This file is indexed.

/usr/lib/python2.7/dist-packages/networkx/classes/tests/test_function.py is in python-networkx 1.8.1-0ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
#!/usr/bin/env python
import random
from nose.tools import *
import networkx
import networkx as nx

class TestFunction(object):
    def setUp(self):
        self.G=networkx.Graph({0:[1,2,3], 1:[1,2,0], 4:[]}, name='Test')
        self.Gdegree={0:3, 1:2, 2:2, 3:1, 4:0}
        self.Gnodes=list(range(5))
        self.Gedges=[(0,1),(0,2),(0,3),(1,0),(1,1),(1,2)]
        self.DG=networkx.DiGraph({0:[1,2,3], 1:[1,2,0], 4:[]})
        self.DGin_degree={0:1, 1:2, 2:2, 3:1, 4:0}
        self.DGout_degree={0:3, 1:3, 2:0, 3:0, 4:0}
        self.DGnodes=list(range(5))
        self.DGedges=[(0,1),(0,2),(0,3),(1,0),(1,1),(1,2)]

    def test_nodes(self):
        assert_equal(self.G.nodes(),networkx.nodes(self.G))
        assert_equal(self.DG.nodes(),networkx.nodes(self.DG))
    def test_edges(self):
        assert_equal(self.G.edges(),networkx.edges(self.G))
        assert_equal(self.DG.edges(),networkx.edges(self.DG))
        assert_equal(self.G.edges(nbunch=[0,1,3]),networkx.edges(self.G,nbunch=[0,1,3]))
        assert_equal(self.DG.edges(nbunch=[0,1,3]),networkx.edges(self.DG,nbunch=[0,1,3]))
    def test_nodes_iter(self):
        assert_equal(list(self.G.nodes_iter()),list(networkx.nodes_iter(self.G)))
        assert_equal(list(self.DG.nodes_iter()),list(networkx.nodes_iter(self.DG)))
    def test_edges_iter(self):
        assert_equal(list(self.G.edges_iter()),list(networkx.edges_iter(self.G)))
        assert_equal(list(self.DG.edges_iter()),list(networkx.edges_iter(self.DG)))
        assert_equal(list(self.G.edges_iter(nbunch=[0,1,3])),list(networkx.edges_iter(self.G,nbunch=[0,1,3])))
        assert_equal(list(self.DG.edges_iter(nbunch=[0,1,3])),list(networkx.edges_iter(self.DG,nbunch=[0,1,3])))
    def test_degree(self):
        assert_equal(self.G.degree(),networkx.degree(self.G))
        assert_equal(self.DG.degree(),networkx.degree(self.DG))
        assert_equal(self.G.degree(nbunch=[0,1]),networkx.degree(self.G,nbunch=[0,1]))
        assert_equal(self.DG.degree(nbunch=[0,1]),networkx.degree(self.DG,nbunch=[0,1]))
        assert_equal(self.G.degree(weight='weight'),networkx.degree(self.G,weight='weight'))
        assert_equal(self.DG.degree(weight='weight'),networkx.degree(self.DG,weight='weight'))
    def test_neighbors(self):
        assert_equal(self.G.neighbors(1),networkx.neighbors(self.G,1))
        assert_equal(self.DG.neighbors(1),networkx.neighbors(self.DG,1))
    def test_number_of_nodes(self):
        assert_equal(self.G.number_of_nodes(),networkx.number_of_nodes(self.G))
        assert_equal(self.DG.number_of_nodes(),networkx.number_of_nodes(self.DG))
    def test_number_of_edges(self):
        assert_equal(self.G.number_of_edges(),networkx.number_of_edges(self.G))
        assert_equal(self.DG.number_of_edges(),networkx.number_of_edges(self.DG))
    def test_is_directed(self):
        assert_equal(self.G.is_directed(),networkx.is_directed(self.G))
        assert_equal(self.DG.is_directed(),networkx.is_directed(self.DG))
    def test_subgraph(self):
        assert_equal(self.G.subgraph([0,1,2,4]).adj,networkx.subgraph(self.G,[0,1,2,4]).adj)
        assert_equal(self.DG.subgraph([0,1,2,4]).adj,networkx.subgraph(self.DG,[0,1,2,4]).adj)

    def test_create_empty_copy(self):
        G=networkx.create_empty_copy(self.G, with_nodes=False)
        assert_equal(G.nodes(),[])
        assert_equal(G.graph,{})
        assert_equal(G.node,{})
        assert_equal(G.edge,{})
        G=networkx.create_empty_copy(self.G)
        assert_equal(G.nodes(),self.G.nodes())
        assert_equal(G.graph,{})
        assert_equal(G.node,{}.fromkeys(self.G.nodes(),{}))
        assert_equal(G.edge,{}.fromkeys(self.G.nodes(),{}))

