This file is indexed.

/usr/lib/python2.7/dist-packages/ceilometer/pipeline.py is in python-ceilometer 2014.1-0ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
# -*- encoding: utf-8 -*-
#
# Copyright © 2013 Intel Corp.
# Copyright © 2014 Red Hat, Inc
#
# Authors: Yunhong Jiang <yunhong.jiang@intel.com>
#          Eoghan Glynn <eglynn@redhat.com>
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.

import fnmatch
import itertools
import operator
import os

from oslo.config import cfg
import yaml

from ceilometer.openstack.common.gettextutils import _  # noqa
from ceilometer.openstack.common import log
from ceilometer import publisher
from ceilometer import transformer as xformer


OPTS = [
    cfg.StrOpt('pipeline_cfg_file',
               default="pipeline.yaml",
               help="Configuration file for pipeline definition."
               ),
]

cfg.CONF.register_opts(OPTS)

LOG = log.getLogger(__name__)


class PipelineException(Exception):
    def __init__(self, message, pipeline_cfg):
        self.msg = message
        self.pipeline_cfg = pipeline_cfg

    def __str__(self):
        return 'Pipeline %s: %s' % (self.pipeline_cfg, self.msg)


class PublishContext(object):

    def __init__(self, context, pipelines=[]):
        self.pipelines = set(pipelines)
        self.context = context

    def add_pipelines(self, pipelines):
        self.pipelines.update(pipelines)

    def __enter__(self):
        def p(samples):
            for p in self.pipelines:
                p.publish_samples(self.context,
                                  samples)
        return p

    def __exit__(self, exc_type, exc_value, traceback):
        for p in self.pipelines:
            p.flush(self.context)


class Source(object):
    """Represents a source of samples, in effect a set of pollsters
    and/or notification handlers emitting samples for a set of matching
    meters.

    Each source encapsulates meter name matching, polling interval
    determination, optional resource enumeration or discovery, and
    mapping to one or more sinks for publication.

    """

    def __init__(self, cfg):
        self.cfg = cfg

        try:
            self.name = cfg['name']
            try:
                self.interval = int(cfg['interval'])
            except ValueError:
                raise PipelineException("Invalid interval value", cfg)
            # Support 'counters' for backward compatibility
            self.meters = cfg.get('meters', cfg.get('counters'))
            self.sinks = cfg.get('sinks')
        except KeyError as err:
            raise PipelineException(
                "Required field %s not specified" % err.args[0], cfg)

        if self.interval <= 0:
            raise PipelineException("Interval value should > 0", cfg)

        self.resources = cfg.get('resources') or []
        if not isinstance(self.resources, list):
            raise PipelineException("Resources should be a list", cfg)

        self.discovery = cfg.get('discovery') or []
        if not isinstance(self.discovery, list):
            raise PipelineException("Discovery should be a list", cfg)

        self._check_meters()

    def __str__(self):
        return self.name

    def _check_meters(self):
        """Meter rules checking

        At least one meaningful meter exist
        Included type and excluded type meter can't co-exist at
        the same pipeline
        Included type meter and wildcard can't co-exist at same pipeline

        """
        meters = self.meters
        if not meters:
            raise PipelineException("No meter specified", self.cfg)

        if [x for x in meters if x[0] not in '!*'] and \
           [x for x in meters if x[0] == '!']:
            raise PipelineException(
                "Both included and excluded meters specified",
                cfg)

        if '*' in meters and [x for x in meters if x[0] not in '!*']:
            raise PipelineException(
                "Included meters specified with wildcard",
                self.cfg)

    # (yjiang5) To support meters like instance:m1.tiny,
    # which include variable part at the end starting with ':'.
    # Hope we will not add such meters in future.
    @staticmethod
    def _variable_meter_name(name):
        m = name.partition(':')
        if m[1] == ':':
            return m[1].join((m[0], '*'))
        else:
            return name

    def support_meter(self, meter_name):
        meter_name = self._variable_meter_name(meter_name)

