This file is indexed.

/usr/lib/python2.7/dist-packages/networkx/algorithms/tests/test_dag.py is in python-networkx 1.8.1-0ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
#!/usr/bin/env python
from nose.tools import *
import networkx as nx

class TestDAG:

    def setUp(self):
        pass

    def test_topological_sort1(self):
        DG=nx.DiGraph()
        DG.add_edges_from([(1,2),(1,3),(2,3)])
        assert_equal(nx.topological_sort(DG),[1, 2, 3])
        assert_equal(nx.topological_sort_recursive(DG),[1, 2, 3])

        DG.add_edge(3,2)
        assert_raises(nx.NetworkXUnfeasible, nx.topological_sort, DG)
        assert_raises(nx.NetworkXUnfeasible, nx.topological_sort_recursive, DG)
        
        DG.remove_edge(2,3)
        assert_equal(nx.topological_sort(DG),[1, 3, 2])
        assert_equal(nx.topological_sort_recursive(DG),[1, 3, 2])

    def test_is_directed_acyclic_graph(self):
        G = nx.generators.complete_graph(2)
        assert_false(nx.is_directed_acyclic_graph(G))
        assert_false(nx.is_directed_acyclic_graph(G.to_directed()))
        assert_false(nx.is_directed_acyclic_graph(nx.Graph([(3, 4), (4, 5)])))
        assert_true(nx.is_directed_acyclic_graph(nx.DiGraph([(3, 4), (4, 5)])))

    def test_topological_sort2(self):
        DG=nx.DiGraph({1:[2],2:[3],3:[4],
                       4:[5],5:[1],11:[12],
                       12:[13],13:[14],14:[15]})
        assert_raises(nx.NetworkXUnfeasible, nx.topological_sort, DG)
        assert_raises(nx.NetworkXUnfeasible, nx.topological_sort_recursive, DG)

        assert_false(nx.is_directed_acyclic_graph(DG))

        DG.remove_edge(1,2)
        assert_equal(nx.topological_sort_recursive(DG),
                     [11, 12, 13, 14, 15, 2, 3, 4, 5, 1])
        assert_equal(nx.topological_sort(DG),
                     [11, 12, 13, 14, 15, 2, 3, 4, 5, 1])
        assert_true(nx.is_directed_acyclic_graph(DG))

    def test_topological_sort3(self):
        DG=nx.DiGraph()
        DG.add_edges_from([(1,i) for i in range(2,5)])
        DG.add_edges_from([(2,i) for i in range(5,9)])
        DG.add_edges_from([(6,i) for i in range(9,12)])
        DG.add_edges_from([(4,i) for i in range(12,15)])
        assert_equal(nx.topological_sort_recursive(DG),
                     [1, 4, 14, 13, 12, 3, 2, 7, 6, 11, 10, 9, 5, 8])
        assert_equal(nx.topological_sort(DG),
                     [1, 2, 8, 5, 6, 9, 10, 11, 7, 3, 4, 12, 13, 14])

        DG.add_edge(14,1)
        assert_raises(nx.NetworkXUnfeasible, nx.topological_sort, DG)
        assert_raises(nx.NetworkXUnfeasible, nx.topological_sort_recursive, DG)

    def test_topological_sort4(self):
        G=nx.Graph()
        G.add_edge(1,2)
        assert_raises(nx.NetworkXError, nx.topological_sort, G)
        assert_raises(nx.NetworkXError, nx.topological_sort_recursive, G)

    def test_topological_sort5(self):
        G=nx.DiGraph()
        G.add_edge(0,1)
        assert_equal(nx.topological_sort_recursive(G), [0,1])
        assert_equal(nx.topological_sort(G), [0,1])

    def test_nbunch_argument(self):
        G=nx.DiGraph()
        G.add_edges_from([(1,2), (2,3), (1,4), (1,5), (2,6)])
        assert_equal(nx.topological_sort(G), [1, 2, 3, 6, 4, 5])
        assert_equal(nx.topological_sort_recursive(G), [1, 5, 4, 2, 6, 3])
        assert_equal(nx.topological_sort(G,[1]), [1, 2, 3, 6, 4, 5])
        assert_equal(nx.topological_sort_recursive(G,[1]), [1, 5, 4, 2, 6, 3])
        assert_equal(nx.topological_sort(G,[5]), [5])
        assert_equal(nx.topological_sort_recursive(G,[5]), [5])

    def test_ancestors(self):
        G=nx.DiGraph()
        ancestors = nx.algorithms.dag.ancestors
        G.add_edges_from([
            (1, 2), (1, 3), (4, 2), (4, 3), (4, 5), (2, 6), (5, 6)])
        assert_equal(ancestors(G, 6), set([1, 2, 4, 5]))
        assert_equal(ancestors(G, 3), set([1, 4]))
        assert_equal(ancestors(G, 1), set())
        assert_raises(nx.NetworkXError, ancestors, G, 8)

    def test_descendants(self):
        G=nx.DiGraph()
        descendants = nx.algorithms.dag.descendants
        G.add_edges_from([
            (1, 2), (1, 3), (4, 2), (4, 3), (4, 5), (2, 6), (5, 6)])
        assert_equal(descendants(G, 1), set([2, 3, 6]))
        assert_equal(descendants(G, 4), set([2, 3, 5, 6]))
        assert_equal(descendants(G, 3), set())
        assert_raises(nx.NetworkXError, descendants, G, 8)


def test_is_aperiodic_cycle():
    G=nx.DiGraph()
    G.add_cycle([1,2,3,4])
    assert_false(nx.is_aperiodic(G))

def test_is_aperiodic_cycle2():
    G=nx.DiGraph()
    G.add_cycle([1,2,3,4])
    G.add_cycle([3,4,5,6,7])
    assert_true(nx.is_aperiodic(G))

def test_is_aperiodic_cycle3():
    G=nx.DiGraph()
    G.add_cycle([1,2,3,4])
    G.add_cycle([3,4,5,6])
    assert_false(nx.is_aperiodic(G))
    
def test_is_aperiodic_cycle4():
    G = nx.DiGraph()
    G.add_cycle([1,2,3,4])
    G.add_edge(1,3)
    assert_true(nx.is_aperiodic(G))

def test_is_aperiodic_selfloop():
    G = nx.DiGraph()
    G.add_cycle([1,2,3,4])
    G.add_edge(1,1)
    assert_true(nx.is_aperiodic(G))

def test_is_aperiodic_raise():
    G = nx.Graph()
    assert_raises(nx.NetworkXError,
                  nx.is_aperiodic,
                  G)

def test_is_aperiodic_bipartite():
    #Bipartite graph
    G = nx.DiGraph(nx.davis_southern_women_graph())
    assert_false(nx.is_aperiodic(G))

def test_is_aperiodic_rary_tree():
    G = nx.full_rary_tree(3,27,create_using=nx.DiGraph())
    assert_false(nx.is_aperiodic(G))

def test_is_aperiodic_disconnected():
    #disconnected graph
    G = nx.DiGraph()
    G.add_cycle([1,2,3,4])
    G.add_cycle([5,6,7,8])
    assert_false(nx.is_aperiodic(G))
    G.add_edge(1,3)
    G.add_edge(5,7)
    assert_true(nx.is_aperiodic(G))
    
def test_is_aperiodic_disconnected2():
    G = nx.DiGraph()
    G.add_cycle([0,1,2])
    G.add_edge(3,3)
    assert_false(nx.is_aperiodic(G))