/usr/include/glm/gtx/compatibility.hpp is in libglm-dev 0.9.5.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 | ///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_compatibility
/// @file glm/gtx/compatibility.hpp
/// @date 2007-01-24 / 2011-06-07
/// @author Christophe Riccio
///
/// @see core (dependence)
/// @see gtc_half_float (dependence)
///
/// @defgroup gtx_compatibility GLM_GTX_compatibility
/// @ingroup gtx
///
/// @brief Provide functions to increase the compatibility with Cg and HLSL languages
///
/// <glm/gtx/compatibility.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#ifndef GLM_GTX_compatibility
#define GLM_GTX_compatibility
// Dependency:
#include "../glm.hpp"
#include "../gtc/quaternion.hpp"
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTX_compatibility extension included")
#endif
#if(GLM_COMPILER & GLM_COMPILER_VC)
# include <cfloat>
#elif(GLM_COMPILER & GLM_COMPILER_GCC)
# include <cmath>
# if(GLM_PLATFORM & GLM_PLATFORM_ANDROID)
# undef isfinite
# endif
#endif//GLM_COMPILER
namespace glm
{
/// @addtogroup gtx_compatibility
/// @{
template <typename T> GLM_FUNC_QUALIFIER T lerp(T x, T y, T a){return mix(x, y, a);} //!< \brief Returns x * (1.0 - a) + y * a, i.e., the linear blend of x and y using the floating-point value a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility)
template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec2<T, P> lerp(const detail::tvec2<T, P>& x, const detail::tvec2<T, P>& y, T a){return mix(x, y, a);} //!< \brief Returns x * (1.0 - a) + y * a, i.e., the linear blend of x and y using the floating-point value a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility)
template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec3<T, P> lerp(const detail::tvec3<T, P>& x, const detail::tvec3<T, P>& y, T a){return mix(x, y, a);} //!< \brief Returns x * (1.0 - a) + y * a, i.e., the linear blend of x and y using the floating-point value a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility)
template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec4<T, P> lerp(const detail::tvec4<T, P>& x, const detail::tvec4<T, P>& y, T a){return mix(x, y, a);} //!< \brief Returns x * (1.0 - a) + y * a, i.e., the linear blend of x and y using the floating-point value a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility)
template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec2<T, P> lerp(const detail::tvec2<T, P>& x, const detail::tvec2<T, P>& y, const detail::tvec2<T, P>& a){return mix(x, y, a);} //!< \brief Returns the component-wise result of x * (1.0 - a) + y * a, i.e., the linear blend of x and y using vector a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility)
template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec3<T, P> lerp(const detail::tvec3<T, P>& x, const detail::tvec3<T, P>& y, const detail::tvec3<T, P>& a){return mix(x, y, a);} //!< \brief Returns the component-wise result of x * (1.0 - a) + y * a, i.e., the linear blend of x and y using vector a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility)
template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec4<T, P> lerp(const detail::tvec4<T, P>& x, const detail::tvec4<T, P>& y, const detail::tvec4<T, P>& a){return mix(x, y, a);} //!< \brief Returns the component-wise result of x * (1.0 - a) + y * a, i.e., the linear blend of x and y using vector a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility)
template <typename T, precision P> GLM_FUNC_QUALIFIER T slerp(detail::tquat<T, P> const & x, detail::tquat<T, P> const & y, T const & a){return mix(x, y, a);} //!< \brief Returns the slurp interpolation between two quaternions.
