/usr/include/google/sparsehash/sparsehashtable.h is in libsparsehash-dev 1.10-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 | // Copyright (c) 2005, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// ---
// Author: Craig Silverstein
//
// A sparse hashtable is a particular implementation of
// a hashtable: one that is meant to minimize memory use.
// It does this by using a *sparse table* (cf sparsetable.h),
// which uses between 1 and 2 bits to store empty buckets
// (we may need another bit for hashtables that support deletion).
//
// When empty buckets are so cheap, an appealing hashtable
// implementation is internal probing, in which the hashtable
// is a single table, and collisions are resolved by trying
// to insert again in another bucket. The most cache-efficient
// internal probing schemes are linear probing (which suffers,
// alas, from clumping) and quadratic probing, which is what
// we implement by default.
//
// Deleted buckets are a bit of a pain. We have to somehow mark
// deleted buckets (the probing must distinguish them from empty
// buckets). The most principled way is to have another bitmap,
// but that's annoying and takes up space. Instead we let the
// user specify an "impossible" key. We set deleted buckets
// to have the impossible key.
//
// Note it is possible to change the value of the delete key
// on the fly; you can even remove it, though after that point
// the hashtable is insert_only until you set it again.
//
// You probably shouldn't use this code directly. Use
// <google/sparse_hash_table> or <google/sparse_hash_set> instead.
//
// You can modify the following, below:
// HT_OCCUPANCY_PCT -- how full before we double size
// HT_EMPTY_PCT -- how empty before we halve size
// HT_MIN_BUCKETS -- smallest bucket size
// HT_DEFAULT_STARTING_BUCKETS -- default bucket size at construct-time
//
// You can also change enlarge_factor (which defaults to
// HT_OCCUPANCY_PCT), and shrink_factor (which defaults to
// HT_EMPTY_PCT) with set_resizing_parameters().
//
// How to decide what values to use?
// shrink_factor's default of .4 * OCCUPANCY_PCT, is probably good.
// HT_MIN_BUCKETS is probably unnecessary since you can specify
// (indirectly) the starting number of buckets at construct-time.
// For enlarge_factor, you can use this chart to try to trade-off
// expected lookup time to the space taken up. By default, this
// code uses quadratic probing, though you can change it to linear
// via _JUMP below if you really want to.
//
// From http://www.augustana.ca/~mohrj/courses/1999.fall/csc210/lecture_notes/hashing.html
// NUMBER OF PROBES / LOOKUP Successful Unsuccessful
// Quadratic collision resolution 1 - ln(1-L) - L/2 1/(1-L) - L - ln(1-L)
// Linear collision resolution [1+1/(1-L)]/2 [1+1/(1-L)2]/2
//
// -- enlarge_factor -- 0.10 0.50 0.60 0.75 0.80 0.90 0.99
// QUADRATIC COLLISION RES.
// probes/successful lookup 1.05 1.44 1.62 2.01 2.21 2.85 5.11
// probes/unsuccessful lookup 1.11 2.19 2.82 4.64 5.81 11.4 103.6
// LINEAR COLLISION RES.
// probes/successful lookup 1.06 1.5 1.75 2.5 3.0 5.5 50.5
// probes/unsuccessful lookup 1.12 2.5 3.6 8.5 13.0 50.0 5000.0
//
// The value type is required to be copy constructible and default
// constructible, but it need not be (and commonly isn't) assignable.
#ifndef _SPARSEHASHTABLE_H_
#define _SPARSEHASHTABLE_H_
#ifndef SPARSEHASH_STAT_UPDATE
#define SPARSEHASH_STAT_UPDATE(x) ((void) 0)
#endif
// The probing method
// Linear probing
// #define JUMP_(key, num_probes) ( 1 )
// Quadratic probing
#define JUMP_(key, num_probes) ( num_probes )
#include <google/sparsehash/sparseconfig.h>
#include <assert.h>
#include <algorithm> // For swap(), eg
#include <stdexcept> // For length_error
#include <iterator> // for facts about iterator tags
#include <limits> // for numeric_limits<>
#include <utility> // for pair<>
#include <google/sparsehash/hashtable-common.h>
#include <google/sparsetable> // Since that's basically what we are
_START_GOOGLE_NAMESPACE_
using STL_NAMESPACE::pair;
// The smaller this is, the faster lookup is (because the group bitmap is
// smaller) and the faster insert is, because there's less to move.
// On the other hand, there are more groups. Since group::size_type is
// a short, this number should be of the form 32*x + 16 to avoid waste.
static const u_int16_t DEFAULT_GROUP_SIZE = 48; // fits in 1.5 words
// Hashtable class, used to implement the hashed associative containers
// hash_set and hash_map.
//
// Value: what is stored in the table (each bucket is a Value).
// Key: something in a 1-to-1 correspondence to a Value, that can be used
// to search for a Value in the table (find() takes a Key).
// HashFcn: Takes a Key and returns an integer, the more unique the better.
// ExtractKey: given a Value, returns the unique Key associated with it.
// Must inherit from unary_function, or at least have a
// result_type enum indicating the return type of operator().
// SetKey: given a Value* and a Key, modifies the value such that
// ExtractKey(value) == key. We guarantee this is only called
// with key == deleted_key.
// EqualKey: Given two Keys, says whether they are the same (that is,
// if they are both associated with the same Value).
