This file is indexed.

/usr/include/google/sparsehash/sparsehashtable.h is in libsparsehash-dev 1.10-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
// Copyright (c) 2005, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// ---
// Author: Craig Silverstein
//
// A sparse hashtable is a particular implementation of
// a hashtable: one that is meant to minimize memory use.
// It does this by using a *sparse table* (cf sparsetable.h),
// which uses between 1 and 2 bits to store empty buckets
// (we may need another bit for hashtables that support deletion).
//
// When empty buckets are so cheap, an appealing hashtable
// implementation is internal probing, in which the hashtable
// is a single table, and collisions are resolved by trying
// to insert again in another bucket.  The most cache-efficient
// internal probing schemes are linear probing (which suffers,
// alas, from clumping) and quadratic probing, which is what
// we implement by default.
//
// Deleted buckets are a bit of a pain.  We have to somehow mark
// deleted buckets (the probing must distinguish them from empty
// buckets).  The most principled way is to have another bitmap,
// but that's annoying and takes up space.  Instead we let the
// user specify an "impossible" key.  We set deleted buckets
// to have the impossible key.
//
// Note it is possible to change the value of the delete key
// on the fly; you can even remove it, though after that point
// the hashtable is insert_only until you set it again.
//
// You probably shouldn't use this code directly.  Use
// <google/sparse_hash_table> or <google/sparse_hash_set> instead.
//
// You can modify the following, below:
// HT_OCCUPANCY_PCT            -- how full before we double size
// HT_EMPTY_PCT                -- how empty before we halve size
// HT_MIN_BUCKETS              -- smallest bucket size
// HT_DEFAULT_STARTING_BUCKETS -- default bucket size at construct-time
//
// You can also change enlarge_factor (which defaults to
// HT_OCCUPANCY_PCT), and shrink_factor (which defaults to
// HT_EMPTY_PCT) with set_resizing_parameters().
//
// How to decide what values to use?
// shrink_factor's default of .4 * OCCUPANCY_PCT, is probably good.
// HT_MIN_BUCKETS is probably unnecessary since you can specify
// (indirectly) the starting number of buckets at construct-time.
// For enlarge_factor, you can use this chart to try to trade-off
// expected lookup time to the space taken up.  By default, this
// code uses quadratic probing, though you can change it to linear
// via _JUMP below if you really want to.
//
// From http://www.augustana.ca/~mohrj/courses/1999.fall/csc210/lecture_notes/hashing.html
// NUMBER OF PROBES / LOOKUP       Successful            Unsuccessful
// Quadratic collision resolution   1 - ln(1-L) - L/2    1/(1-L) - L - ln(1-L)
// Linear collision resolution     [1+1/(1-L)]/2         [1+1/(1-L)2]/2
//
// -- enlarge_factor --           0.10  0.50  0.60  0.75  0.80  0.90  0.99
// QUADRATIC COLLISION RES.
//    probes/successful lookup    1.05  1.44  1.62  2.01  2.21  2.85  5.11
//    probes/unsuccessful lookup  1.11  2.19  2.82  4.64  5.81  11.4  103.6
// LINEAR COLLISION RES.
//    probes/successful lookup    1.06  1.5   1.75  2.5   3.0   5.5   50.5
//    probes/unsuccessful lookup  1.12  2.5   3.6   8.5   13.0  50.0  5000.0
//
// The value type is required to be copy constructible and default
// constructible, but it need not be (and commonly isn't) assignable.

#ifndef _SPARSEHASHTABLE_H_
#define _SPARSEHASHTABLE_H_

#ifndef SPARSEHASH_STAT_UPDATE
#define SPARSEHASH_STAT_UPDATE(x) ((void) 0)
#endif

// The probing method
// Linear probing
// #define JUMP_(key, num_probes)    ( 1 )
// Quadratic probing
#define JUMP_(key, num_probes)    ( num_probes )

#include <google/sparsehash/sparseconfig.h>
#include <assert.h>
#include <algorithm>              // For swap(), eg
#include <stdexcept>              // For length_error
#include <iterator>               // for facts about iterator tags
#include <limits>                 // for numeric_limits<>
#include <utility>                // for pair<>
#include <google/sparsehash/hashtable-common.h>
#include <google/sparsetable>     // Since that's basically what we are

_START_GOOGLE_NAMESPACE_

using STL_NAMESPACE::pair;

// The smaller this is, the faster lookup is (because the group bitmap is
// smaller) and the faster insert is, because there's less to move.
// On the other hand, there are more groups.  Since group::size_type is
// a short, this number should be of the form 32*x + 16 to avoid waste.
static const u_int16_t DEFAULT_GROUP_SIZE = 48;   // fits in 1.5 words

// Hashtable class, used to implement the hashed associative containers
// hash_set and hash_map.
//
// Value: what is stored in the table (each bucket is a Value).
// Key: something in a 1-to-1 correspondence to a Value, that can be used
//      to search for a Value in the table (find() takes a Key).
// HashFcn: Takes a Key and returns an integer, the more unique the better.
// ExtractKey: given a Value, returns the unique Key associated with it.
//             Must inherit from unary_function, or at least have a
//             result_type enum indicating the return type of operator().
// SetKey: given a Value* and a Key, modifies the value such that
//         ExtractKey(value) == key.  We guarantee this is only called
//         with key == deleted_key.
// EqualKey: Given two Keys, says whether they are the same (that is,
//           if they are both associated with the same Value).
// Alloc: STL allocator to use to allocate memory.

template <class Value, class Key, class HashFcn,
          class ExtractKey, class SetKey, class EqualKey, class Alloc>
class sparse_hashtable;

template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
struct sparse_hashtable_iterator;

template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
struct sparse_hashtable_const_iterator;

