This file is indexed.

/usr/lib/python2.7/dist-packages/networkx/algorithms/centrality/katz.py is in python-networkx 1.8.1-0ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
"""
Katz centrality.
"""
#    Copyright (C) 2004-2013 by
#    Aric Hagberg <hagberg@lanl.gov>
#    Dan Schult <dschult@colgate.edu>
#    Pieter Swart <swart@lanl.gov>
#    All rights reserved.
#    BSD license.
import networkx as nx
from networkx.utils import *
__author__ = "\n".join(['Aric Hagberg (hagberg@lanl.gov)',
                        'Pieter Swart (swart@lanl.gov)',
                        'Sasha Gutfraind (ag362@cornell.edu)',
                        'Vincent Gauthier (vgauthier@luxbulb.org)'])

__all__ = ['katz_centrality',
           'katz_centrality_numpy']

@not_implemented_for('multigraph')
def katz_centrality(G, alpha=0.1, beta=1.0,
                    max_iter=1000, tol=1.0e-6, nstart=None, normalized=True):
    r"""Compute the Katz centrality for the nodes of the graph G.


    Katz centrality is related to eigenvalue centrality and PageRank.
    The Katz centrality for node `i` is

    .. math::

        x_i = \alpha \sum_{j} A_{ij} x_j + \beta,

    where `A` is the adjacency matrix of the graph G with eigenvalues `\lambda`.

    The parameter `\beta` controls the initial centrality and

    .. math::

        \alpha < \frac{1}{\lambda_{max}}.


    Katz centrality computes the relative influence of a node within a
    network by measuring the number of the immediate neighbors (first
    degree nodes) and also all other nodes in the network that connect
    to the node under consideration through these immediate neighbors.

    Extra weight can be provided to immediate neighbors through the
    parameter :math:`\beta`.  Connections made with distant neighbors
    are, however, penalized by an attenuation factor `\alpha` which
    should be strictly less than the inverse largest eigenvalue of the
    adjacency matrix in order for the Katz centrality to be computed
    correctly. More information is provided in [1]_ .


    Parameters
    ----------
    G : graph
      A NetworkX graph

    alpha : float
      Attenuation factor

    beta : scalar or dictionary, optional (default=1.0)
      Weight attributed to the immediate neighborhood. If not a scalar the
      dictionary must have an value for every node.

    max_iter : integer, optional (default=1000)
      Maximum number of iterations in power method.

    tol : float, optional (default=1.0e-6)
      Error tolerance used to check convergence in power method iteration.

    nstart : dictionary, optional
      Starting value of Katz iteration for each node.

    normalized : bool, optional (default=True)
      If True normalize the resulting values.

    Returns
    -------
    nodes : dictionary
       Dictionary of nodes with Katz centrality as the value.

    Examples
    --------
    >>> import math
    >>> G = nx.path_graph(4)
    >>> phi = (1+math.sqrt(5))/2.0 # largest eigenvalue of adj matrix
    >>> centrality = nx.katz_centrality(G,1/phi-0.01)
    >>> for n,c in sorted(centrality.items()):
    ...    print("%d %0.2f"%(n,c))
    0 0.37
    1 0.60
    2 0.60
    3 0.37

    Notes
    -----
    This algorithm it uses the power method to find the eigenvector
    corresponding to the largest eigenvalue of the adjacency matrix of G.
    The constant alpha should be strictly less than the inverse of largest
    eigenvalue of the adjacency matrix for the algorithm to converge.
    The iteration will stop after max_iter iterations or an error tolerance of
    number_of_nodes(G)*tol has been reached.

    When `\alpha = 1/\lambda_{max}` and `\beta=1` Katz centrality is the same as
    eigenvector centrality.

    References
    ----------
    .. [1] M. Newman, Networks: An Introduction. Oxford University Press,
       USA, 2010, p. 720.

    See Also
    --------
    katz_centrality_numpy
    eigenvector_centrality
    eigenvector_centrality_numpy
    pagerank
    hits
    """
    from math import sqrt

    if len(G)==0:
        return {}

    nnodes=G.number_of_nodes()

    if nstart is None:
        # choose starting vector with entries of 0
        x=dict([(n,0) for n in G])
    else:
        x=nstart

    try:
        b = dict.fromkeys(G,float(beta))
    except (TypeError,ValueError):
        b = beta
        if set(beta) != set(G):
            raise nx.NetworkXError('beta dictionary '
                                   'must have a value for every node')