template <typename T, precision P> GLM_FUNC_QUALIFIER T saturate(T x){return clamp(x, T(0), T(1));} //!< \brief Returns clamp(x, 0, 1) for each component in x. (From GLM_GTX_compatibility)
template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec2<T, P> saturate(const detail::tvec2<T, P>& x){return clamp(x, T(0), T(1));} //!< \brief Returns clamp(x, 0, 1) for each component in x. (From GLM_GTX_compatibility)
template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec3<T, P> saturate(const detail::tvec3<T, P>& x){return clamp(x, T(0), T(1));} //!< \brief Returns clamp(x, 0, 1) for each component in x. (From GLM_GTX_compatibility)
template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec4<T, P> saturate(const detail::tvec4<T, P>& x){return clamp(x, T(0), T(1));} //!< \brief Returns clamp(x, 0, 1) for each component in x. (From GLM_GTX_compatibility)
template <typename T, precision P> GLM_FUNC_QUALIFIER T atan2(T x, T y){return atan(x, y);} //!< \brief Arc tangent. Returns an angle whose tangent is y/x. The signs of x and y are used to determine what quadrant the angle is in. The range of values returned by this function is [-PI, PI]. Results are undefined if x and y are both 0. (From GLM_GTX_compatibility)
template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec2<T, P> atan2(const detail::tvec2<T, P>& x, const detail::tvec2<T, P>& y){return atan(x, y);} //!< \brief Arc tangent. Returns an angle whose tangent is y/x. The signs of x and y are used to determine what quadrant the angle is in. The range of values returned by this function is [-PI, PI]. Results are undefined if x and y are both 0. (From GLM_GTX_compatibility)
template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec3<T, P> atan2(const detail::tvec3<T, P>& x, const detail::tvec3<T, P>& y){return atan(x, y);} //!< \brief Arc tangent. Returns an angle whose tangent is y/x. The signs of x and y are used to determine what quadrant the angle is in. The range of values returned by this function is [-PI, PI]. Results are undefined if x and y are both 0. (From GLM_GTX_compatibility)
template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec4<T, P> atan2(const detail::tvec4<T, P>& x, const detail::tvec4<T, P>& y){return atan(x, y);} //!< \brief Arc tangent. Returns an angle whose tangent is y/x. The signs of x and y are used to determine what quadrant the angle is in. The range of values returned by this function is [-PI, PI]. Results are undefined if x and y are both 0. (From GLM_GTX_compatibility)
template <typename genType> bool isfinite(genType const & x); //!< \brief Test whether or not a scalar or each vector component is a finite value. (From GLM_GTX_compatibility)
template <typename T, precision P> detail::tvec2<bool, P> isfinite(const detail::tvec2<T, P>& x); //!< \brief Test whether or not a scalar or each vector component is a finite value. (From GLM_GTX_compatibility)
template <typename T, precision P> detail::tvec3<bool, P> isfinite(const detail::tvec3<T, P>& x); //!< \brief Test whether or not a scalar or each vector component is a finite value. (From GLM_GTX_compatibility)
template <typename T, precision P> detail::tvec4<bool, P> isfinite(const detail::tvec4<T, P>& x); //!< \brief Test whether or not a scalar or each vector component is a finite value. (From GLM_GTX_compatibility)
typedef bool bool1; //!< \brief boolean type with 1 component. (From GLM_GTX_compatibility extension)
typedef detail::tvec2<bool, highp> bool2; //!< \brief boolean type with 2 components. (From GLM_GTX_compatibility extension)
typedef detail::tvec3<bool, highp> bool3; //!< \brief boolean type with 3 components. (From GLM_GTX_compatibility extension)
typedef detail::tvec4<bool, highp> bool4; //!< \brief boolean type with 4 components. (From GLM_GTX_compatibility extension)
typedef bool bool1x1; //!< \brief boolean matrix with 1 x 1 component. (From GLM_GTX_compatibility extension)
typedef detail::tmat2x2<bool, highp> bool2x2; //!< \brief boolean matrix with 2 x 2 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat2x3<bool, highp> bool2x3; //!< \brief boolean matrix with 2 x 3 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat2x4<bool, highp> bool2x4; //!< \brief boolean matrix with 2 x 4 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat3x2<bool, highp> bool3x2; //!< \brief boolean matrix with 3 x 2 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat3x3<bool, highp> bool3x3; //!< \brief boolean matrix with 3 x 3 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat3x4<bool, highp> bool3x4; //!< \brief boolean matrix with 3 x 4 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat4x2<bool, highp> bool4x2; //!< \brief boolean matrix with 4 x 2 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat4x3<bool, highp> bool4x3; //!< \brief boolean matrix with 4 x 3 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat4x4<bool, highp> bool4x4; //!< \brief boolean matrix with 4 x 4 components. (From GLM_GTX_compatibility extension)
typedef int int1; //!< \brief integer vector with 1 component. (From GLM_GTX_compatibility extension)
typedef detail::tvec2<int, highp> int2; //!< \brief integer vector with 2 components. (From GLM_GTX_compatibility extension)
typedef detail::tvec3<int, highp> int3; //!< \brief integer vector with 3 components. (From GLM_GTX_compatibility extension)
typedef detail::tvec4<int, highp> int4; //!< \brief integer vector with 4 components. (From GLM_GTX_compatibility extension)