// Alloc: STL allocator to use to allocate memory.
template <class Value, class Key, class HashFcn,
class ExtractKey, class SetKey, class EqualKey, class Alloc>
class sparse_hashtable;
template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
struct sparse_hashtable_iterator;
template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
struct sparse_hashtable_const_iterator;
// As far as iterating, we're basically just a sparsetable
// that skips over deleted elements.
template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
struct sparse_hashtable_iterator {
private:
typedef typename A::template rebind<V>::other value_alloc_type;
public:
typedef sparse_hashtable_iterator<V,K,HF,ExK,SetK,EqK,A> iterator;
typedef sparse_hashtable_const_iterator<V,K,HF,ExK,SetK,EqK,A> const_iterator;
typedef typename sparsetable<V,DEFAULT_GROUP_SIZE,A>::nonempty_iterator
st_iterator;
typedef STL_NAMESPACE::forward_iterator_tag iterator_category;
typedef V value_type;
typedef typename value_alloc_type::difference_type difference_type;
typedef typename value_alloc_type::size_type size_type;
typedef typename value_alloc_type::reference reference;
typedef typename value_alloc_type::pointer pointer;
// "Real" constructor and default constructor
sparse_hashtable_iterator(const sparse_hashtable<V,K,HF,ExK,SetK,EqK,A> *h,
st_iterator it, st_iterator it_end)
: ht(h), pos(it), end(it_end) { advance_past_deleted(); }
sparse_hashtable_iterator() { } // not ever used internally
// The default destructor is fine; we don't define one
// The default operator= is fine; we don't define one
// Happy dereferencer
reference operator*() const { return *pos; }
pointer operator->() const { return &(operator*()); }
// Arithmetic. The only hard part is making sure that
// we're not on a marked-deleted array element
void advance_past_deleted() {
while ( pos != end && ht->test_deleted(*this) )
++pos;
}
iterator& operator++() {
assert(pos != end); ++pos; advance_past_deleted(); return *this;
}
iterator operator++(int) { iterator tmp(*this); ++*this; return tmp; }
// Comparison.
bool operator==(const iterator& it) const { return pos == it.pos; }
bool operator!=(const iterator& it) const { return pos != it.pos; }
// The actual data
const sparse_hashtable<V,K,HF,ExK,SetK,EqK,A> *ht;
st_iterator pos, end;
};
// Now do it all again, but with const-ness!
template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
struct sparse_hashtable_const_iterator {
private:
typedef typename A::template rebind<V>::other value_alloc_type;
public:
typedef sparse_hashtable_iterator<V,K,HF,ExK,SetK,EqK,A> iterator;
typedef sparse_hashtable_const_iterator<V,K,HF,ExK,SetK,EqK,A> const_iterator;
typedef typename sparsetable<V,DEFAULT_GROUP_SIZE,A>::const_nonempty_iterator
st_iterator;
typedef STL_NAMESPACE::forward_iterator_tag iterator_category;
typedef V value_type;
typedef typename value_alloc_type::difference_type difference_type;
typedef typename value_alloc_type::size_type size_type;
typedef typename value_alloc_type::const_reference reference;
typedef typename value_alloc_type::const_pointer pointer;
// "Real" constructor and default constructor
sparse_hashtable_const_iterator(const sparse_hashtable<V,K,HF,ExK,SetK,EqK,A> *h,
st_iterator it, st_iterator it_end)
: ht(h), pos(it), end(it_end) { advance_past_deleted(); }
// This lets us convert regular iterators to const iterators
sparse_hashtable_const_iterator() { } // never used internally
sparse_hashtable_const_iterator(const iterator &it)
: ht(it.ht), pos(it.pos), end(it.end) { }
// The default destructor is fine; we don't define one
// The default operator= is fine; we don't define one
// Happy dereferencer
reference operator*() const { return *pos; }
pointer operator->() const { return &(operator*()); }
// Arithmetic. The only hard part is making sure that
// we're not on a marked-deleted array element
void advance_past_deleted() {
while ( pos != end && ht->test_deleted(*this) )
++pos;
}
const_iterator& operator++() {
assert(pos != end); ++pos; advance_past_deleted(); return *this;
}
const_iterator operator++(int) { const_iterator tmp(*this); ++*this; return tmp; }
// Comparison.
bool operator==(const const_iterator& it) const { return pos == it.pos; }
bool operator!=(const const_iterator& it) const { return pos != it.pos; }
// The actual data
const sparse_hashtable<V,K,HF,ExK,SetK,EqK,A> *ht;
st_iterator pos, end;
};
// And once again, but this time freeing up memory as we iterate
template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
struct sparse_hashtable_destructive_iterator {
private:
typedef typename A::template rebind<V>::other value_alloc_type;
public:
typedef sparse_hashtable_destructive_iterator<V,K,HF,ExK,SetK,EqK,A> iterator;
typedef typename sparsetable<V,DEFAULT_GROUP_SIZE,A>::destructive_iterator
st_iterator;
typedef STL_NAMESPACE::forward_iterator_tag iterator_category;
typedef V value_type;
typedef typename value_alloc_type::difference_type difference_type;
typedef typename value_alloc_type::size_type size_type;
typedef typename value_alloc_type::reference reference;
typedef typename value_alloc_type::pointer pointer;
// "Real" constructor and default constructor
sparse_hashtable_destructive_iterator(const
sparse_hashtable<V,K,HF,ExK,SetK,EqK,A> *h,
st_iterator it, st_iterator it_end)
: ht(h), pos(it), end(it_end) { advance_past_deleted(); }
sparse_hashtable_destructive_iterator() { } // never used internally
// The default destructor is fine; we don't define one
// The default operator= is fine; we don't define one
// Happy dereferencer
reference operator*() const { return *pos; }
pointer operator->() const { return &(operator*()); }
// Arithmetic. The only hard part is making sure that
// we're not on a marked-deleted array element
void advance_past_deleted() {
while ( pos != end && ht->test_deleted(*this) )
++pos;
}
iterator& operator++() {
assert(pos != end); ++pos; advance_past_deleted(); return *this;
}
iterator operator++(int) { iterator tmp(*this); ++*this; return tmp; }
// Comparison.
