->getOperand(0), O->getOperand(1));
    return false;
  }

private:
  bool matchIfNeg(Value *LHS, Value *RHS) {
    return ((isa<ConstantInt>(LHS) && cast<ConstantInt>(LHS)->isZero()) ||
            isa<ConstantAggregateZero>(LHS)) &&
           L.match(RHS);
  }
};

/// \brief Match an integer negate.
template <typename LHS> inline neg_match<LHS> m_Neg(const LHS &L) { return L; }

template <typename LHS_t> struct fneg_match {
  LHS_t L;

  fneg_match(const LHS_t &LHS) : L(LHS) {}

  template <typename OpTy> bool match(OpTy *V) {
    if (auto *O = dyn_cast<Operator>(V))
      if (O->getOpcode() == Instruction::FSub)
        return matchIfFNeg(O->getOperand(0), O->getOperand(1));
    return false;
  }

private:
  bool matchIfFNeg(Value *LHS, Value *RHS) {
    if (const auto *C = dyn_cast<ConstantFP>(LHS))
      return C->isNegativeZeroValue() && L.match(RHS);
    return false;
  }
};

/// \brief Match a floating point negate.
template <typename LHS> inline fneg_match<LHS> m_FNeg(const LHS &L) {
  return L;
}

//===----------------------------------------------------------------------===//
// Matchers for control flow.
//

struct br_match {
  BasicBlock *&Succ;
  br_match(BasicBlock *&Succ) : Succ(Succ) {}

  template <typename OpTy> bool match(OpTy *V) {
    if (auto *BI = dyn_cast<BranchInst>(V))
      if (BI->isUnconditional()) {
        Succ = BI->getSuccessor(0);
        return true;
      }
    return false;
  }
};

inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); }

template <typename Cond_t> struct brc_match {
  Cond_t Cond;
  BasicBlock *&T, *&F;
  brc_match(const Cond_t &C, BasicBlock *&t, BasicBlock *&f)
      : Cond(C), T(t), F(f) {}

  template <typename OpTy> bool match(OpTy *V) {
    if (auto *BI = dyn_cast<BranchInst>(V))
      if (BI->isConditional() && Cond.match(BI->getCondition())) {
        T = BI->getSuccessor(0);
        F = BI->getSuccessor(1);
        return true;
      }
    return false;
  }
};

template <typename Cond_t>
inline brc_match<Cond_t> m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) {
  return brc_match<Cond_t>(C, T, F);
}

//===----------------------------------------------------------------------===//
// Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y).
//

template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t>
struct MaxMin_match {
  LHS_t L;
  RHS_t R;

  MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}

  template <typename OpTy> bool match(OpTy *V) {
    // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x".
    auto *SI = dyn_cast<SelectInst>(V);
    if (!SI)
      return false;
    auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition());
    if (!Cmp)
      return false;
    // At this point we have a select conditioned on a comparison.  Check that
    // it is the values returned by the select that are being compared.
    Value *TrueVal = SI->getTrueValue();
    Value *FalseVal = SI->getFalseValue();
    Value *LHS = Cmp->getOperand(0);
    Value *RHS = Cmp->getOperand(1);
    if ((TrueVal != LHS || FalseVal != RHS) &&
        (TrueVal != RHS || FalseVal != LHS))
      return false;
    typename CmpInst_t::Predicate Pred =
        LHS == TrueVal ? Cmp->getPredicate() : Cmp->getSwappedPredicate();
    // Does "(x pred y) ? x : y" represent the desired max/min operation?
    if (!Pred_t::match(Pred))
      return false;
    // It does!  Bind the operands.
    return L.match(LHS) && R.match(RHS);
  }
};

/// \brief Helper class for identifying signed max predicates.
struct smax_pred_ty {
  static bool match(ICmpInst::Predicate Pred) {
    return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE;
  }
};

/// \brief Helper class for identifying signed min predicates.
struct smin_pred_ty {
  static bool match(ICmpInst::Predicate Pred) {
    return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE;
  }
};

/// \brief Helper class for identifying unsigned max predicates.
struct umax_pred_ty {
  static bool match(ICmpInst::Predicate Pred) {
    return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE;
  }
};

/// \brief Helper class for identifying unsigned min predicates.
struct umin_pred_ty {
  static bool match(ICmpInst::Predicate Pred) {
    return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE;
  }
};

/// \brief Helper class for identifying ordered max predicates.
struct ofmax_pred_ty {
  static bool match(FCmpInst::Predicate Pred) {
    return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE;
  }
};

/// \brief Helper class for identifying ordered min predicates.
struct ofmin_pred_ty {
  static bool match(FCmpInst::Predicate Pred) {
    return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE;
  }
};

/// \brief Helper class for identifying unordered max predicates.
struct ufmax_pred_ty {
  static bool match(FCmpInst::Predicate Pred) {
    return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE;
  }
};

/// \brief Helper class for identifying unordered min predicates.
struct ufmin_pred_ty {
  static bool match(FCmpInst::Predicate Pred) {
    return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE;
  }
};

template <typename LHS, typename RHS>
inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty> m_SMax(const LHS &L,
                                                             const RHS &R) {
  return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R);
}

template <typename LHS, typename RHS>
inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty> m_SMin(const LHS &L,
                                                             const RHS &R) {
  return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R);
}

template <typename LHS, typename RHS>
inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty> m_UMax(const LHS &L,
                                                             const RHS &R) {
  return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R);
}

template <typename LHS, typename RHS>
inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty> m_UMin(const LHS &L,
                                                             const RHS &R) {
  return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R);
}