// As far as iterating, we're basically just a sparsetable
// that skips over deleted elements.
template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
struct sparse_hashtable_iterator {
 private:
  typedef typename A::template rebind<V>::other value_alloc_type;

 public:
  typedef sparse_hashtable_iterator<V,K,HF,ExK,SetK,EqK,A>       iterator;
  typedef sparse_hashtable_const_iterator<V,K,HF,ExK,SetK,EqK,A> const_iterator;
  typedef typename sparsetable<V,DEFAULT_GROUP_SIZE,A>::nonempty_iterator
      st_iterator;

  typedef STL_NAMESPACE::forward_iterator_tag iterator_category;
  typedef V value_type;
  typedef typename value_alloc_type::difference_type difference_type;
  typedef typename value_alloc_type::size_type size_type;
  typedef typename value_alloc_type::reference reference;
  typedef typename value_alloc_type::pointer pointer;

  // "Real" constructor and default constructor
  sparse_hashtable_iterator(const sparse_hashtable<V,K,HF,ExK,SetK,EqK,A> *h,
                            st_iterator it, st_iterator it_end)
    : ht(h), pos(it), end(it_end)   { advance_past_deleted(); }
  sparse_hashtable_iterator() { }      // not ever used internally
  // The default destructor is fine; we don't define one
  // The default operator= is fine; we don't define one

  // Happy dereferencer
  reference operator*() const { return *pos; }
  pointer operator->() const { return &(operator*()); }

  // Arithmetic.  The only hard part is making sure that
  // we're not on a marked-deleted array element
  void advance_past_deleted() {
    while ( pos != end && ht->test_deleted(*this) )
      ++pos;
  }
  iterator& operator++()   {
    assert(pos != end); ++pos; advance_past_deleted(); return *this;
  }
  iterator operator++(int) { iterator tmp(*this); ++*this; return tmp; }

  // Comparison.
  bool operator==(const iterator& it) const { return pos == it.pos; }
  bool operator!=(const iterator& it) const { return pos != it.pos; }


  // The actual data
  const sparse_hashtable<V,K,HF,ExK,SetK,EqK,A> *ht;
  st_iterator pos, end;
};

// Now do it all again, but with const-ness!
template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
struct sparse_hashtable_const_iterator {
 private:
  typedef typename A::template rebind<V>::other value_alloc_type;

 public:
  typedef sparse_hashtable_iterator<V,K,HF,ExK,SetK,EqK,A>       iterator;
  typedef sparse_hashtable_const_iterator<V,K,HF,ExK,SetK,EqK,A> const_iterator;
  typedef typename sparsetable<V,DEFAULT_GROUP_SIZE,A>::const_nonempty_iterator
      st_iterator;

  typedef STL_NAMESPACE::forward_iterator_tag iterator_category;
  typedef V value_type;
  typedef typename value_alloc_type::difference_type difference_type;
  typedef typename value_alloc_type::size_type size_type;
  typedef typename value_alloc_type::const_reference reference;
  typedef typename value_alloc_type::const_pointer pointer;

  // "Real" constructor and default constructor
  sparse_hashtable_const_iterator(const sparse_hashtable<V,K,HF,ExK,SetK,EqK,A> *h,
                                  st_iterator it, st_iterator it_end)
    : ht(h), pos(it), end(it_end)   { advance_past_deleted(); }
  // This lets us convert regular iterators to const iterators
  sparse_hashtable_const_iterator() { }      // never used internally
  sparse_hashtable_const_iterator(const iterator &it)
    : ht(it.ht), pos(it.pos), end(it.end) { }
  // The default destructor is fine; we don't define one
  // The default operator= is fine; we don't define one

  // Happy dereferencer
  reference operator*() const { return *pos; }
  pointer operator->() const { return &(operator*()); }

  // Arithmetic.  The only hard part is making sure that
  // we're not on a marked-deleted array element
  void advance_past_deleted() {
    while ( pos != end && ht->test_deleted(*this) )
      ++pos;
  }
  const_iterator& operator++() {
    assert(pos != end); ++pos; advance_past_deleted(); return *this;
  }
  const_iterator operator++(int) { const_iterator tmp(*this); ++*this; return tmp; }

  // Comparison.
  bool operator==(const const_iterator& it) const { return pos == it.pos; }
  bool operator!=(const const_iterator& it) const { return pos != it.pos; }


  // The actual data
  const sparse_hashtable<V,K,HF,ExK,SetK,EqK,A> *ht;
  st_iterator pos, end;
};

// And once again, but this time freeing up memory as we iterate
template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
struct sparse_hashtable_destructive_iterator {
 private:
  typedef typename A::template rebind<V>::other value_alloc_type;

 public:
  typedef sparse_hashtable_destructive_iterator<V,K,HF,ExK,SetK,EqK,A> iterator;
  typedef typename sparsetable<V,DEFAULT_GROUP_SIZE,A>::destructive_iterator
      st_iterator;

  typedef STL_NAMESPACE::forward_iterator_tag iterator_category;
  typedef V value_type;
  typedef typename value_alloc_type::difference_type difference_type;
  typedef typename value_alloc_type::size_type size_type;
  typedef typename value_alloc_type::reference reference;
  typedef typename value_alloc_type::pointer pointer;

  // "Real" constructor and default constructor
  sparse_hashtable_destructive_iterator(const
                                        sparse_hashtable<V,K,HF,ExK,SetK,EqK,A> *h,
                                        st_iterator it, st_iterator it_end)
    : ht(h), pos(it), end(it_end)   { advance_past_deleted(); }
  sparse_hashtable_destructive_iterator() { }          // never used internally
  // The default destructor is fine; we don't define one
  // The default operator= is fine; we don't define one

  // Happy dereferencer
  reference operator*() const { return *pos; }
  pointer operator->() const { return &(operator*()); }

  // Arithmetic.  The only hard part is making sure that
  // we're not on a marked-deleted array element
  void advance_past_deleted() {
    while ( pos != end && ht->test_deleted(*this) )
      ++pos;
  }
  iterator& operator++()   {
    assert(pos != end); ++pos; advance_past_deleted(); return *this;
  }
  iterator operator++(int) { iterator tmp(*this); ++*this; return tmp; }