bool operator==(const iterator& it) const { return pos == it.pos; }
bool operator!=(const iterator& it) const { return pos != it.pos; }
// The actual data
const sparse_hashtable<V,K,HF,ExK,SetK,EqK,A> *ht;
st_iterator pos, end;
};
template <class Value, class Key, class HashFcn,
class ExtractKey, class SetKey, class EqualKey, class Alloc>
class sparse_hashtable {
private:
typedef typename Alloc::template rebind<Value>::other value_alloc_type;
public:
typedef Key key_type;
typedef Value value_type;
typedef HashFcn hasher;
typedef EqualKey key_equal;
typedef Alloc allocator_type;
typedef typename value_alloc_type::size_type size_type;
typedef typename value_alloc_type::difference_type difference_type;
typedef typename value_alloc_type::reference reference;
typedef typename value_alloc_type::const_reference const_reference;
typedef typename value_alloc_type::pointer pointer;
typedef typename value_alloc_type::const_pointer const_pointer;
typedef sparse_hashtable_iterator<Value, Key, HashFcn, ExtractKey,
SetKey, EqualKey, Alloc>
iterator;
typedef sparse_hashtable_const_iterator<Value, Key, HashFcn, ExtractKey,
SetKey, EqualKey, Alloc>
const_iterator;
typedef sparse_hashtable_destructive_iterator<Value, Key, HashFcn, ExtractKey,
SetKey, EqualKey, Alloc>
destructive_iterator;
// These come from tr1. For us they're the same as regular iterators.
typedef iterator local_iterator;
typedef const_iterator const_local_iterator;
// How full we let the table get before we resize, by default.
// Knuth says .8 is good -- higher causes us to probe too much,
// though it saves memory.
static const int HT_OCCUPANCY_PCT; // = 80 (out of 100);
// How empty we let the table get before we resize lower, by default.
// (0.0 means never resize lower.)
// It should be less than OCCUPANCY_PCT / 2 or we thrash resizing
static const int HT_EMPTY_PCT; // = 0.4 * HT_OCCUPANCY_PCT;
// Minimum size we're willing to let hashtables be.
// Must be a power of two, and at least 4.
// Note, however, that for a given hashtable, the initial size is a
// function of the first constructor arg, and may be >HT_MIN_BUCKETS.
static const size_type HT_MIN_BUCKETS = 4;
// By default, if you don't specify a hashtable size at
// construction-time, we use this size. Must be a power of two, and
// at least HT_MIN_BUCKETS.
static const size_type HT_DEFAULT_STARTING_BUCKETS = 32;
// ITERATOR FUNCTIONS
iterator begin() { return iterator(this, table.nonempty_begin(),
table.nonempty_end()); }
iterator end() { return iterator(this, table.nonempty_end(),
table.nonempty_end()); }
const_iterator begin() const { return const_iterator(this,
table.nonempty_begin(),
table.nonempty_end()); }
const_iterator end() const { return const_iterator(this,
table.nonempty_end(),
table.nonempty_end()); }
// These come from tr1 unordered_map. They iterate over 'bucket' n.
// For sparsehashtable, we could consider each 'group' to be a bucket,
// I guess, but I don't really see the point. We'll just consider
// bucket n to be the n-th element of the sparsetable, if it's occupied,
// or some empty element, otherwise.
local_iterator begin(size_type i) {
if (table.test(i))
return local_iterator(this, table.get_iter(i), table.nonempty_end());
else
return local_iterator(this, table.nonempty_end(), table.nonempty_end());
}
local_iterator end(size_type i) {
local_iterator it = begin(i);
if (table.test(i) && !test_deleted(i))
++it;
return it;
}
const_local_iterator begin(size_type i) const {
if (table.test(i))
return const_local_iterator(this, table.get_iter(i),
table.nonempty_end());
else
return const_local_iterator(this, table.nonempty_end(),
table.nonempty_end());
}
const_local_iterator end(size_type i) const {
const_local_iterator it = begin(i);
if (table.test(i) && !test_deleted(i))
++it;
return it;
}
// This is used when resizing
destructive_iterator destructive_begin() {
return destructive_iterator(this, table.destructive_begin(),
table.destructive_end());
}
destructive_iterator destructive_end() {
return destructive_iterator(this, table.destructive_end(),
table.destructive_end());
}
// ACCESSOR FUNCTIONS for the things we templatize on, basically
hasher hash_funct() const { return settings; }
key_equal key_eq() const { return key_info; }
allocator_type get_allocator() const { return table.get_allocator(); }
// Accessor function for statistics gathering.
int num_table_copies() const { return settings.num_ht_copies(); }
private:
// We need to copy values when we set the special marker for deleted
// elements, but, annoyingly, we can't just use the copy assignment
// operator because value_type might not be assignable (it's often
// pair<const X, Y>). We use explicit destructor invocation and
// placement new to get around this. Arg.
void set_value(pointer dst, const_reference src) {
dst->~value_type(); // delete the old value, if any
new(dst) value_type(src);
}
// This is used as a tag for the copy constructor, saying to destroy its
// arg We have two ways of destructively copying: with potentially growing
// the hashtable as we copy, and without. To make sure the outside world
// can't do a destructive copy, we make the typename private.
enum MoveDontCopyT {MoveDontCopy, MoveDontGrow};
// DELETE HELPER FUNCTIONS
// This lets the user describe a key that will indicate deleted
// table entries. This key should be an "impossible" entry --
// if you try to insert it for real, you won't be able to retrieve it!