/// \brief Match an 'ordered' floating point maximum function.
/// Floating point has one special value 'NaN'. Therefore, there is no total
/// order. However, if we can ignore the 'NaN' value (for example, because of a
/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
/// semantics. In the presence of 'NaN' we have to preserve the original
/// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate.
///
///                         max(L, R)  iff L and R are not NaN
///  m_OrdFMax(L, R) =      R          iff L or R are NaN
template <typename LHS, typename RHS>
inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty> m_OrdFMax(const LHS &L,
                                                                 const RHS &R) {
  return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R);
}

/// \brief Match an 'ordered' floating point minimum function.
/// Floating point has one special value 'NaN'. Therefore, there is no total
/// order. However, if we can ignore the 'NaN' value (for example, because of a
/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
/// semantics. In the presence of 'NaN' we have to preserve the original
/// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate.
///
///                         max(L, R)  iff L and R are not NaN
///  m_OrdFMin(L, R) =      R          iff L or R are NaN
template <typename LHS, typename RHS>
inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty> m_OrdFMin(const LHS &L,
                                                                 const RHS &R) {
  return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R);
}

/// \brief Match an 'unordered' floating point maximum function.
/// Floating point has one special value 'NaN'. Therefore, there is no total
/// order. However, if we can ignore the 'NaN' value (for example, because of a
/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
/// semantics. In the presence of 'NaN' we have to preserve the original
/// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate.
///
///                         max(L, R)  iff L and R are not NaN
///  m_UnordFMin(L, R) =    L          iff L or R are NaN
template <typename LHS, typename RHS>
inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>
m_UnordFMax(const LHS &L, const RHS &R) {
  return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R);
}

/// \brief Match an 'unordered' floating point minimum function.
/// Floating point has one special value 'NaN'. Therefore, there is no total
/// order. However, if we can ignore the 'NaN' value (for example, because of a
/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
/// semantics. In the presence of 'NaN' we have to preserve the original
/// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate.
///
///                          max(L, R)  iff L and R are not NaN
///  m_UnordFMin(L, R) =     L          iff L or R are NaN
template <typename LHS, typename RHS>
inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>
m_UnordFMin(const LHS &L, const RHS &R) {
  return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R);
}

template <typename Opnd_t> struct Argument_match {
  unsigned OpI;
  Opnd_t Val;
  Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {}

  template <typename OpTy> bool match(OpTy *V) {
    CallSite CS(V);
    return CS.isCall() && Val.match(CS.getArgument(OpI));
  }
};

/// \brief Match an argument.
template <unsigned OpI, typename Opnd_t>
inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) {
  return Argument_match<Opnd_t>(OpI, Op);
}

/// \brief Intrinsic matchers.
struct IntrinsicID_match {
  unsigned ID;
  IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {}

  template <typename OpTy> bool match(OpTy *V) {
    if (const auto *CI = dyn_cast<CallInst>(V))
      if (const auto *F = CI->getCalledFunction())
        return F->getIntrinsicID() == ID;
    return false;
  }
};

/// Intrinsic matches are combinations of ID matchers, and argument
/// matchers. Higher arity matcher are defined recursively in terms of and-ing
/// them with lower arity matchers. Here's some convenient typedefs for up to
/// several arguments, and more can be added as needed
template <typename T0 = void, typename T1 = void, typename T2 = void,
          typename T3 = void, typename T4 = void, typename T5 = void,
          typename T6 = void, typename T7 = void, typename T8 = void,
          typename T9 = void, typename T10 = void>
struct m_Intrinsic_Ty;
template <typename T0> struct m_Intrinsic_Ty<T0> {
  typedef match_combine_and<IntrinsicID_match, Argument_match<T0>> Ty;
};
template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> {
  typedef match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>
      Ty;
};
template <typename T0, typename T1, typename T2>
struct m_Intrinsic_Ty<T0, T1, T2> {
  typedef match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty,
                            Argument_match<T2>> Ty;
};
template <typename T0, typename T1, typename T2, typename T3>
struct m_Intrinsic_Ty<T0, T1, T2, T3> {
  typedef match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty,
                            Argument_match<T3>> Ty;
};

/// \brief Match intrinsic calls like this:
/// m_Intrinsic<Intrinsic::fabs>(m_Value(X))
template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() {
  return IntrinsicID_match(IntrID);
}

template <Intrinsic::ID IntrID, typename T0>
inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) {
  return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0));
}

template <Intrinsic::ID IntrID, typename T0, typename T1>
inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0,
                                                       const T1 &Op1) {
  return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1));
}

template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2>
inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty
m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) {
  return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2));
}

template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
          typename T3>
inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty
m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) {
  return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3));
}

// Helper intrinsic matching specializations.
template <typename Opnd0>
inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) {
  return m_Intrinsic<Intrinsic::bswap>(Op0);
}

template <typename Opnd0, typename Opnd1>
inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMin(const Opnd0 &Op0,
                                                        const Opnd1 &Op1) {
  return m_Intrinsic<Intrinsic::minnum>(Op0, Op1);
}

template <typename Opnd0, typename Opnd1>
inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMax(const Opnd0 &Op0,
                                                        const Opnd1 &Op1) {
  return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1);
}

} // end namespace PatternMatch
} // end namespace llvm

#endif