  // Comparison.
  bool operator==(const iterator& it) const { return pos == it.pos; }
  bool operator!=(const iterator& it) const { return pos != it.pos; }


  // The actual data
  const sparse_hashtable<V,K,HF,ExK,SetK,EqK,A> *ht;
  st_iterator pos, end;
};


template <class Value, class Key, class HashFcn,
          class ExtractKey, class SetKey, class EqualKey, class Alloc>
class sparse_hashtable {
 private:
  typedef typename Alloc::template rebind<Value>::other value_alloc_type;

 public:
  typedef Key key_type;
  typedef Value value_type;
  typedef HashFcn hasher;
  typedef EqualKey key_equal;
  typedef Alloc allocator_type;

  typedef typename value_alloc_type::size_type size_type;
  typedef typename value_alloc_type::difference_type difference_type;
  typedef typename value_alloc_type::reference reference;
  typedef typename value_alloc_type::const_reference const_reference;
  typedef typename value_alloc_type::pointer pointer;
  typedef typename value_alloc_type::const_pointer const_pointer;
  typedef sparse_hashtable_iterator<Value, Key, HashFcn, ExtractKey,
                                    SetKey, EqualKey, Alloc>
  iterator;

  typedef sparse_hashtable_const_iterator<Value, Key, HashFcn, ExtractKey,
                                          SetKey, EqualKey, Alloc>
  const_iterator;

  typedef sparse_hashtable_destructive_iterator<Value, Key, HashFcn, ExtractKey,
                                                SetKey, EqualKey, Alloc>
  destructive_iterator;

  // These come from tr1.  For us they're the same as regular iterators.
  typedef iterator local_iterator;
  typedef const_iterator const_local_iterator;

  // How full we let the table get before we resize, by default.
  // Knuth says .8 is good -- higher causes us to probe too much,
  // though it saves memory.
  static const int HT_OCCUPANCY_PCT; // = 80 (out of 100);

  // How empty we let the table get before we resize lower, by default.
  // (0.0 means never resize lower.)
  // It should be less than OCCUPANCY_PCT / 2 or we thrash resizing
  static const int HT_EMPTY_PCT; // = 0.4 * HT_OCCUPANCY_PCT;

  // Minimum size we're willing to let hashtables be.
  // Must be a power of two, and at least 4.
  // Note, however, that for a given hashtable, the initial size is a
  // function of the first constructor arg, and may be >HT_MIN_BUCKETS.
  static const size_type HT_MIN_BUCKETS = 4;

  // By default, if you don't specify a hashtable size at
  // construction-time, we use this size.  Must be a power of two, and
  // at least HT_MIN_BUCKETS.
  static const size_type HT_DEFAULT_STARTING_BUCKETS = 32;

  // ITERATOR FUNCTIONS
  iterator begin()             { return iterator(this, table.nonempty_begin(),
                                                 table.nonempty_end()); }
  iterator end()               { return iterator(this, table.nonempty_end(),
                                                 table.nonempty_end()); }
  const_iterator begin() const { return const_iterator(this,
                                                       table.nonempty_begin(),
                                                       table.nonempty_end()); }
  const_iterator end() const   { return const_iterator(this,
                                                       table.nonempty_end(),
                                                       table.nonempty_end()); }

  // These come from tr1 unordered_map.  They iterate over 'bucket' n.
  // For sparsehashtable, we could consider each 'group' to be a bucket,
  // I guess, but I don't really see the point.  We'll just consider
  // bucket n to be the n-th element of the sparsetable, if it's occupied,
  // or some empty element, otherwise.
  local_iterator begin(size_type i) {
    if (table.test(i))
      return local_iterator(this, table.get_iter(i), table.nonempty_end());
    else
      return local_iterator(this, table.nonempty_end(), table.nonempty_end());
  }
  local_iterator end(size_type i) {
    local_iterator it = begin(i);
    if (table.test(i) && !test_deleted(i))
      ++it;
    return it;
  }
  const_local_iterator begin(size_type i) const {
    if (table.test(i))
      return const_local_iterator(this, table.get_iter(i),
                                  table.nonempty_end());
    else
      return const_local_iterator(this, table.nonempty_end(),
                                  table.nonempty_end());
  }
  const_local_iterator end(size_type i) const {
    const_local_iterator it = begin(i);
    if (table.test(i) && !test_deleted(i))
      ++it;
    return it;
  }

  // This is used when resizing
  destructive_iterator destructive_begin() {
    return destructive_iterator(this, table.destructive_begin(),
                                table.destructive_end());
  }
  destructive_iterator destructive_end() {
    return destructive_iterator(this, table.destructive_end(),
                                table.destructive_end());
  }


  // ACCESSOR FUNCTIONS for the things we templatize on, basically
  hasher hash_funct() const               { return settings; }
  key_equal key_eq() const                { return key_info; }
  allocator_type get_allocator() const    { return table.get_allocator(); }

  // Accessor function for statistics gathering.
  int num_table_copies() const { return settings.num_ht_copies(); }

 private:
  // We need to copy values when we set the special marker for deleted
  // elements, but, annoyingly, we can't just use the copy assignment
  // operator because value_type might not be assignable (it's often
  // pair<const X, Y>).  We use explicit destructor invocation and
  // placement new to get around this.  Arg.
  void set_value(pointer dst, const_reference src) {
    dst->~value_type();   // delete the old value, if any
    new(dst) value_type(src);
  }

  // This is used as a tag for the copy constructor, saying to destroy its
  // arg We have two ways of destructively copying: with potentially growing
  // the hashtable as we copy, and without.  To make sure the outside world
  // can't do a destructive copy, we make the typename private.
  enum MoveDontCopyT {MoveDontCopy, MoveDontGrow};