// (NB: while you pass in an entire value, only the key part is looked
// at. This is just because I don't know how to assign just a key.)
private:
void squash_deleted() { // gets rid of any deleted entries we have
if ( num_deleted ) { // get rid of deleted before writing
sparse_hashtable tmp(MoveDontGrow, *this);
swap(tmp); // now we are tmp
}
assert(num_deleted == 0);
}
bool test_deleted_key(const key_type& key) const {
// The num_deleted test is crucial for read(): after read(), the ht values
// are garbage, and we don't want to think some of them are deleted.
// Invariant: !use_deleted implies num_deleted is 0.
assert(settings.use_deleted() || num_deleted == 0);
return num_deleted > 0 && equals(key_info.delkey, key);
}
public:
void set_deleted_key(const key_type &key) {
// It's only safe to change what "deleted" means if we purge deleted guys
squash_deleted();
settings.set_use_deleted(true);
key_info.delkey = key;
}
void clear_deleted_key() {
squash_deleted();
settings.set_use_deleted(false);
}
key_type deleted_key() const {
assert(settings.use_deleted()
&& "Must set deleted key before calling deleted_key");
return key_info.delkey;
}
// These are public so the iterators can use them
// True if the item at position bucknum is "deleted" marker
bool test_deleted(size_type bucknum) const {
if (num_deleted == 0 || !table.test(bucknum)) return false;
return test_deleted_key(get_key(table.unsafe_get(bucknum)));
}
bool test_deleted(const iterator &it) const {
if (!settings.use_deleted()) return false;
return test_deleted_key(get_key(*it));
}
bool test_deleted(const const_iterator &it) const {
if (!settings.use_deleted()) return false;
return test_deleted_key(get_key(*it));
}
bool test_deleted(const destructive_iterator &it) const {
if (!settings.use_deleted()) return false;
return test_deleted_key(get_key(*it));
}
private:
// Set it so test_deleted is true. true if object didn't used to be deleted.
// TODO(csilvers): make these private (also in densehashtable.h)
bool set_deleted(iterator &it) {
assert(settings.use_deleted());
bool retval = !test_deleted(it);
// &* converts from iterator to value-type.
set_key(&(*it), key_info.delkey);
return retval;
}
// Set it so test_deleted is false. true if object used to be deleted.
bool clear_deleted(iterator &it) {
assert(settings.use_deleted());
// Happens automatically when we assign something else in its place.
return test_deleted(it);
}
// We also allow to set/clear the deleted bit on a const iterator.
// We allow a const_iterator for the same reason you can delete a
// const pointer: it's convenient, and semantically you can't use
// 'it' after it's been deleted anyway, so its const-ness doesn't
// really matter.
bool set_deleted(const_iterator &it) {
assert(settings.use_deleted()); // bad if set_deleted_key() wasn't called
bool retval = !test_deleted(it);
set_key(const_cast<pointer>(&(*it)), key_info.delkey);
return retval;
}
// Set it so test_deleted is false. true if object used to be deleted.
bool clear_deleted(const_iterator &it) {
assert(settings.use_deleted()); // bad if set_deleted_key() wasn't called
return test_deleted(it);
}
// FUNCTIONS CONCERNING SIZE
public:
size_type size() const { return table.num_nonempty() - num_deleted; }
size_type max_size() const { return table.max_size(); }
bool empty() const { return size() == 0; }
size_type bucket_count() const { return table.size(); }
size_type max_bucket_count() const { return max_size(); }
// These are tr1 methods. Their idea of 'bucket' doesn't map well to
// what we do. We just say every bucket has 0 or 1 items in it.
size_type bucket_size(size_type i) const {
return begin(i) == end(i) ? 0 : 1;
}
private:
// Because of the above, size_type(-1) is never legal; use it for errors
static const size_type ILLEGAL_BUCKET = size_type(-1);
// Used after a string of deletes. Returns true if we actually shrunk.
// TODO(csilvers): take a delta so we can take into account inserts
// done after shrinking. Maybe make part of the Settings class?
bool maybe_shrink() {
assert(table.num_nonempty() >= num_deleted);
assert((bucket_count() & (bucket_count()-1)) == 0); // is a power of two
assert(bucket_count() >= HT_MIN_BUCKETS);
bool retval = false;
// If you construct a hashtable with < HT_DEFAULT_STARTING_BUCKETS,
// we'll never shrink until you get relatively big, and we'll never
// shrink below HT_DEFAULT_STARTING_BUCKETS. Otherwise, something
// like "dense_hash_set<int> x; x.insert(4); x.erase(4);" will
// shrink us down to HT_MIN_BUCKETS buckets, which is too small.
const size_type num_remain = table.num_nonempty() - num_deleted;
const size_type shrink_threshold = settings.shrink_threshold();
if (shrink_threshold > 0 && num_remain < shrink_threshold &&
bucket_count() > HT_DEFAULT_STARTING_BUCKETS) {
const float shrink_factor = settings.shrink_factor();
size_type sz = bucket_count() / 2; // find how much we should shrink
while (sz > HT_DEFAULT_STARTING_BUCKETS &&
num_remain < static_cast<size_type>(sz * shrink_factor)) {
sz /= 2; // stay a power of 2
}
sparse_hashtable tmp(MoveDontCopy, *this, sz);
swap(tmp); // now we are tmp
retval = true;
}
settings.set_consider_shrink(false); // because we just considered it
return retval;
}
// We'll let you resize a hashtable -- though this makes us copy all!
