/usr/lib/python2.7/dist-packages/mock-1.0.1.egg-info/PKG-INFO is in python-mock 1.0.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 | Metadata-Version: 1.1
Name: mock
Version: 1.0.1
Summary: A Python Mocking and Patching Library for Testing
Home-page: http://www.voidspace.org.uk/python/mock/
Author: Michael Foord
Author-email: michael@voidspace.org.uk
License: UNKNOWN
Description: mock is a library for testing in Python. It allows you to replace parts of
your system under test with mock objects and make assertions about how they
have been used.
mock is now part of the Python standard library, available as `unittest.mock
<http://docs.python.org/py3k/library/unittest.mock.html#module-unittest.mock>`_
in Python 3.3 onwards.
mock provides a core `MagicMock` class removing the need to create a host of
stubs throughout your test suite. After performing an action, you can make
assertions about which methods / attributes were used and arguments they were
called with. You can also specify return values and set needed attributes in
the normal way.
mock is tested on Python versions 2.4-2.7 and Python 3. mock is also tested
with the latest versions of Jython and pypy.
The mock module also provides utility functions / objects to assist with
testing, particularly monkey patching.
* `PDF documentation for 1.0.1
<http://www.voidspace.org.uk/downloads/mock-1.0.1.pdf>`_
* `mock on google code (repository and issue tracker)
<http://code.google.com/p/mock/>`_
* `mock documentation
<http://www.voidspace.org.uk/python/mock/>`_
* `mock on PyPI <http://pypi.python.org/pypi/mock/>`_
* `Mailing list (testing-in-python@lists.idyll.org)
<http://lists.idyll.org/listinfo/testing-in-python>`_
Mock is very easy to use and is designed for use with
`unittest <http://pypi.python.org/pypi/unittest2>`_. Mock is based on
the 'action -> assertion' pattern instead of 'record -> replay' used by many
mocking frameworks. See the `mock documentation`_ for full details.
Mock objects create all attributes and methods as you access them and store
details of how they have been used. You can configure them, to specify return
values or limit what attributes are available, and then make assertions about
how they have been used::
>>> from mock import Mock
>>> real = ProductionClass()
>>> real.method = Mock(return_value=3)
>>> real.method(3, 4, 5, key='value')
3
>>> real.method.assert_called_with(3, 4, 5, key='value')
`side_effect` allows you to perform side effects, return different values or
raise an exception when a mock is called::
>>> mock = Mock(side_effect=KeyError('foo'))
>>> mock()
Traceback (most recent call last):
...
KeyError: 'foo'
>>> values = {'a': 1, 'b': 2, 'c': 3}
>>> def side_effect(arg):
... return values[arg]
...
>>> mock.side_effect = side_effect
>>> mock('a'), mock('b'), mock('c')
(3, 2, 1)
>>> mock.side_effect = [5, 4, 3, 2, 1]
>>> mock(), mock(), mock()
(5, 4, 3)
Mock has many other ways you can configure it and control its behaviour. For
example the `spec` argument configures the mock to take its specification from
another object. Attempting to access attributes or methods on the mock that
don't exist on the spec will fail with an `AttributeError`.
The `patch` decorator / context manager makes it easy to mock classes or
objects in a module under test. The object you specify will be replaced with a
mock (or other object) during the test and restored when the test ends::
>>> from mock import patch
>>> @patch('test_module.ClassName1')
... @patch('test_module.ClassName2')
... def test(MockClass2, MockClass1):
... test_module.ClassName1()
... test_module.ClassName2()
... assert MockClass1.called
... assert MockClass2.called
...
>>> test()
.. note::
When you nest patch decorators the mocks are passed in to the decorated
function in the same order they applied (the normal *python* order that
decorators are applied). This means from the bottom up, so in the example
above the mock for `test_module.ClassName2` is passed in first.