  // DELETE HELPER FUNCTIONS
  // This lets the user describe a key that will indicate deleted
  // table entries.  This key should be an "impossible" entry --
  // if you try to insert it for real, you won't be able to retrieve it!
  // (NB: while you pass in an entire value, only the key part is looked
  // at.  This is just because I don't know how to assign just a key.)
 private:
  void squash_deleted() {           // gets rid of any deleted entries we have
    if ( num_deleted ) {            // get rid of deleted before writing
      sparse_hashtable tmp(MoveDontGrow, *this);
      swap(tmp);                    // now we are tmp
    }
    assert(num_deleted == 0);
  }

  bool test_deleted_key(const key_type& key) const {
    // The num_deleted test is crucial for read(): after read(), the ht values
    // are garbage, and we don't want to think some of them are deleted.
    // Invariant: !use_deleted implies num_deleted is 0.
    assert(settings.use_deleted() || num_deleted == 0);
    return num_deleted > 0 && equals(key_info.delkey, key);
  }

 public:
  void set_deleted_key(const key_type &key) {
    // It's only safe to change what "deleted" means if we purge deleted guys
    squash_deleted();
    settings.set_use_deleted(true);
    key_info.delkey = key;
  }
  void clear_deleted_key() {
    squash_deleted();
    settings.set_use_deleted(false);
  }
  key_type deleted_key() const {
    assert(settings.use_deleted()
           && "Must set deleted key before calling deleted_key");
    return key_info.delkey;
  }

  // These are public so the iterators can use them
  // True if the item at position bucknum is "deleted" marker
  bool test_deleted(size_type bucknum) const {
    if (num_deleted == 0 || !table.test(bucknum)) return false;
    return test_deleted_key(get_key(table.unsafe_get(bucknum)));
  }
  bool test_deleted(const iterator &it) const {
    if (!settings.use_deleted()) return false;
    return test_deleted_key(get_key(*it));
  }
  bool test_deleted(const const_iterator &it) const {
    if (!settings.use_deleted()) return false;
    return test_deleted_key(get_key(*it));
  }
  bool test_deleted(const destructive_iterator &it) const {
    if (!settings.use_deleted()) return false;
    return test_deleted_key(get_key(*it));
  }

 private:
  // Set it so test_deleted is true.  true if object didn't used to be deleted.
  // TODO(csilvers): make these private (also in densehashtable.h)
  bool set_deleted(iterator &it) {
    assert(settings.use_deleted());
    bool retval = !test_deleted(it);
    // &* converts from iterator to value-type.
    set_key(&(*it), key_info.delkey);
    return retval;
  }
  // Set it so test_deleted is false.  true if object used to be deleted.
  bool clear_deleted(iterator &it) {
    assert(settings.use_deleted());
    // Happens automatically when we assign something else in its place.
    return test_deleted(it);
  }

  // We also allow to set/clear the deleted bit on a const iterator.
  // We allow a const_iterator for the same reason you can delete a
  // const pointer: it's convenient, and semantically you can't use
  // 'it' after it's been deleted anyway, so its const-ness doesn't
  // really matter.
  bool set_deleted(const_iterator &it) {
    assert(settings.use_deleted());   // bad if set_deleted_key() wasn't called
    bool retval = !test_deleted(it);
    set_key(const_cast<pointer>(&(*it)), key_info.delkey);
    return retval;
  }
  // Set it so test_deleted is false.  true if object used to be deleted.
  bool clear_deleted(const_iterator &it) {
    assert(settings.use_deleted());   // bad if set_deleted_key() wasn't called
    return test_deleted(it);
  }

  // FUNCTIONS CONCERNING SIZE
 public:
  size_type size() const      { return table.num_nonempty() - num_deleted; }
  size_type max_size() const          { return table.max_size(); }
  bool empty() const                  { return size() == 0; }
  size_type bucket_count() const      { return table.size(); }
  size_type max_bucket_count() const  { return max_size(); }
  // These are tr1 methods.  Their idea of 'bucket' doesn't map well to
  // what we do.  We just say every bucket has 0 or 1 items in it.
  size_type bucket_size(size_type i) const {
    return begin(i) == end(i) ? 0 : 1;
  }

 private:
  // Because of the above, size_type(-1) is never legal; use it for errors
  static const size_type ILLEGAL_BUCKET = size_type(-1);

  // Used after a string of deletes.  Returns true if we actually shrunk.
  // TODO(csilvers): take a delta so we can take into account inserts
  // done after shrinking.  Maybe make part of the Settings class?
  bool maybe_shrink() {
    assert(table.num_nonempty() >= num_deleted);
    assert((bucket_count() & (bucket_count()-1)) == 0); // is a power of two
    assert(bucket_count() >= HT_MIN_BUCKETS);
    bool retval = false;

    // If you construct a hashtable with < HT_DEFAULT_STARTING_BUCKETS,
    // we'll never shrink until you get relatively big, and we'll never
    // shrink below HT_DEFAULT_STARTING_BUCKETS.  Otherwise, something
    // like "dense_hash_set<int> x; x.insert(4); x.erase(4);" will
    // shrink us down to HT_MIN_BUCKETS buckets, which is too small.
    const size_type num_remain = table.num_nonempty() - num_deleted;
    const size_type shrink_threshold = settings.shrink_threshold();
    if (shrink_threshold > 0 && num_remain < shrink_threshold &&
        bucket_count() > HT_DEFAULT_STARTING_BUCKETS) {
      const float shrink_factor = settings.shrink_factor();
      size_type sz = bucket_count() / 2;    // find how much we should shrink
      while (sz > HT_DEFAULT_STARTING_BUCKETS &&
             num_remain < static_cast<size_type>(sz * shrink_factor)) {
        sz /= 2;                            // stay a power of 2
      }
      sparse_hashtable tmp(MoveDontCopy, *this, sz);
      swap(tmp);                            // now we are tmp
      retval = true;
    }
    settings.set_consider_shrink(false);   // because we just considered it
    return retval;
  }

