This file is indexed.

/usr/lib/python2.7/dist-packages/networkx/generators/degree_seq.py is in python-networkx 1.8.1-0ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
# -*- coding: utf-8 -*-
"""Generate graphs with a given degree sequence or expected degree sequence.
"""
#    Copyright (C) 2004-2013 by 
#    Aric Hagberg <hagberg@lanl.gov>
#    Dan Schult <dschult@colgate.edu>
#    Pieter Swart <swart@lanl.gov>
#    All rights reserved.
#    BSD license.
import heapq
from itertools import combinations, permutations
import math
from operator import itemgetter
import random
import networkx as nx
from networkx.utils import random_weighted_sample

__author__ = "\n".join(['Aric Hagberg <aric.hagberg@gmail.com>',
                        'Pieter Swart <swart@lanl.gov>',
                        'Dan Schult <dschult@colgate.edu>'
                        'Joel Miller <joel.c.miller.research@gmail.com>',
                        'Nathan Lemons <nlemons@gmail.com>'
                        'Brian Cloteaux <brian.cloteaux@nist.gov>'])

__all__ = ['configuration_model',
           'directed_configuration_model',
           'expected_degree_graph',
           'havel_hakimi_graph',
           'directed_havel_hakimi_graph',
           'degree_sequence_tree',
           'random_degree_sequence_graph']


def configuration_model(deg_sequence,create_using=None,seed=None):
    """Return a random graph with the given degree sequence.

    The configuration model generates a random pseudograph (graph with
    parallel edges and self loops) by randomly assigning edges to
    match the given degree sequence.

    Parameters
    ----------
    deg_sequence :  list of integers
        Each list entry corresponds to the degree of a node.
    create_using : graph, optional (default MultiGraph)
       Return graph of this type. The instance will be cleared.
    seed : hashable object, optional
        Seed for random number generator.

    Returns
    -------
    G : MultiGraph
        A graph with the specified degree sequence.
        Nodes are labeled starting at 0 with an index
        corresponding to the position in deg_sequence.

    Raises
    ------
    NetworkXError
        If the degree sequence does not have an even sum.

    See Also
    --------
    is_valid_degree_sequence

    Notes
    -----
    As described by Newman [1]_.

    A non-graphical degree sequence (not realizable by some simple
    graph) is allowed since this function returns graphs with self
    loops and parallel edges.  An exception is raised if the degree
    sequence does not have an even sum.

    This configuration model construction process can lead to
    duplicate edges and loops.  You can remove the self-loops and
    parallel edges (see below) which will likely result in a graph
    that doesn't have the exact degree sequence specified.  This
    "finite-size effect" decreases as the size of the graph increases.

    References
    ----------
    .. [1] M.E.J. Newman, "The structure and function of complex networks",
       SIAM REVIEW 45-2, pp 167-256, 2003.

    Examples
    --------
    >>> from networkx.utils import powerlaw_sequence
    >>> z=nx.utils.create_degree_sequence(100,powerlaw_sequence)
    >>> G=nx.configuration_model(z)

    To remove parallel edges:

    >>> G=nx.Graph(G)

    To remove self loops:

    >>> G.remove_edges_from(G.selfloop_edges())
    """
    if not sum(deg_sequence)%2 ==0:
        raise nx.NetworkXError('Invalid degree sequence')

    if create_using is None:
        create_using = nx.MultiGraph()
    elif create_using.is_directed():
        raise nx.NetworkXError("Directed Graph not supported")

    if not seed is None:
        random.seed(seed)

    # start with empty N-node graph
    N=len(deg_sequence)

    # allow multiedges and selfloops
    G=nx.empty_graph(N,create_using)

    if N==0 or max(deg_sequence)==0: # done if no edges
        return G 

    # build stublist, a list of available degree-repeated stubs
    # e.g. for deg_sequence=[3,2,1,1,1]
    # initially, stublist=[1,1,1,2,2,3,4,5]
    # i.e., node 1 has degree=3 and is repeated 3 times, etc.
    stublist=[]
    for n in G:
        for i in range(deg_sequence[n]):
            stublist.append(n)

    # shuffle stublist and assign pairs by removing 2 elements at a time
    random.shuffle(stublist)
    while stublist:
        n1 = stublist.pop()
        n2 = stublist.pop()
        G.add_edge(n1,n2)

    G.name="configuration_model %d nodes %d edges"%(G.order(),G.size())
    return G


def directed_configuration_model(in_degree_sequence,
                                 out_degree_sequence,
                                 create_using=None,seed=None):
    """Return a directed_random graph with the given degree sequences.

    The configuration model generates a random directed pseudograph
    (graph with parallel edges and self loops) by randomly assigning
    edges to match the given degree sequences.