// When you resize, you say, "make it big enough for this many more elements"
// Returns true if we actually resized, false if size was already ok.
bool resize_delta(size_type delta) {
bool did_resize = false;
if ( settings.consider_shrink() ) { // see if lots of deletes happened
if ( maybe_shrink() )
did_resize = true;
}
if (table.num_nonempty() >=
(STL_NAMESPACE::numeric_limits<size_type>::max)() - delta)
throw std::length_error("resize overflow");
if ( bucket_count() >= HT_MIN_BUCKETS &&
(table.num_nonempty() + delta) <= settings.enlarge_threshold() )
return did_resize; // we're ok as we are
// Sometimes, we need to resize just to get rid of all the
// "deleted" buckets that are clogging up the hashtable. So when
// deciding whether to resize, count the deleted buckets (which
// are currently taking up room). But later, when we decide what
// size to resize to, *don't* count deleted buckets, since they
// get discarded during the resize.
const size_type needed_size =
settings.min_buckets(table.num_nonempty() + delta, 0);
if ( needed_size <= bucket_count() ) // we have enough buckets
return did_resize;
size_type resize_to =
settings.min_buckets(table.num_nonempty() - num_deleted + delta,
bucket_count());
if (resize_to < needed_size && // may double resize_to
resize_to < (STL_NAMESPACE::numeric_limits<size_type>::max)() / 2) {
// This situation means that we have enough deleted elements,
// that once we purge them, we won't actually have needed to
// grow. But we may want to grow anyway: if we just purge one
// element, say, we'll have to grow anyway next time we
// insert. Might as well grow now, since we're already going
// through the trouble of copying (in order to purge the
// deleted elements).
const size_type target =
static_cast<size_type>(settings.shrink_size(resize_to*2));
if (table.num_nonempty() - num_deleted + delta >= target) {
// Good, we won't be below the shrink threshhold even if we double.
resize_to *= 2;
}
}
sparse_hashtable tmp(MoveDontCopy, *this, resize_to);
swap(tmp); // now we are tmp
return true;
}
// Used to actually do the rehashing when we grow/shrink a hashtable
void copy_from(const sparse_hashtable &ht, size_type min_buckets_wanted) {
clear(); // clear table, set num_deleted to 0
// If we need to change the size of our table, do it now
const size_type resize_to =
settings.min_buckets(ht.size(), min_buckets_wanted);
if ( resize_to > bucket_count() ) { // we don't have enough buckets
table.resize(resize_to); // sets the number of buckets
settings.reset_thresholds(bucket_count());
}
// We use a normal iterator to get non-deleted bcks from ht
// We could use insert() here, but since we know there are
// no duplicates and no deleted items, we can be more efficient
assert((bucket_count() & (bucket_count()-1)) == 0); // a power of two
for ( const_iterator it = ht.begin(); it != ht.end(); ++it ) {
size_type num_probes = 0; // how many times we've probed
size_type bucknum;
const size_type bucket_count_minus_one = bucket_count() - 1;
for (bucknum = hash(get_key(*it)) & bucket_count_minus_one;
table.test(bucknum); // not empty
bucknum = (bucknum + JUMP_(key, num_probes)) & bucket_count_minus_one) {
++num_probes;
assert(num_probes < bucket_count()
&& "Hashtable is full: an error in key_equal<> or hash<>");
}
table.set(bucknum, *it); // copies the value to here
}
settings.inc_num_ht_copies();
}
// Implementation is like copy_from, but it destroys the table of the
// "from" guy by freeing sparsetable memory as we iterate. This is
// useful in resizing, since we're throwing away the "from" guy anyway.
void move_from(MoveDontCopyT mover, sparse_hashtable &ht,
size_type min_buckets_wanted) {
clear(); // clear table, set num_deleted to 0
// If we need to change the size of our table, do it now
size_type resize_to;
if ( mover == MoveDontGrow )
resize_to = ht.bucket_count(); // keep same size as old ht
else // MoveDontCopy
resize_to = settings.min_buckets(ht.size(), min_buckets_wanted);
if ( resize_to > bucket_count() ) { // we don't have enough buckets
table.resize(resize_to); // sets the number of buckets
settings.reset_thresholds(bucket_count());
}
// We use a normal iterator to get non-deleted bcks from ht
// We could use insert() here, but since we know there are
// no duplicates and no deleted items, we can be more efficient
assert( (bucket_count() & (bucket_count()-1)) == 0); // a power of two
// THIS IS THE MAJOR LINE THAT DIFFERS FROM COPY_FROM():
for ( destructive_iterator it = ht.destructive_begin();
it != ht.destructive_end(); ++it ) {
size_type num_probes = 0; // how many times we've probed
size_type bucknum;
for ( bucknum = hash(get_key(*it)) & (bucket_count()-1); // h % buck_cnt
table.test(bucknum); // not empty
bucknum = (bucknum + JUMP_(key, num_probes)) & (bucket_count()-1) ) {
++num_probes;
assert(num_probes < bucket_count()
&& "Hashtable is full: an error in key_equal<> or hash<>");
}
table.set(bucknum, *it); // copies the value to here
}
settings.inc_num_ht_copies();
}
// Required by the spec for hashed associative container
public:
// Though the docs say this should be num_buckets, I think it's much
// more useful as num_elements. As a special feature, calling with
// req_elements==0 will cause us to shrink if we can, saving space.
void resize(size_type req_elements) { // resize to this or larger
if ( settings.consider_shrink() || req_elements == 0 )
maybe_shrink();
if ( req_elements > table.num_nonempty() ) // we only grow
resize_delta(req_elements - table.num_nonempty());
}
// Get and change the value of shrink_factor and enlarge_factor. The
// description at the beginning of this file explains how to choose
// the values. Setting the shrink parameter to 0.0 ensures that the
// table never shrinks.
void get_resizing_parameters(float* shrink, float* grow) const {
*shrink = settings.shrink_factor();
*grow = settings.enlarge_factor();
}
void set_resizing_parameters(float shrink, float grow) {
settings.set_resizing_parameters(shrink, grow);
settings.reset_thresholds(bucket_count());
}
// CONSTRUCTORS -- as required by the specs, we take a size,
// but also let you specify a hashfunction, key comparator,
// and key extractor. We also define a copy constructor and =.