  // We'll let you resize a hashtable -- though this makes us copy all!
  // When you resize, you say, "make it big enough for this many more elements"
  // Returns true if we actually resized, false if size was already ok.
  bool resize_delta(size_type delta) {
    bool did_resize = false;
    if ( settings.consider_shrink() ) {  // see if lots of deletes happened
      if ( maybe_shrink() )
        did_resize = true;
    }
    if (table.num_nonempty() >=
        (STL_NAMESPACE::numeric_limits<size_type>::max)() - delta)
      throw std::length_error("resize overflow");
    if ( bucket_count() >= HT_MIN_BUCKETS &&
         (table.num_nonempty() + delta) <= settings.enlarge_threshold() )
      return did_resize;                       // we're ok as we are

    // Sometimes, we need to resize just to get rid of all the
    // "deleted" buckets that are clogging up the hashtable.  So when
    // deciding whether to resize, count the deleted buckets (which
    // are currently taking up room).  But later, when we decide what
    // size to resize to, *don't* count deleted buckets, since they
    // get discarded during the resize.
    const size_type needed_size =
        settings.min_buckets(table.num_nonempty() + delta, 0);
    if ( needed_size <= bucket_count() )      // we have enough buckets
      return did_resize;

    size_type resize_to =
        settings.min_buckets(table.num_nonempty() - num_deleted + delta,
                             bucket_count());
    if (resize_to < needed_size &&    // may double resize_to
        resize_to < (STL_NAMESPACE::numeric_limits<size_type>::max)() / 2) {
      // This situation means that we have enough deleted elements,
      // that once we purge them, we won't actually have needed to
      // grow.  But we may want to grow anyway: if we just purge one
      // element, say, we'll have to grow anyway next time we
      // insert.  Might as well grow now, since we're already going
      // through the trouble of copying (in order to purge the
      // deleted elements).
      const size_type target =
          static_cast<size_type>(settings.shrink_size(resize_to*2));
      if (table.num_nonempty() - num_deleted + delta >= target) {
        // Good, we won't be below the shrink threshhold even if we double.
        resize_to *= 2;
      }
    }

    sparse_hashtable tmp(MoveDontCopy, *this, resize_to);
    swap(tmp);                             // now we are tmp
    return true;
  }

  // Used to actually do the rehashing when we grow/shrink a hashtable
  void copy_from(const sparse_hashtable &ht, size_type min_buckets_wanted) {
    clear();            // clear table, set num_deleted to 0

    // If we need to change the size of our table, do it now
    const size_type resize_to =
        settings.min_buckets(ht.size(), min_buckets_wanted);
    if ( resize_to > bucket_count() ) {      // we don't have enough buckets
      table.resize(resize_to);               // sets the number of buckets
      settings.reset_thresholds(bucket_count());
    }

    // We use a normal iterator to get non-deleted bcks from ht
    // We could use insert() here, but since we know there are
    // no duplicates and no deleted items, we can be more efficient
    assert((bucket_count() & (bucket_count()-1)) == 0);      // a power of two
    for ( const_iterator it = ht.begin(); it != ht.end(); ++it ) {
      size_type num_probes = 0;              // how many times we've probed
      size_type bucknum;
      const size_type bucket_count_minus_one = bucket_count() - 1;
      for (bucknum = hash(get_key(*it)) & bucket_count_minus_one;
           table.test(bucknum);                          // not empty
           bucknum = (bucknum + JUMP_(key, num_probes)) & bucket_count_minus_one) {
        ++num_probes;
        assert(num_probes < bucket_count()
               && "Hashtable is full: an error in key_equal<> or hash<>");
      }
      table.set(bucknum, *it);               // copies the value to here
    }
    settings.inc_num_ht_copies();
  }

  // Implementation is like copy_from, but it destroys the table of the
  // "from" guy by freeing sparsetable memory as we iterate.  This is
  // useful in resizing, since we're throwing away the "from" guy anyway.
  void move_from(MoveDontCopyT mover, sparse_hashtable &ht,
                 size_type min_buckets_wanted) {
    clear();            // clear table, set num_deleted to 0

    // If we need to change the size of our table, do it now
    size_type resize_to;
    if ( mover == MoveDontGrow )
      resize_to = ht.bucket_count();         // keep same size as old ht
    else                                     // MoveDontCopy
      resize_to = settings.min_buckets(ht.size(), min_buckets_wanted);
    if ( resize_to > bucket_count() ) {      // we don't have enough buckets
      table.resize(resize_to);               // sets the number of buckets
      settings.reset_thresholds(bucket_count());
    }

    // We use a normal iterator to get non-deleted bcks from ht
    // We could use insert() here, but since we know there are
    // no duplicates and no deleted items, we can be more efficient
    assert( (bucket_count() & (bucket_count()-1)) == 0);      // a power of two
    // THIS IS THE MAJOR LINE THAT DIFFERS FROM COPY_FROM():
    for ( destructive_iterator it = ht.destructive_begin();
          it != ht.destructive_end(); ++it ) {
      size_type num_probes = 0;              // how many times we've probed
      size_type bucknum;
      for ( bucknum = hash(get_key(*it)) & (bucket_count()-1);  // h % buck_cnt
            table.test(bucknum);                          // not empty
            bucknum = (bucknum + JUMP_(key, num_probes)) & (bucket_count()-1) ) {
        ++num_probes;
        assert(num_probes < bucket_count()
               && "Hashtable is full: an error in key_equal<> or hash<>");
      }
      table.set(bucknum, *it);               // copies the value to here
    }
    settings.inc_num_ht_copies();
  }


  // Required by the spec for hashed associative container
 public:
  // Though the docs say this should be num_buckets, I think it's much
  // more useful as num_elements.  As a special feature, calling with
  // req_elements==0 will cause us to shrink if we can, saving space.
  void resize(size_type req_elements) {       // resize to this or larger
    if ( settings.consider_shrink() || req_elements == 0 )
      maybe_shrink();
    if ( req_elements > table.num_nonempty() )    // we only grow
      resize_delta(req_elements - table.num_nonempty());
  }