typedef int int1x1; //!< \brief integer matrix with 1 component. (From GLM_GTX_compatibility extension)
typedef detail::tmat2x2<int, highp> int2x2; //!< \brief integer matrix with 2 x 2 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat2x3<int, highp> int2x3; //!< \brief integer matrix with 2 x 3 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat2x4<int, highp> int2x4; //!< \brief integer matrix with 2 x 4 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat3x2<int, highp> int3x2; //!< \brief integer matrix with 3 x 2 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat3x3<int, highp> int3x3; //!< \brief integer matrix with 3 x 3 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat3x4<int, highp> int3x4; //!< \brief integer matrix with 3 x 4 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat4x2<int, highp> int4x2; //!< \brief integer matrix with 4 x 2 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat4x3<int, highp> int4x3; //!< \brief integer matrix with 4 x 3 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat4x4<int, highp> int4x4; //!< \brief integer matrix with 4 x 4 components. (From GLM_GTX_compatibility extension)
typedef float float1; //!< \brief single-precision floating-point vector with 1 component. (From GLM_GTX_compatibility extension)
typedef detail::tvec2<float, highp> float2; //!< \brief single-precision floating-point vector with 2 components. (From GLM_GTX_compatibility extension)
typedef detail::tvec3<float, highp> float3; //!< \brief single-precision floating-point vector with 3 components. (From GLM_GTX_compatibility extension)
typedef detail::tvec4<float, highp> float4; //!< \brief single-precision floating-point vector with 4 components. (From GLM_GTX_compatibility extension)
typedef float float1x1; //!< \brief single-precision floating-point matrix with 1 component. (From GLM_GTX_compatibility extension)
typedef detail::tmat2x2<float, highp> float2x2; //!< \brief single-precision floating-point matrix with 2 x 2 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat2x3<float, highp> float2x3; //!< \brief single-precision floating-point matrix with 2 x 3 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat2x4<float, highp> float2x4; //!< \brief single-precision floating-point matrix with 2 x 4 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat3x2<float, highp> float3x2; //!< \brief single-precision floating-point matrix with 3 x 2 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat3x3<float, highp> float3x3; //!< \brief single-precision floating-point matrix with 3 x 3 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat3x4<float, highp> float3x4; //!< \brief single-precision floating-point matrix with 3 x 4 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat4x2<float, highp> float4x2; //!< \brief single-precision floating-point matrix with 4 x 2 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat4x3<float, highp> float4x3; //!< \brief single-precision floating-point matrix with 4 x 3 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat4x4<float, highp> float4x4; //!< \brief single-precision floating-point matrix with 4 x 4 components. (From GLM_GTX_compatibility extension)
typedef double double1; //!< \brief double-precision floating-point vector with 1 component. (From GLM_GTX_compatibility extension)
typedef detail::tvec2<double, highp> double2; //!< \brief double-precision floating-point vector with 2 components. (From GLM_GTX_compatibility extension)
typedef detail::tvec3<double, highp> double3; //!< \brief double-precision floating-point vector with 3 components. (From GLM_GTX_compatibility extension)
typedef detail::tvec4<double, highp> double4; //!< \brief double-precision floating-point vector with 4 components. (From GLM_GTX_compatibility extension)
typedef double double1x1; //!< \brief double-precision floating-point matrix with 1 component. (From GLM_GTX_compatibility extension)
typedef detail::tmat2x2<double, highp> double2x2; //!< \brief double-precision floating-point matrix with 2 x 2 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat2x3<double, highp> double2x3; //!< \brief double-precision floating-point matrix with 2 x 3 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat2x4<double, highp> double2x4; //!< \brief double-precision floating-point matrix with 2 x 4 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat3x2<double, highp> double3x2; //!< \brief double-precision floating-point matrix with 3 x 2 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat3x3<double, highp> double3x3; //!< \brief double-precision floating-point matrix with 3 x 3 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat3x4<double, highp> double3x4; //!< \brief double-precision floating-point matrix with 3 x 4 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat4x2<double, highp> double4x2; //!< \brief double-precision floating-point matrix with 4 x 2 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat4x3<double, highp> double4x3; //!< \brief double-precision floating-point matrix with 4 x 3 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat4x4<double, highp> double4x4; //!< \brief double-precision floating-point matrix with 4 x 4 components. (From GLM_GTX_compatibility extension)
/// @}
}//namespace glm
#include "compatibility.inl"
#endif//GLM_GTX_compatibility
|