// DESTRUCTOR -- the default is fine, surprisingly.
explicit sparse_hashtable(size_type expected_max_items_in_table = 0,
const HashFcn& hf = HashFcn(),
const EqualKey& eql = EqualKey(),
const ExtractKey& ext = ExtractKey(),
const SetKey& set = SetKey(),
const Alloc& alloc = Alloc())
: settings(hf),
key_info(ext, set, eql),
num_deleted(0),
table((expected_max_items_in_table == 0
? HT_DEFAULT_STARTING_BUCKETS
: settings.min_buckets(expected_max_items_in_table, 0)),
alloc) {
settings.reset_thresholds(bucket_count());
}
// As a convenience for resize(), we allow an optional second argument
// which lets you make this new hashtable a different size than ht.
// We also provide a mechanism of saying you want to "move" the ht argument
// into us instead of copying.
sparse_hashtable(const sparse_hashtable& ht,
size_type min_buckets_wanted = HT_DEFAULT_STARTING_BUCKETS)
: settings(ht.settings),
key_info(ht.key_info),
num_deleted(0),
table(0, ht.get_allocator()) {
settings.reset_thresholds(bucket_count());
copy_from(ht, min_buckets_wanted); // copy_from() ignores deleted entries
}
sparse_hashtable(MoveDontCopyT mover, sparse_hashtable& ht,
size_type min_buckets_wanted = HT_DEFAULT_STARTING_BUCKETS)
: settings(ht.settings),
key_info(ht.key_info),
num_deleted(0),
table(0, ht.get_allocator()) {
settings.reset_thresholds(bucket_count());
move_from(mover, ht, min_buckets_wanted); // ignores deleted entries
}
sparse_hashtable& operator= (const sparse_hashtable& ht) {
if (&ht == this) return *this; // don't copy onto ourselves
settings = ht.settings;
key_info = ht.key_info;
num_deleted = ht.num_deleted;
// copy_from() calls clear and sets num_deleted to 0 too
copy_from(ht, HT_MIN_BUCKETS);
// we purposefully don't copy the allocator, which may not be copyable
return *this;
}
// Many STL algorithms use swap instead of copy constructors
void swap(sparse_hashtable& ht) {
STL_NAMESPACE::swap(settings, ht.settings);
STL_NAMESPACE::swap(key_info, ht.key_info);
STL_NAMESPACE::swap(num_deleted, ht.num_deleted);
table.swap(ht.table);
}
// It's always nice to be able to clear a table without deallocating it
void clear() {
if (!empty() || (num_deleted != 0)) {
table.clear();
}
settings.reset_thresholds(bucket_count());
num_deleted = 0;
}
// LOOKUP ROUTINES
private:
// Returns a pair of positions: 1st where the object is, 2nd where
// it would go if you wanted to insert it. 1st is ILLEGAL_BUCKET
// if object is not found; 2nd is ILLEGAL_BUCKET if it is.
// Note: because of deletions where-to-insert is not trivial: it's the
// first deleted bucket we see, as long as we don't find the key later
pair<size_type, size_type> find_position(const key_type &key) const {
size_type num_probes = 0; // how many times we've probed
const size_type bucket_count_minus_one = bucket_count() - 1;
size_type bucknum = hash(key) & bucket_count_minus_one;
size_type insert_pos = ILLEGAL_BUCKET; // where we would insert
SPARSEHASH_STAT_UPDATE(total_lookups += 1);
while ( 1 ) { // probe until something happens
if ( !table.test(bucknum) ) { // bucket is empty
SPARSEHASH_STAT_UPDATE(total_probes += num_probes);
if ( insert_pos == ILLEGAL_BUCKET ) // found no prior place to insert
return pair<size_type,size_type>(ILLEGAL_BUCKET, bucknum);
else
return pair<size_type,size_type>(ILLEGAL_BUCKET, insert_pos);
} else if ( test_deleted(bucknum) ) {// keep searching, but mark to insert
if ( insert_pos == ILLEGAL_BUCKET )
insert_pos = bucknum;
} else if ( equals(key, get_key(table.unsafe_get(bucknum))) ) {
SPARSEHASH_STAT_UPDATE(total_probes += num_probes);
return pair<size_type,size_type>(bucknum, ILLEGAL_BUCKET);
}
++num_probes; // we're doing another probe
bucknum = (bucknum + JUMP_(key, num_probes)) & bucket_count_minus_one;
assert(num_probes < bucket_count()
&& "Hashtable is full: an error in key_equal<> or hash<>");
}
}
public:
iterator find(const key_type& key) {
if ( size() == 0 ) return end();
pair<size_type, size_type> pos = find_position(key);
if ( pos.first == ILLEGAL_BUCKET ) // alas, not there
return end();
else
return iterator(this, table.get_iter(pos.first), table.nonempty_end());
}
const_iterator find(const key_type& key) const {
if ( size() == 0 ) return end();
pair<size_type, size_type> pos = find_position(key);
if ( pos.first == ILLEGAL_BUCKET ) // alas, not there
return end();
else
return const_iterator(this,
table.get_iter(pos.first), table.nonempty_end());
}
// This is a tr1 method: the bucket a given key is in, or what bucket
// it would be put in, if it were to be inserted. Shrug.