  // Get and change the value of shrink_factor and enlarge_factor.  The
  // description at the beginning of this file explains how to choose
  // the values.  Setting the shrink parameter to 0.0 ensures that the
  // table never shrinks.
  void get_resizing_parameters(float* shrink, float* grow) const {
    *shrink = settings.shrink_factor();
    *grow = settings.enlarge_factor();
  }
  void set_resizing_parameters(float shrink, float grow) {
    settings.set_resizing_parameters(shrink, grow);
    settings.reset_thresholds(bucket_count());
  }

  // CONSTRUCTORS -- as required by the specs, we take a size,
  // but also let you specify a hashfunction, key comparator,
  // and key extractor.  We also define a copy constructor and =.
  // DESTRUCTOR -- the default is fine, surprisingly.
  explicit sparse_hashtable(size_type expected_max_items_in_table = 0,
                            const HashFcn& hf = HashFcn(),
                            const EqualKey& eql = EqualKey(),
                            const ExtractKey& ext = ExtractKey(),
                            const SetKey& set = SetKey(),
                            const Alloc& alloc = Alloc())
      : settings(hf),
        key_info(ext, set, eql),
        num_deleted(0),
        table((expected_max_items_in_table == 0
               ? HT_DEFAULT_STARTING_BUCKETS
               : settings.min_buckets(expected_max_items_in_table, 0)),
              alloc) {
    settings.reset_thresholds(bucket_count());
  }

  // As a convenience for resize(), we allow an optional second argument
  // which lets you make this new hashtable a different size than ht.
  // We also provide a mechanism of saying you want to "move" the ht argument
  // into us instead of copying.
  sparse_hashtable(const sparse_hashtable& ht,
                   size_type min_buckets_wanted = HT_DEFAULT_STARTING_BUCKETS)
      : settings(ht.settings),
        key_info(ht.key_info),
        num_deleted(0),
        table(0, ht.get_allocator()) {
    settings.reset_thresholds(bucket_count());
    copy_from(ht, min_buckets_wanted);   // copy_from() ignores deleted entries
  }
  sparse_hashtable(MoveDontCopyT mover, sparse_hashtable& ht,
                   size_type min_buckets_wanted = HT_DEFAULT_STARTING_BUCKETS)
      : settings(ht.settings),
        key_info(ht.key_info),
        num_deleted(0),
        table(0, ht.get_allocator()) {
    settings.reset_thresholds(bucket_count());
    move_from(mover, ht, min_buckets_wanted);  // ignores deleted entries
  }

  sparse_hashtable& operator= (const sparse_hashtable& ht) {
    if (&ht == this)  return *this;        // don't copy onto ourselves
    settings = ht.settings;
    key_info = ht.key_info;
    num_deleted = ht.num_deleted;
    // copy_from() calls clear and sets num_deleted to 0 too
    copy_from(ht, HT_MIN_BUCKETS);
    // we purposefully don't copy the allocator, which may not be copyable
    return *this;
  }

  // Many STL algorithms use swap instead of copy constructors
  void swap(sparse_hashtable& ht) {
    STL_NAMESPACE::swap(settings, ht.settings);
    STL_NAMESPACE::swap(key_info, ht.key_info);
    STL_NAMESPACE::swap(num_deleted, ht.num_deleted);
    table.swap(ht.table);
  }

  // It's always nice to be able to clear a table without deallocating it
  void clear() {
    if (!empty() || (num_deleted != 0)) {
      table.clear();
    }
    settings.reset_thresholds(bucket_count());
    num_deleted = 0;
  }

  // LOOKUP ROUTINES
 private:
  // Returns a pair of positions: 1st where the object is, 2nd where
  // it would go if you wanted to insert it.  1st is ILLEGAL_BUCKET
  // if object is not found; 2nd is ILLEGAL_BUCKET if it is.
  // Note: because of deletions where-to-insert is not trivial: it's the
  // first deleted bucket we see, as long as we don't find the key later
  pair<size_type, size_type> find_position(const key_type &key) const {
    size_type num_probes = 0;              // how many times we've probed
    const size_type bucket_count_minus_one = bucket_count() - 1;
    size_type bucknum = hash(key) & bucket_count_minus_one;
    size_type insert_pos = ILLEGAL_BUCKET; // where we would insert
    SPARSEHASH_STAT_UPDATE(total_lookups += 1);
    while ( 1 ) {                          // probe until something happens
      if ( !table.test(bucknum) ) {        // bucket is empty
        SPARSEHASH_STAT_UPDATE(total_probes += num_probes);
        if ( insert_pos == ILLEGAL_BUCKET )  // found no prior place to insert
          return pair<size_type,size_type>(ILLEGAL_BUCKET, bucknum);
        else
          return pair<size_type,size_type>(ILLEGAL_BUCKET, insert_pos);

      } else if ( test_deleted(bucknum) ) {// keep searching, but mark to insert
        if ( insert_pos == ILLEGAL_BUCKET )
          insert_pos = bucknum;

      } else if ( equals(key, get_key(table.unsafe_get(bucknum))) ) {
        SPARSEHASH_STAT_UPDATE(total_probes += num_probes);
        return pair<size_type,size_type>(bucknum, ILLEGAL_BUCKET);
      }
      ++num_probes;                        // we're doing another probe
      bucknum = (bucknum + JUMP_(key, num_probes)) & bucket_count_minus_one;
      assert(num_probes < bucket_count()
             && "Hashtable is full: an error in key_equal<> or hash<>");
    }
  }

 public:
  iterator find(const key_type& key) {
    if ( size() == 0 ) return end();
    pair<size_type, size_type> pos = find_position(key);
    if ( pos.first == ILLEGAL_BUCKET )     // alas, not there
      return end();
    else
      return iterator(this, table.get_iter(pos.first), table.nonempty_end());
  }

  const_iterator find(const key_type& key) const {
    if ( size() == 0 ) return end();
    pair<size_type, size_type> pos = find_position(key);
    if ( pos.first == ILLEGAL_BUCKET )     // alas, not there
      return end();
    else
      return const_iterator(this,
                            table.get_iter(pos.first), table.nonempty_end());
  }