        # Special case: if we only have negation, we suppose the default is
        # allow
        default = all(meter.startswith('!') for meter in self.meters)

        # Support wildcard like storage.* and !disk.*
        # Start with negation, we consider that the order is deny, allow
        if any(fnmatch.fnmatch(meter_name, meter[1:])
               for meter in self.meters
               if meter[0] == '!'):
            return False

        if any(fnmatch.fnmatch(meter_name, meter)
               for meter in self.meters
               if meter[0] != '!'):
            return True

        return default

    def check_sinks(self, sinks):
        if not self.sinks:
            raise PipelineException(
                "No sink defined in source %s" % self,
                self.cfg)
        for sink in self.sinks:
            if sink not in sinks:
                raise PipelineException(
                    "Dangling sink %s from source %s" % (sink, self),
                    self.cfg)


class Sink(object):
    """Represents a sink for the transformation and publication of
    samples emitted from a related source.

    Each sink config is concerned *only* with the transformation rules
    and publication conduits for samples.

    In effect, a sink describes a chain of handlers. The chain starts
    with zero or more transformers and ends with one or more publishers.

    The first transformer in the chain is passed samples from the
    corresponding source, takes some action such as deriving rate of
    change, performing unit conversion, or aggregating, before passing
    the modified sample to next step.

    The subsequent transformers, if any, handle the data similarly.

    At the end of the chain, publishers publish the data. The exact
    publishing method depends on publisher type, for example, pushing
    into data storage via the message bus providing guaranteed delivery,
    or for loss-tolerant samples UDP may be used.

    If no transformers are included in the chain, the publishers are
    passed samples directly from the sink which are published unchanged.

    """

    def __init__(self, cfg, transformer_manager):
        self.cfg = cfg

        try:
            self.name = cfg['name']
            # It's legal to have no transformer specified
            self.transformer_cfg = cfg['transformers'] or []
        except KeyError as err:
            raise PipelineException(
                "Required field %s not specified" % err.args[0], cfg)

        if not cfg.get('publishers'):
            raise PipelineException("No publisher specified", cfg)

        self.publishers = []
        for p in cfg['publishers']:
            if '://' not in p:
                # Support old format without URL
                p = p + "://"
            try:
                self.publishers.append(publisher.get_publisher(p))
            except Exception:
                LOG.exception(_("Unable to load publisher %s"), p)

        self.transformers = self._setup_transformers(cfg, transformer_manager)

    def __str__(self):
        return self.name

    def _setup_transformers(self, cfg, transformer_manager):
        transformer_cfg = cfg['transformers'] or []
        transformers = []
        for transformer in transformer_cfg:
            parameter = transformer['parameters'] or {}
            try:
                ext = transformer_manager.get_ext(transformer['name'])
            except KeyError:
                raise PipelineException(
                    "No transformer named %s loaded" % transformer['name'],
                    cfg)
            transformers.append(ext.plugin(**parameter))
            LOG.info(_(
                "Pipeline %(pipeline)s: Setup transformer instance %(name)s "
                "with parameter %(param)s") % ({'pipeline': self,
                                                'name': transformer['name'],
                                                'param': parameter}))

        return transformers

    def _transform_sample(self, start, ctxt, sample):
        try:
            for transformer in self.transformers[start:]:
                sample = transformer.handle_sample(ctxt, sample)
                if not sample:
                    LOG.debug(_(
                        "Pipeline %(pipeline)s: Sample dropped by "
                        "transformer %(trans)s") % ({'pipeline': self,
                                                     'trans': transformer}))
                    return
            return sample
        except Exception as err:
            LOG.warning(_("Pipeline %(pipeline)s: "
                          "Exit after error from transformer "
                          "%(trans)s for %(smp)s") % ({'pipeline': self,
                                                       'trans': transformer,
                                                       'smp': sample}))
            LOG.exception(err)

    def _publish_samples(self, start, ctxt, samples):
        """Push samples into pipeline for publishing.