    def test_degree_histogram(self):
        assert_equal(networkx.degree_histogram(self.G), [1,1,1,1,1])

    def test_density(self):
        assert_equal(networkx.density(self.G), 0.5)
        assert_equal(networkx.density(self.DG), 0.3)
        G=networkx.Graph()
        G.add_node(1)
        assert_equal(networkx.density(G), 0.0)

    def test_density_selfloop(self):
        G = nx.Graph()
        G.add_edge(1,1)
        assert_equal(networkx.density(G), 0.0)
        G.add_edge(1,2)
        assert_equal(networkx.density(G), 2.0)

    def test_freeze(self):
        G=networkx.freeze(self.G)
        assert_equal(G.frozen,True)
        assert_raises(networkx.NetworkXError, G.add_node, 1)
        assert_raises(networkx.NetworkXError, G.add_nodes_from, [1])
        assert_raises(networkx.NetworkXError, G.remove_node, 1)
        assert_raises(networkx.NetworkXError, G.remove_nodes_from, [1])
        assert_raises(networkx.NetworkXError, G.add_edge, 1,2)
        assert_raises(networkx.NetworkXError, G.add_edges_from, [(1,2)])
        assert_raises(networkx.NetworkXError, G.remove_edge, 1,2)
        assert_raises(networkx.NetworkXError, G.remove_edges_from, [(1,2)])
        assert_raises(networkx.NetworkXError, G.clear)

    def test_is_frozen(self):
        assert_equal(networkx.is_frozen(self.G), False)
        G=networkx.freeze(self.G)
        assert_equal(G.frozen, networkx.is_frozen(self.G))
        assert_equal(G.frozen,True)

    def test_info(self):
        G=networkx.path_graph(5)
        info=networkx.info(G)
        expected_graph_info='\n'.join(['Name: path_graph(5)',
                                       'Type: Graph',
                                       'Number of nodes: 5',
                                       'Number of edges: 4',
                                       'Average degree:   1.6000'])
        assert_equal(info,expected_graph_info)

        info=networkx.info(G,n=1)
        expected_node_info='\n'.join(
            ['Node 1 has the following properties:',
             'Degree: 2',
             'Neighbors: 0 2'])
        assert_equal(info,expected_node_info)

    def test_info_digraph(self):
        G=networkx.DiGraph(name='path_graph(5)')
        G.add_path([0,1,2,3,4])
        info=networkx.info(G)
        expected_graph_info='\n'.join(['Name: path_graph(5)',
                                       'Type: DiGraph',
                                       'Number of nodes: 5',
                                       'Number of edges: 4',
                                       'Average in degree:   0.8000',
                                       'Average out degree:   0.8000'])
        assert_equal(info,expected_graph_info)

        info=networkx.info(G,n=1)
        expected_node_info='\n'.join(
            ['Node 1 has the following properties:',
             'Degree: 2',
             'Neighbors: 2'])
        assert_equal(info,expected_node_info)

        assert_raises(networkx.NetworkXError,networkx.info,G,n=-1)

    def test_neighbors(self):
        graph = nx.complete_graph(100)
        pop = random.sample(graph.nodes(), 1)
        nbors = list(nx.neighbors(graph, pop[0]))
        # should be all the other vertices in the graph
        assert_equal(len(nbors), len(graph) - 1)

        graph = nx.path_graph(100)
        node = random.sample(graph.nodes(), 1)[0]
        nbors = list(nx.neighbors(graph, node))
        # should be all the other vertices in the graph
        if node != 0 and node != 99:
            assert_equal(len(nbors), 2)
        else:
            assert_equal(len(nbors), 1)

        # create a star graph with 99 outer nodes
        graph = nx.star_graph(99)
        nbors = list(nx.neighbors(graph, 0))
        assert_equal(len(nbors), 99)

    def test_non_neighbors(self):
        graph = nx.complete_graph(100)
        pop = random.sample(graph.nodes(), 1)
        nbors = list(nx.non_neighbors(graph, pop[0]))
        # should be all the other vertices in the graph
        assert_equal(len(nbors), 0)

        graph = nx.path_graph(100)
        node = random.sample(graph.nodes(), 1)[0]
        nbors = list(nx.non_neighbors(graph, node))
        # should be all the other vertices in the graph
        if node != 0 and node != 99:
            assert_equal(len(nbors), 97)
        else:
            assert_equal(len(nbors), 98)

        # create a star graph with 99 outer nodes
        graph = nx.star_graph(99)
        nbors = list(nx.non_neighbors(graph, 0))
        assert_equal(len(nbors), 0)

        # disconnected graph
        graph = nx.Graph()
        graph.add_nodes_from(range(10))
        nbors = list(nx.non_neighbors(graph, 0))
        assert_equal(len(nbors), 9)