  // This is a tr1 method: the bucket a given key is in, or what bucket
  // it would be put in, if it were to be inserted.  Shrug.
  size_type bucket(const key_type& key) const {
    pair<size_type, size_type> pos = find_position(key);
    return pos.first == ILLEGAL_BUCKET ? pos.second : pos.first;
  }

  // Counts how many elements have key key.  For maps, it's either 0 or 1.
  size_type count(const key_type &key) const {
    pair<size_type, size_type> pos = find_position(key);
    return pos.first == ILLEGAL_BUCKET ? 0 : 1;
  }

  // Likewise, equal_range doesn't really make sense for us.  Oh well.
  pair<iterator,iterator> equal_range(const key_type& key) {
    iterator pos = find(key);      // either an iterator or end
    if (pos == end()) {
      return pair<iterator,iterator>(pos, pos);
    } else {
      const iterator startpos = pos++;
      return pair<iterator,iterator>(startpos, pos);
    }
  }
  pair<const_iterator,const_iterator> equal_range(const key_type& key) const {
    const_iterator pos = find(key);      // either an iterator or end
    if (pos == end()) {
      return pair<const_iterator,const_iterator>(pos, pos);
    } else {
      const const_iterator startpos = pos++;
      return pair<const_iterator,const_iterator>(startpos, pos);
    }
  }


  // INSERTION ROUTINES
 private:
  // Private method used by insert_noresize and find_or_insert.
  iterator insert_at(const_reference obj, size_type pos) {
    if (size() >= max_size())
      throw std::length_error("insert overflow");
    if ( test_deleted(pos) ) {      // just replace if it's been deleted
      // The set() below will undelete this object.  We just worry about stats
      assert(num_deleted > 0);
      --num_deleted;                // used to be, now it isn't
    }
    table.set(pos, obj);
    return iterator(this, table.get_iter(pos), table.nonempty_end());
  }

  // If you know *this is big enough to hold obj, use this routine
  pair<iterator, bool> insert_noresize(const_reference obj) {
    // First, double-check we're not inserting delkey
    assert((!settings.use_deleted() || !equals(get_key(obj), key_info.delkey))
           && "Inserting the deleted key");
    const pair<size_type,size_type> pos = find_position(get_key(obj));
    if ( pos.first != ILLEGAL_BUCKET) {      // object was already there
      return pair<iterator,bool>(iterator(this, table.get_iter(pos.first),
                                          table.nonempty_end()),
                                 false);          // false: we didn't insert
    } else {                                 // pos.second says where to put it
      return pair<iterator,bool>(insert_at(obj, pos.second), true);
    }
  }

  // Specializations of insert(it, it) depending on the power of the iterator:
  // (1) Iterator supports operator-, resize before inserting
  template <class ForwardIterator>
  void insert(ForwardIterator f, ForwardIterator l, STL_NAMESPACE::forward_iterator_tag) {
    size_t dist = STL_NAMESPACE::distance(f, l);
    if (dist >= (std::numeric_limits<size_type>::max)())
      throw std::length_error("insert-range overflow");
    resize_delta(static_cast<size_type>(dist));
    for ( ; dist > 0; --dist, ++f) {
      insert_noresize(*f);
    }
  }

  // (2) Arbitrary iterator, can't tell how much to resize
  template <class InputIterator>
  void insert(InputIterator f, InputIterator l, STL_NAMESPACE::input_iterator_tag) {
    for ( ; f != l; ++f)
      insert(*f);
  }

 public:
  // This is the normal insert routine, used by the outside world
  pair<iterator, bool> insert(const_reference obj) {
    resize_delta(1);                      // adding an object, grow if need be
    return insert_noresize(obj);
  }

  // When inserting a lot at a time, we specialize on the type of iterator
  template <class InputIterator>
  void insert(InputIterator f, InputIterator l) {
    // specializes on iterator type
    insert(f, l, typename STL_NAMESPACE::iterator_traits<InputIterator>::iterator_category());
  }

  // DefaultValue is a functor that takes a key and returns a value_type
  // representing the default value to be inserted if none is found.
  template <class DefaultValue>
  value_type& find_or_insert(const key_type& key) {
    // First, double-check we're not inserting delkey
    assert((!settings.use_deleted() || !equals(key, key_info.delkey))
           && "Inserting the deleted key");
    const pair<size_type,size_type> pos = find_position(key);
    DefaultValue default_value;
    if ( pos.first != ILLEGAL_BUCKET) {  // object was already there
      return *table.get_iter(pos.first);
    } else if (resize_delta(1)) {        // needed to rehash to make room
      // Since we resized, we can't use pos, so recalculate where to insert.
      return *insert_noresize(default_value(key)).first;
    } else {                             // no need to rehash, insert right here
      return *insert_at(default_value(key), pos.second);
    }
  }

  // DELETION ROUTINES
  size_type erase(const key_type& key) {
    // First, double-check we're not erasing delkey.
    assert((!settings.use_deleted() || !equals(key, key_info.delkey))
           && "Erasing the deleted key");
    assert(!settings.use_deleted() || !equals(key, key_info.delkey));
    const_iterator pos = find(key);   // shrug: shouldn't need to be const
    if ( pos != end() ) {
      assert(!test_deleted(pos));  // or find() shouldn't have returned it
      set_deleted(pos);
      ++num_deleted;
      // will think about shrink after next insert
      settings.set_consider_shrink(true);
      return 1;                    // because we deleted one thing
    } else {
      return 0;                    // because we deleted nothing
    }
  }

  // We return the iterator past the deleted item.
  void erase(iterator pos) {
    if ( pos == end() ) return;    // sanity check
    if ( set_deleted(pos) ) {      // true if object has been newly deleted
      ++num_deleted;
      // will think about shrink after next insert
      settings.set_consider_shrink(true);
    }
  }

  void erase(iterator f, iterator l) {
    for ( ; f != l; ++f) {
      if ( set_deleted(f)  )       // should always be true
        ++num_deleted;
    }
    // will think about shrink after next insert
    settings.set_consider_shrink(true);
  }