        :param start: The first transformer that the sample will be injected.
                      This is mainly for flush() invocation that transformer
                      may emit samples.
        :param ctxt: Execution context from the manager or service.
        :param samples: Sample list.

        """

        transformed_samples = []
        for sample in samples:
            LOG.debug(_(
                "Pipeline %(pipeline)s: Transform sample "
                "%(smp)s from %(trans)s transformer") % ({'pipeline': self,
                                                          'smp': sample,
                                                          'trans': start}))
            sample = self._transform_sample(start, ctxt, sample)
            if sample:
                transformed_samples.append(sample)

        if transformed_samples:
            LOG.audit(_("Pipeline %s: Publishing samples"), self)
            for p in self.publishers:
                try:
                    p.publish_samples(ctxt, transformed_samples)
                except Exception:
                    LOG.exception(_(
                        "Pipeline %(pipeline)s: Continue after error "
                        "from publisher %(pub)s") % ({'pipeline': self,
                                                      'pub': p}))
            LOG.audit(_("Pipeline %s: Published samples") % self)

    def publish_samples(self, ctxt, samples):
        for meter_name, samples in itertools.groupby(
                sorted(samples, key=operator.attrgetter('name')),
                operator.attrgetter('name')):
            self._publish_samples(0, ctxt, samples)

    def flush(self, ctxt):
        """Flush data after all samples have been injected to pipeline."""

        for (i, transformer) in enumerate(self.transformers):
            try:
                self._publish_samples(i + 1, ctxt,
                                      list(transformer.flush(ctxt)))
            except Exception as err:
                LOG.warning(_(
                    "Pipeline %(pipeline)s: Error flushing "
                    "transformer %(trans)s") % ({'pipeline': self,
                                                 'trans': transformer}))
                LOG.exception(err)


class Pipeline(object):
    """Represents a coupling between a sink and a corresponding source.
    """

    def __init__(self, source, sink):
        self.source = source
        self.sink = sink
        self.name = str(self)

    def __str__(self):
        return (self.source.name if self.source.name == self.sink.name
                else '%s:%s' % (self.source.name, self.sink.name))

    def get_interval(self):
        return self.source.interval

    @property
    def resources(self):
        return self.source.resources

    @property
    def discovery(self):
        return self.source.discovery

    def support_meter(self, meter_name):
        return self.source.support_meter(meter_name)

    @property
    def publishers(self):
        return self.sink.publishers

    def publish_sample(self, ctxt, sample):
        self.publish_samples(ctxt, [sample])

    def publish_samples(self, ctxt, samples):
        supported = [s for s in samples if self.source.support_meter(s.name)]
        self.sink.publish_samples(ctxt, supported)

    def flush(self, ctxt):
        self.sink.flush(ctxt)


class PipelineManager(object):
    """Pipeline Manager

    Pipeline manager sets up pipelines according to config file

    Usually only one pipeline manager exists in the system.

    """

    def __init__(self, cfg, transformer_manager):
        """Setup the pipelines according to config.

        The configuration is supported in one of two forms:

        1. Deprecated: the source and sink configuration are conflated
           as a list of consolidated pipelines.

           The pipelines are defined as a list of dictionaries each
           specifying the target samples, the transformers involved,
           and the target publishers, for example:

           [{"name": pipeline_1,
             "interval": interval_time,
             "meters" : ["meter_1", "meter_2"],
             "resources": ["resource_uri1", "resource_uri2"],
             "transformers": [
                              {"name": "Transformer_1",
                               "parameters": {"p1": "value"}},

                              {"name": "Transformer_2",
                               "parameters": {"p1": "value"}},
                              ],
             "publishers": ["publisher_1", "publisher_2"]
            },
            {"name": pipeline_2,
             "interval": interval_time,
             "meters" : ["meter_3"],
             "publishers": ["publisher_3"]
            },
           ]

        2. Decoupled: the source and sink configuration are separately
           specified before being linked together. This allows source-
           specific configuration, such as resource discovery, to be
           kept focused only on the fine-grained source while avoiding
           the necessity for wide duplication of sink-related config.

