This file is indexed.

/usr/lib/python2.7/dist-packages/networkx/algorithms/connectivity/tests/test_cuts.py is in python-networkx 1.8.1-0ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
from nose.tools import assert_equal, assert_true, assert_false, assert_raises
import networkx as nx

# Tests for node and edge cutsets
def _generate_no_biconnected(max_attempts=50):
    attempts = 0
    while True:
        G = nx.fast_gnp_random_graph(100,0.0575)
        if nx.is_connected(G) and not nx.is_biconnected(G):
            attempts = 0
            yield G
        else:
            if attempts >= max_attempts:
                msg = "Tried %d times: no suitable Graph."%attempts
                raise Exception(msg % max_attempts)
            else:
                attempts += 1
 
def test_articulation_points():
    Ggen = _generate_no_biconnected()
    for i in range(5):
        G = next(Ggen)
        cut = nx.minimum_node_cut(G)
        assert_true(len(cut) == 1)
        assert_true(cut.pop() in set(nx.articulation_points(G)))

def test_brandes_erlebach_book():
    # Figure 1 chapter 7: Connectivity
    # http://www.informatik.uni-augsburg.de/thi/personen/kammer/Graph_Connectivity.pdf
    G = nx.Graph()
    G.add_edges_from([(1,2),(1,3),(1,4),(1,5),(2,3),(2,6),(3,4),
                    (3,6),(4,6),(4,7),(5,7),(6,8),(6,9),(7,8),
                    (7,10),(8,11),(9,10),(9,11),(10,11)])
    # edge cutsets
    assert_equal(3, len(nx.minimum_edge_cut(G,1,11)))
    edge_cut = nx.minimum_edge_cut(G)
    assert_equal(2, len(edge_cut)) # Node 5 has only two edges
    H = G.copy()
    H.remove_edges_from(edge_cut)
    assert_false(nx.is_connected(H))
    # node cuts
    assert_equal(set([6,7]), nx.minimum_st_node_cut(G,1,11))
    assert_equal(set([6,7]), nx.minimum_node_cut(G,1,11))
    node_cut = nx.minimum_node_cut(G)
    assert_equal(2,len(node_cut))
    H = G.copy()
    H.remove_nodes_from(node_cut)
    assert_false(nx.is_connected(H))

def test_white_harary_paper():
    # Figure 1b white and harary (2001)
    # http://eclectic.ss.uci.edu/~drwhite/sm-w23.PDF
    # A graph with high adhesion (edge connectivity) and low cohesion
    # (node connectivity)
    G = nx.disjoint_union(nx.complete_graph(4), nx.complete_graph(4))
    G.remove_node(7)
    for i in range(4,7):
        G.add_edge(0,i)
    G = nx.disjoint_union(G, nx.complete_graph(4))
    G.remove_node(G.order()-1)
    for i in range(7,10):
        G.add_edge(0,i)
    # edge cuts
    edge_cut = nx.minimum_edge_cut(G)
    assert_equal(3, len(edge_cut))
    H = G.copy()
    H.remove_edges_from(edge_cut)
    assert_false(nx.is_connected(H))
    # node cuts
    node_cut = nx.minimum_node_cut(G)
    assert_equal(set([0]), node_cut)
    H = G.copy()
    H.remove_nodes_from(node_cut)
    assert_false(nx.is_connected(H))

def test_petersen_cutset():
    G = nx.petersen_graph()
    # edge cuts
    edge_cut = nx.minimum_edge_cut(G)
    assert_equal(3, len(edge_cut))
    H = G.copy()
    H.remove_edges_from(edge_cut)
    assert_false(nx.is_connected(H))
    # node cuts
    node_cut = nx.minimum_node_cut(G)
    assert_equal(3,len(node_cut))
    H = G.copy()
    H.remove_nodes_from(node_cut)
    assert_false(nx.is_connected(H))

def test_octahedral_cutset():
    G=nx.octahedral_graph()
    # edge cuts
    edge_cut = nx.minimum_edge_cut(G)
    assert_equal(4, len(edge_cut))
    H = G.copy()
    H.remove_edges_from(edge_cut)
    assert_false(nx.is_connected(H))
    # node cuts
    node_cut = nx.minimum_node_cut(G)
    assert_equal(4,len(node_cut))
    H = G.copy()
    H.remove_nodes_from(node_cut)
    assert_false(nx.is_connected(H))

def test_icosahedral_cutset():
    G=nx.icosahedral_graph()
    # edge cuts
    edge_cut = nx.minimum_edge_cut(G)
    assert_equal(5, len(edge_cut))
    H = G.copy()
    H.remove_edges_from(edge_cut)
    assert_false(nx.is_connected(H))
    # node cuts
    node_cut = nx.minimum_node_cut(G)
    assert_equal(5,len(node_cut))
    H = G.copy()
    H.remove_nodes_from(node_cut)
    assert_false(nx.is_connected(H))

def test_node_cutset_exception():
    G=nx.Graph()
    G.add_edges_from([(1,2),(3,4)])
    assert_raises(nx.NetworkXError, nx.minimum_node_cut,G)

def test_node_cutset_random_graphs():
    for i in range(5):
        G = nx.fast_gnp_random_graph(50,0.2)
        if not nx.is_connected(G):
            ccs = iter(nx.connected_components(G))
            start = next(ccs)[0]
            G.add_edges_from( (start,c[0]) for c in ccs )
        cutset = nx.minimum_node_cut(G)
        assert_equal(nx.node_connectivity(G), len(cutset))
        G.remove_nodes_from(cutset)
        assert_false(nx.is_connected(G))

def test_edge_cutset_random_graphs():
    for i in range(5):
        G = nx.fast_gnp_random_graph(50,0.2)
        if not nx.is_connected(G):
            ccs = iter(nx.connected_components(G))
            start = next(ccs)[0]
            G.add_edges_from( (start,c[0]) for c in ccs )
        cutset = nx.minimum_edge_cut(G)
        assert_equal(nx.edge_connectivity(G), len(cutset))
        G.remove_edges_from(cutset)
        assert_false(nx.is_connected(G))

# Test empty graphs
def test_empty_graphs():
    G = nx.Graph()
    D = nx.DiGraph()
    assert_raises(nx.NetworkXPointlessConcept, nx.minimum_node_cut, G)
    assert_raises(nx.NetworkXPointlessConcept, nx.minimum_node_cut, D)
    assert_raises(nx.NetworkXPointlessConcept, nx.minimum_edge_cut, G)
    assert_raises(nx.NetworkXPointlessConcept, nx.minimum_edge_cut, D)