  // We allow you to erase a const_iterator just like we allow you to
  // erase an iterator.  This is in parallel to 'delete': you can delete
  // a const pointer just like a non-const pointer.  The logic is that
  // you can't use the object after it's erased anyway, so it doesn't matter
  // if it's const or not.
  void erase(const_iterator pos) {
    if ( pos == end() ) return;    // sanity check
    if ( set_deleted(pos) ) {      // true if object has been newly deleted
      ++num_deleted;
      // will think about shrink after next insert
      settings.set_consider_shrink(true);
    }
  }
  void erase(const_iterator f, const_iterator l) {
    for ( ; f != l; ++f) {
      if ( set_deleted(f)  )       // should always be true
        ++num_deleted;
    }
    // will think about shrink after next insert
    settings.set_consider_shrink(true);
  }


  // COMPARISON
  bool operator==(const sparse_hashtable& ht) const {
    if (size() != ht.size()) {
      return false;
    } else if (this == &ht) {
      return true;
    } else {
      // Iterate through the elements in "this" and see if the
      // corresponding element is in ht
      for ( const_iterator it = begin(); it != end(); ++it ) {
        const_iterator it2 = ht.find(get_key(*it));
        if ((it2 == ht.end()) || (*it != *it2)) {
          return false;
        }
      }
      return true;
    }
  }
  bool operator!=(const sparse_hashtable& ht) const {
    return !(*this == ht);
  }


  // I/O
  // We support reading and writing hashtables to disk.  NOTE that
  // this only stores the hashtable metadata, not the stuff you've
  // actually put in the hashtable!  Alas, since I don't know how to
  // write a hasher or key_equal, you have to make sure everything
  // but the table is the same.  We compact before writing.
  bool write_metadata(FILE *fp) {
    squash_deleted();           // so we don't have to worry about delkey
    return table.write_metadata(fp);
  }

  bool read_metadata(FILE *fp) {
    num_deleted = 0;            // since we got rid before writing
    bool result = table.read_metadata(fp);
    settings.reset_thresholds(bucket_count());
    return result;
  }

  // Only meaningful if value_type is a POD.
  bool write_nopointer_data(FILE *fp) {
    return table.write_nopointer_data(fp);
  }

  // Only meaningful if value_type is a POD.
  bool read_nopointer_data(FILE *fp) {
    return table.read_nopointer_data(fp);
  }

 private:
  // Table is the main storage class.
  typedef sparsetable<value_type, DEFAULT_GROUP_SIZE, value_alloc_type> Table;

  // Package templated functors with the other types to eliminate memory
  // needed for storing these zero-size operators.  Since ExtractKey and
  // hasher's operator() might have the same function signature, they
  // must be packaged in different classes.
  struct Settings :
      sh_hashtable_settings<key_type, hasher, size_type, HT_MIN_BUCKETS> {
    explicit Settings(const hasher& hf)
        : sh_hashtable_settings<key_type, hasher, size_type, HT_MIN_BUCKETS>(
            hf, HT_OCCUPANCY_PCT / 100.0f, HT_EMPTY_PCT / 100.0f) {}
  };

  // KeyInfo stores delete key and packages zero-size functors:
  // ExtractKey and SetKey.
  class KeyInfo : public ExtractKey, public SetKey, public key_equal {
   public:
    KeyInfo(const ExtractKey& ek, const SetKey& sk, const key_equal& eq)
        : ExtractKey(ek),
          SetKey(sk),
          key_equal(eq) {
    }
    // We want to return the exact same type as ExtractKey: Key or const Key&
    typename ExtractKey::result_type get_key(const_reference v) const {
      return ExtractKey::operator()(v);
    }
    void set_key(pointer v, const key_type& k) const {
      SetKey::operator()(v, k);
    }
    bool equals(const key_type& a, const key_type& b) const {
      return key_equal::operator()(a, b);
    }

    // Which key marks deleted entries.
    // TODO(csilvers): make a pointer, and get rid of use_deleted (benchmark!)
    typename remove_const<key_type>::type delkey;
  };

  // Utility functions to access the templated operators
  size_type hash(const key_type& v) const {
    return settings.hash(v);
  }
  bool equals(const key_type& a, const key_type& b) const {
    return key_info.equals(a, b);
  }
  typename ExtractKey::result_type get_key(const_reference v) const {
    return key_info.get_key(v);
  }
  void set_key(pointer v, const key_type& k) const {
    key_info.set_key(v, k);
  }

 private:
  // Actual data
  Settings settings;
  KeyInfo key_info;
  size_type num_deleted;   // how many occupied buckets are marked deleted
  Table table;     // holds num_buckets and num_elements too
};


// We need a global swap as well
template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
inline void swap(sparse_hashtable<V,K,HF,ExK,SetK,EqK,A> &x,
                 sparse_hashtable<V,K,HF,ExK,SetK,EqK,A> &y) {
  x.swap(y);
}

#undef JUMP_

template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
const typename sparse_hashtable<V,K,HF,ExK,SetK,EqK,A>::size_type
  sparse_hashtable<V,K,HF,ExK,SetK,EqK,A>::ILLEGAL_BUCKET;

// How full we let the table get before we resize.  Knuth says .8 is
// good -- higher causes us to probe too much, though saves memory
template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
const int sparse_hashtable<V,K,HF,ExK,SetK,EqK,A>::HT_OCCUPANCY_PCT = 80;

// How empty we let the table get before we resize lower.
// It should be less than OCCUPANCY_PCT / 2 or we thrash resizing
template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
const int sparse_hashtable<V,K,HF,ExK,SetK,EqK,A>::HT_EMPTY_PCT
  = static_cast<int>(0.4 *
                     sparse_hashtable<V,K,HF,ExK,SetK,EqK,A>::HT_OCCUPANCY_PCT);

_END_GOOGLE_NAMESPACE_

#endif /* _SPARSEHASHTABLE_H_ */