    # make up to max_iter iterations
    for i in range(max_iter):
        xlast=x
        x=dict.fromkeys(xlast, 0)
        # do the multiplication y = Alpha * Ax - Beta
        for n in x:
            for nbr in G[n]:
                x[n] += xlast[nbr] * G[n][nbr].get('weight',1)
            x[n] = alpha*x[n] + b[n]

        # check convergence
        err=sum([abs(x[n]-xlast[n]) for n in x])
        if err < nnodes*tol:
            if normalized:
                # normalize vector
                try:
                    s=1.0/sqrt(sum(v**2 for v in x.values()))
                # this should never be zero?
                except ZeroDivisionError:
                    s=1.0
            else:
                s = 1
            for n in x:
                x[n]*=s
            return x

    raise nx.NetworkXError('Power iteration failed to converge in ',
                           '%d iterations."%(i+1))')

@not_implemented_for('multigraph')
def katz_centrality_numpy(G, alpha=0.1, beta=1.0, normalized=True):
    r"""Compute the Katz centrality for the graph G.


    Katz centrality is related to eigenvalue centrality and PageRank.
    The Katz centrality for node `i` is

    .. math::

        x_i = \alpha \sum_{j} A_{ij} x_j + \beta,

    where `A` is the adjacency matrix of the graph G with eigenvalues `\lambda`.

    The parameter `\beta` controls the initial centrality and

    .. math::

        \alpha < \frac{1}{\lambda_{max}}.


    Katz centrality computes the relative influence of a node within a
    network by measuring the number of the immediate neighbors (first
    degree nodes) and also all other nodes in the network that connect
    to the node under consideration through these immediate neighbors.

    Extra weight can be provided to immediate neighbors through the
    parameter :math:`\beta`.  Connections made with distant neighbors
    are, however, penalized by an attenuation factor `\alpha` which
    should be strictly less than the inverse largest eigenvalue of the
    adjacency matrix in order for the Katz centrality to be computed
    correctly. More information is provided in [1]_ .

    Parameters
    ----------
    G : graph
      A NetworkX graph

    alpha : float
      Attenuation factor

    beta : scalar or dictionary, optional (default=1.0)
      Weight attributed to the immediate neighborhood. If not a scalar the
      dictionary must have an value for every node.

    normalized : bool
      If True normalize the resulting values.

    Returns
    -------
    nodes : dictionary
       Dictionary of nodes with Katz centrality as the value.

    Examples
    --------
    >>> import math
    >>> G = nx.path_graph(4)
    >>> phi = (1+math.sqrt(5))/2.0 # largest eigenvalue of adj matrix
    >>> centrality = nx.katz_centrality_numpy(G,1/phi)
    >>> for n,c in sorted(centrality.items()):
    ...    print("%d %0.2f"%(n,c))
    0 0.37
    1 0.60
    2 0.60
    3 0.37

    Notes
    ------
    This algorithm uses a direct linear solver to solve the above equation.
    The constant alpha should be strictly less than the inverse of largest
    eigenvalue of the adjacency matrix for there to be a solution.  When
    `\alpha = 1/\lambda_{max}` and `\beta=1` Katz centrality is the same as
    eigenvector centrality.

    References
    ----------
    .. [1] M. Newman, Networks: An Introduction. Oxford University Press,
       USA, 2010, p. 720.

    See Also
    --------
    katz_centrality
    eigenvector_centrality_numpy
    eigenvector_centrality
    pagerank
    hits
    """
    try:
        import numpy as np
    except ImportError:
        raise ImportError('Requires NumPy: http://scipy.org/')
    if len(G)==0:
        return {}
    try:
        nodelist = beta.keys()
        if set(nodelist) != set(G):
            raise nx.NetworkXError('beta dictionary '
                                   'must have a value for every node')
        b = np.array(list(beta.values()),dtype=float)
    except AttributeError:
        nodelist = G.nodes()
        try:
            b = np.ones((len(nodelist),1))*float(beta)
        except (TypeError,ValueError):
            raise nx.NetworkXError('beta must be a number')

    A=nx.adj_matrix(G, nodelist=nodelist)
    n = np.array(A).shape[0]
    centrality = np.linalg.solve( np.eye(n,n) - (alpha * A) , b)
    if normalized:
        norm = np.sign(sum(centrality)) * np.linalg.norm(centrality)
    else:
        norm = 1.0
    centrality=dict(zip(nodelist, map(float,centrality/norm)))
    return centrality


# fixture for nose tests
def setup_module(module):
    from nose import SkipTest
    try:
        import numpy
        import numpy.linalg
    except:
        raise SkipTest("numpy not available")