           The configuration is provided in the form of separate lists
           of dictionaries defining sources and sinks, for example:

           {"sources": [{"name": source_1,
                         "interval": interval_time,
                         "meters" : ["meter_1", "meter_2"],
                         "resources": ["resource_uri1", "resource_uri2"],
                         "sinks" : ["sink_1", "sink_2"]
                        },
                        {"name": source_2,
                         "interval": interval_time,
                         "meters" : ["meter_3"],
                         "sinks" : ["sink_2"]
                        },
                       ],
            "sinks": [{"name": sink_1,
                       "transformers": [
                              {"name": "Transformer_1",
                               "parameters": {"p1": "value"}},

                              {"name": "Transformer_2",
                               "parameters": {"p1": "value"}},
                             ],
                        "publishers": ["publisher_1", "publisher_2"]
                       },
                       {"name": sink_2,
                        "publishers": ["publisher_3"]
                       },
                      ]
           }

        The semantics of the common individual configuration elements
        are identical in the deprecated and decoupled version.

        The interval determines the cadence of sample injection into
        the pipeline where samples are produced under the direct control
        of an agent, i.e. via a polling cycle as opposed to incoming
        notifications.

        Valid meter format is '*', '!meter_name', or 'meter_name'.
        '*' is wildcard symbol means any meters; '!meter_name' means
        "meter_name" will be excluded; 'meter_name' means 'meter_name'
        will be included.

        The 'meter_name" is Sample name field. For meter names with
        variable like "instance:m1.tiny", it's "instance:*".

        Valid meters definition is all "included meter names", all
        "excluded meter names", wildcard and "excluded meter names", or
        only wildcard.

        The resources is list of URI indicating the resources from where
        the meters should be polled. It's optional and it's up to the
        specific pollster to decide how to use it.

        Transformer's name is plugin name in setup.cfg.

        Publisher's name is plugin name in setup.cfg

        """
        self.pipelines = []
        if 'sources' in cfg or 'sinks' in cfg:
            if not ('sources' in cfg and 'sinks' in cfg):
                raise PipelineException("Both sources & sinks are required",
                                        cfg)
            LOG.info(_('detected decoupled pipeline config format'))
            sources = [Source(s) for s in cfg.get('sources', [])]
            sinks = dict((s['name'], Sink(s, transformer_manager))
                         for s in cfg.get('sinks', []))
            for source in sources:
                source.check_sinks(sinks)
                for target in source.sinks:
                    self.pipelines.append(Pipeline(source,
                                                   sinks[target]))
        else:
            LOG.warning(_('detected deprecated pipeline config format'))
            for pipedef in cfg:
                source = Source(pipedef)
                sink = Sink(pipedef, transformer_manager)
                self.pipelines.append(Pipeline(source, sink))

    def publisher(self, context):
        """Build a new Publisher for these manager pipelines.

        :param context: The context.
        """
        return PublishContext(context, self.pipelines)


def setup_pipeline(transformer_manager=None):
    """Setup pipeline manager according to yaml config file."""
    cfg_file = cfg.CONF.pipeline_cfg_file
    if not os.path.exists(cfg_file):
        cfg_file = cfg.CONF.find_file(cfg_file)

    LOG.debug(_("Pipeline config file: %s"), cfg_file)

    with open(cfg_file) as fap:
        data = fap.read()

    pipeline_cfg = yaml.safe_load(data)
    LOG.info(_("Pipeline config: %s"), pipeline_cfg)

    return PipelineManager(pipeline_cfg,
                           transformer_manager or
                           xformer.TransformerExtensionManager(
                               'ceilometer.transformer',
                           ))