size_type bucket(const key_type& key) const {
pair<size_type, size_type> pos = find_position(key);
return pos.first == ILLEGAL_BUCKET ? pos.second : pos.first;
}
// Counts how many elements have key key. For maps, it's either 0 or 1.
size_type count(const key_type &key) const {
pair<size_type, size_type> pos = find_position(key);
return pos.first == ILLEGAL_BUCKET ? 0 : 1;
}
// Likewise, equal_range doesn't really make sense for us. Oh well.
pair<iterator,iterator> equal_range(const key_type& key) {
iterator pos = find(key); // either an iterator or end
if (pos == end()) {
return pair<iterator,iterator>(pos, pos);
} else {
const iterator startpos = pos++;
return pair<iterator,iterator>(startpos, pos);
}
}
pair<const_iterator,const_iterator> equal_range(const key_type& key) const {
const_iterator pos = find(key); // either an iterator or end
if (pos == end()) {
return pair<const_iterator,const_iterator>(pos, pos);
} else {
const const_iterator startpos = pos++;
return pair<const_iterator,const_iterator>(startpos, pos);
}
}
// INSERTION ROUTINES
private:
// Private method used by insert_noresize and find_or_insert.
iterator insert_at(const_reference obj, size_type pos) {
if (size() >= max_size())
throw std::length_error("insert overflow");
if ( test_deleted(pos) ) { // just replace if it's been deleted
// The set() below will undelete this object. We just worry about stats
assert(num_deleted > 0);
--num_deleted; // used to be, now it isn't
}
table.set(pos, obj);
return iterator(this, table.get_iter(pos), table.nonempty_end());
}
// If you know *this is big enough to hold obj, use this routine
pair<iterator, bool> insert_noresize(const_reference obj) {
// First, double-check we're not inserting delkey
assert((!settings.use_deleted() || !equals(get_key(obj), key_info.delkey))
&& "Inserting the deleted key");
const pair<size_type,size_type> pos = find_position(get_key(obj));
if ( pos.first != ILLEGAL_BUCKET) { // object was already there
return pair<iterator,bool>(iterator(this, table.get_iter(pos.first),
table.nonempty_end()),
false); // false: we didn't insert
} else { // pos.second says where to put it
return pair<iterator,bool>(insert_at(obj, pos.second), true);
}
}
// Specializations of insert(it, it) depending on the power of the iterator:
// (1) Iterator supports operator-, resize before inserting
template <class ForwardIterator>
void insert(ForwardIterator f, ForwardIterator l, STL_NAMESPACE::forward_iterator_tag) {
size_t dist = STL_NAMESPACE::distance(f, l);
if (dist >= (std::numeric_limits<size_type>::max)())
throw std::length_error("insert-range overflow");
resize_delta(static_cast<size_type>(dist));
for ( ; dist > 0; --dist, ++f) {
insert_noresize(*f);
}
}
// (2) Arbitrary iterator, can't tell how much to resize
template <class InputIterator>
void insert(InputIterator f, InputIterator l, STL_NAMESPACE::input_iterator_tag) {
for ( ; f != l; ++f)
insert(*f);
}
public:
// This is the normal insert routine, used by the outside world
pair<iterator, bool> insert(const_reference obj) {
resize_delta(1); // adding an object, grow if need be
return insert_noresize(obj);
}
// When inserting a lot at a time, we specialize on the type of iterator
template <class InputIterator>
void insert(InputIterator f, InputIterator l) {
// specializes on iterator type
insert(f, l, typename STL_NAMESPACE::iterator_traits<InputIterator>::iterator_category());
}
// DefaultValue is a functor that takes a key and returns a value_type
// representing the default value to be inserted if none is found.
template <class DefaultValue>
value_type& find_or_insert(const key_type& key) {
// First, double-check we're not inserting delkey
assert((!settings.use_deleted() || !equals(key, key_info.delkey))
&& "Inserting the deleted key");
const pair<size_type,size_type> pos = find_position(key);
DefaultValue default_value;
if ( pos.first != ILLEGAL_BUCKET) { // object was already there
return *table.get_iter(pos.first);
} else if (resize_delta(1)) { // needed to rehash to make room
// Since we resized, we can't use pos, so recalculate where to insert.
return *insert_noresize(default_value(key)).first;
} else { // no need to rehash, insert right here
return *insert_at(default_value(key), pos.second);
}
}
// DELETION ROUTINES
size_type erase(const key_type& key) {
// First, double-check we're not erasing delkey.
assert((!settings.use_deleted() || !equals(key, key_info.delkey))
&& "Erasing the deleted key");
assert(!settings.use_deleted() || !equals(key, key_info.delkey));
const_iterator pos = find(key); // shrug: shouldn't need to be const
if ( pos != end() ) {
assert(!test_deleted(pos)); // or find() shouldn't have returned it
set_deleted(pos);
++num_deleted;
// will think about shrink after next insert
settings.set_consider_shrink(true);
return 1; // because we deleted one thing
} else {
return 0; // because we deleted nothing
}
}
// We return the iterator past the deleted item.
void erase(iterator pos) {
if ( pos == end() ) return; // sanity check
if ( set_deleted(pos) ) { // true if object has been newly deleted
++num_deleted;
// will think about shrink after next insert
settings.set_consider_shrink(true);
}
}
void erase(iterator f, iterator l) {
for ( ; f != l; ++f) {
if ( set_deleted(f) ) // should always be true
++num_deleted;
}
// will think about shrink after next insert
settings.set_consider_shrink(true);
}
// We allow you to erase a const_iterator just like we allow you to
// erase an iterator. This is in parallel to 'delete': you can delete
// a const pointer just like a non-const pointer. The logic is that
// you can't use the object after it's erased anyway, so it doesn't matter
// if it's const or not.