With `patch` it matters that you patch objects in the namespace where they
are looked up. This is normally straightforward, but for a quick guide
read `where to patch
<http://www.voidspace.org.uk/python/mock/patch.html#where-to-patch>`_.
As well as a decorator `patch` can be used as a context manager in a with
statement::
>>> with patch.object(ProductionClass, 'method') as mock_method:
... mock_method.return_value = None
... real = ProductionClass()
... real.method(1, 2, 3)
...
>>> mock_method.assert_called_once_with(1, 2, 3)
There is also `patch.dict` for setting values in a dictionary just during the
scope of a test and restoring the dictionary to its original state when the
test ends::
>>> foo = {'key': 'value'}
>>> original = foo.copy()
>>> with patch.dict(foo, {'newkey': 'newvalue'}, clear=True):
... assert foo == {'newkey': 'newvalue'}
...
>>> assert foo == original
Mock supports the mocking of Python magic methods. The easiest way of
using magic methods is with the `MagicMock` class. It allows you to do
things like::
>>> from mock import MagicMock
>>> mock = MagicMock()
>>> mock.__str__.return_value = 'foobarbaz'
>>> str(mock)
'foobarbaz'
>>> mock.__str__.assert_called_once_with()
Mock allows you to assign functions (or other Mock instances) to magic methods
and they will be called appropriately. The MagicMock class is just a Mock
variant that has all of the magic methods pre-created for you (well - all the
useful ones anyway).
The following is an example of using magic methods with the ordinary Mock
class::
>>> from mock import Mock
>>> mock = Mock()
>>> mock.__str__ = Mock(return_value = 'wheeeeee')
>>> str(mock)
'wheeeeee'
For ensuring that the mock objects your tests use have the same api as the
objects they are replacing, you can use "auto-speccing". Auto-speccing can
be done through the `autospec` argument to patch, or the `create_autospec`
function. Auto-speccing creates mock objects that have the same attributes
and methods as the objects they are replacing, and any functions and methods
(including constructors) have the same call signature as the real object.
This ensures that your mocks will fail in the same way as your production
code if they are used incorrectly::
>>> from mock import create_autospec
>>> def function(a, b, c):
... pass
...
>>> mock_function = create_autospec(function, return_value='fishy')
>>> mock_function(1, 2, 3)
'fishy'
>>> mock_function.assert_called_once_with(1, 2, 3)
>>> mock_function('wrong arguments')
Traceback (most recent call last):
...
TypeError: <lambda>() takes exactly 3 arguments (1 given)
`create_autospec` can also be used on classes, where it copies the signature of
the `__init__` method, and on callable objects where it copies the signature of
the `__call__` method.
The distribution contains tests and documentation. The tests require
`unittest2 <http://pypi.python.org/pypi/unittest2>`_ to run.
Docs from the in-development version of `mock` can be found at
`mock.readthedocs.org <http://mock.readthedocs.org>`_.
Keywords: testing,test,mock,mocking,unittest,patching,stubs,fakes,doubles
Platform: UNKNOWN
Classifier: Development Status :: 5 - Production/Stable
Classifier: Environment :: Console
Classifier: Intended Audience :: Developers
Classifier: License :: OSI Approved :: BSD License
Classifier: Programming Language :: Python
Classifier: Programming Language :: Python :: 2
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 2.5
Classifier: Programming Language :: Python :: 2.6
Classifier: Programming Language :: Python :: 2.7
Classifier: Programming Language :: Python :: 3.1
Classifier: Programming Language :: Python :: 3.2
Classifier: Programming Language :: Python :: 3.3
Classifier: Programming Language :: Python :: Implementation :: CPython
Classifier: Programming Language :: Python :: Implementation :: PyPy
Classifier: Programming Language :: Python :: Implementation :: Jython
Classifier: Operating System :: OS Independent
Classifier: Topic :: Software Development :: Libraries
Classifier: Topic :: Software Development :: Libraries :: Python Modules
Classifier: Topic :: Software Development :: Testing
|