void erase(const_iterator pos) {
if ( pos == end() ) return; // sanity check
if ( set_deleted(pos) ) { // true if object has been newly deleted
++num_deleted;
// will think about shrink after next insert
settings.set_consider_shrink(true);
}
}
void erase(const_iterator f, const_iterator l) {
for ( ; f != l; ++f) {
if ( set_deleted(f) ) // should always be true
++num_deleted;
}
// will think about shrink after next insert
settings.set_consider_shrink(true);
}
// COMPARISON
bool operator==(const sparse_hashtable& ht) const {
if (size() != ht.size()) {
return false;
} else if (this == &ht) {
return true;
} else {
// Iterate through the elements in "this" and see if the
// corresponding element is in ht
for ( const_iterator it = begin(); it != end(); ++it ) {
const_iterator it2 = ht.find(get_key(*it));
if ((it2 == ht.end()) || (*it != *it2)) {
return false;
}
}
return true;
}
}
bool operator!=(const sparse_hashtable& ht) const {
return !(*this == ht);
}
// I/O
// We support reading and writing hashtables to disk. NOTE that
// this only stores the hashtable metadata, not the stuff you've
// actually put in the hashtable! Alas, since I don't know how to
// write a hasher or key_equal, you have to make sure everything
// but the table is the same. We compact before writing.
bool write_metadata(FILE *fp) {
squash_deleted(); // so we don't have to worry about delkey
return table.write_metadata(fp);
}
bool read_metadata(FILE *fp) {
num_deleted = 0; // since we got rid before writing
bool result = table.read_metadata(fp);
settings.reset_thresholds(bucket_count());
return result;
}
// Only meaningful if value_type is a POD.
bool write_nopointer_data(FILE *fp) {
return table.write_nopointer_data(fp);
}
// Only meaningful if value_type is a POD.
bool read_nopointer_data(FILE *fp) {
return table.read_nopointer_data(fp);
}
private:
// Table is the main storage class.
typedef sparsetable<value_type, DEFAULT_GROUP_SIZE, value_alloc_type> Table;
// Package templated functors with the other types to eliminate memory
// needed for storing these zero-size operators. Since ExtractKey and
// hasher's operator() might have the same function signature, they
// must be packaged in different classes.
struct Settings :
sh_hashtable_settings<key_type, hasher, size_type, HT_MIN_BUCKETS> {
explicit Settings(const hasher& hf)
: sh_hashtable_settings<key_type, hasher, size_type, HT_MIN_BUCKETS>(
hf, HT_OCCUPANCY_PCT / 100.0f, HT_EMPTY_PCT / 100.0f) {}
};
// KeyInfo stores delete key and packages zero-size functors:
// ExtractKey and SetKey.
class KeyInfo : public ExtractKey, public SetKey, public key_equal {
public:
KeyInfo(const ExtractKey& ek, const SetKey& sk, const key_equal& eq)
: ExtractKey(ek),
SetKey(sk),
key_equal(eq) {
}
// We want to return the exact same type as ExtractKey: Key or const Key&
typename ExtractKey::result_type get_key(const_reference v) const {
return ExtractKey::operator()(v);
}
void set_key(pointer v, const key_type& k) const {
SetKey::operator()(v, k);
}
bool equals(const key_type& a, const key_type& b) const {
return key_equal::operator()(a, b);
}
// Which key marks deleted entries.
// TODO(csilvers): make a pointer, and get rid of use_deleted (benchmark!)
typename remove_const<key_type>::type delkey;
};
// Utility functions to access the templated operators
size_type hash(const key_type& v) const {
return settings.hash(v);
}
bool equals(const key_type& a, const key_type& b) const {
return key_info.equals(a, b);
}
typename ExtractKey::result_type get_key(const_reference v) const {
return key_info.get_key(v);
}
void set_key(pointer v, const key_type& k) const {
key_info.set_key(v, k);
}
private:
// Actual data
Settings settings;
KeyInfo key_info;
size_type num_deleted; // how many occupied buckets are marked deleted
Table table; // holds num_buckets and num_elements too
};
// We need a global swap as well
template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
inline void swap(sparse_hashtable<V,K,HF,ExK,SetK,EqK,A> &x,
sparse_hashtable<V,K,HF,ExK,SetK,EqK,A> &y) {
x.swap(y);
}
#undef JUMP_
template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
const typename sparse_hashtable<V,K,HF,ExK,SetK,EqK,A>::size_type
sparse_hashtable<V,K,HF,ExK,SetK,EqK,A>::ILLEGAL_BUCKET;
// How full we let the table get before we resize. Knuth says .8 is
// good -- higher causes us to probe too much, though saves memory
template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
const int sparse_hashtable<V,K,HF,ExK,SetK,EqK,A>::HT_OCCUPANCY_PCT = 80;
// How empty we let the table get before we resize lower.
// It should be less than OCCUPANCY_PCT / 2 or we thrash resizing
template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
const int sparse_hashtable<V,K,HF,ExK,SetK,EqK,A>::HT_EMPTY_PCT
= static_cast<int>(0.4 *
sparse_hashtable<V,K,HF,ExK,SetK,EqK,A>::HT_OCCUPANCY_PCT);
_END_GOOGLE_NAMESPACE_
#endif /* _SPARSEHASHTABLE_H_ */
|