    Parameters
    ----------
    in_degree_sequence :  list of integers
       Each list entry corresponds to the in-degree of a node.
    out_degree_sequence :  list of integers
       Each list entry corresponds to the out-degree of a node.
    create_using : graph, optional (default MultiDiGraph)
       Return graph of this type. The instance will be cleared.
    seed : hashable object, optional
        Seed for random number generator.

    Returns
    -------
    G : MultiDiGraph
        A graph with the specified degree sequences.
        Nodes are labeled starting at 0 with an index
        corresponding to the position in deg_sequence.

    Raises
    ------
    NetworkXError
        If the degree sequences do not have the same sum.

    See Also
    --------
    configuration_model

    Notes
    -----
    Algorithm as described by Newman [1]_.

    A non-graphical degree sequence (not realizable by some simple
    graph) is allowed since this function returns graphs with self
    loops and parallel edges.  An exception is raised if the degree
    sequences does not have the same sum.

    This configuration model construction process can lead to
    duplicate edges and loops.  You can remove the self-loops and
    parallel edges (see below) which will likely result in a graph
    that doesn't have the exact degree sequence specified.  This
    "finite-size effect" decreases as the size of the graph increases.

    References
    ----------
    .. [1] Newman, M. E. J. and Strogatz, S. H. and Watts, D. J.
       Random graphs with arbitrary degree distributions and their applications
       Phys. Rev. E, 64, 026118 (2001)

    Examples
    --------
    >>> D=nx.DiGraph([(0,1),(1,2),(2,3)]) # directed path graph
    >>> din=list(D.in_degree().values())
    >>> dout=list(D.out_degree().values())
    >>> din.append(1)
    >>> dout[0]=2
    >>> D=nx.directed_configuration_model(din,dout)

    To remove parallel edges:

    >>> D=nx.DiGraph(D)

    To remove self loops:

    >>> D.remove_edges_from(D.selfloop_edges())
    """
    if not sum(in_degree_sequence) == sum(out_degree_sequence):
        raise nx.NetworkXError('Invalid degree sequences. '
                               'Sequences must have equal sums.')

    if create_using is None:
        create_using = nx.MultiDiGraph()

    if not seed is None:
        random.seed(seed)

    nin=len(in_degree_sequence)
    nout=len(out_degree_sequence)

    # pad in- or out-degree sequence with zeros to match lengths
    if nin>nout:
        out_degree_sequence.extend((nin-nout)*[0])
    else:
        in_degree_sequence.extend((nout-nin)*[0])

    # start with empty N-node graph
    N=len(in_degree_sequence)

    # allow multiedges and selfloops
    G=nx.empty_graph(N,create_using)

    if N==0 or max(in_degree_sequence)==0: # done if no edges
        return G

    # build stublists of available degree-repeated stubs
    # e.g. for degree_sequence=[3,2,1,1,1]
    # initially, stublist=[1,1,1,2,2,3,4,5]
    # i.e., node 1 has degree=3 and is repeated 3 times, etc.
    in_stublist=[]
    for n in G:
        for i in range(in_degree_sequence[n]):
            in_stublist.append(n)

    out_stublist=[]
    for n in G:
        for i in range(out_degree_sequence[n]):
            out_stublist.append(n)

    # shuffle stublists and assign pairs by removing 2 elements at a time
    random.shuffle(in_stublist)
    random.shuffle(out_stublist)
    while in_stublist and out_stublist:
        source = out_stublist.pop()
        target = in_stublist.pop()
        G.add_edge(source,target)

    G.name="directed configuration_model %d nodes %d edges"%(G.order(),G.size())
    return G


def expected_degree_graph(w, seed=None, selfloops=True):
    r"""Return a random graph with given expected degrees.

    Given a sequence of expected degrees `W=(w_0,w_1,\ldots,w_{n-1}`)
    of length `n` this algorithm assigns an edge between node `u` and
    node `v` with probability

    .. math::

       p_{uv} = \frac{w_u w_v}{\sum_k w_k} .

    Parameters
    ----------
    w : list
        The list of expected degrees.
    selfloops: bool (default=True)
        Set to False to remove the possibility of self-loop edges.
    seed : hashable object, optional
        The seed for the random number generator.

    Returns
    -------
    Graph

    Examples
    --------
    >>> z=[10 for i in range(100)]
    >>> G=nx.expected_degree_graph(z)

    Notes
    -----
    The nodes have integer labels corresponding to index of expected degrees
    input sequence.

    The complexity of this algorithm is `\mathcal{O}(n+m)` where `n` is the
    number of nodes and `m` is the expected number of edges.

    The model in [1]_ includes the possibility of self-loop edges.
    Set selfloops=False to produce a graph without self loops.

    For finite graphs this model doesn't produce exactly the given
    expected degree sequence.  Instead the expected degrees are as
    follows.

    For the case without self loops (selfloops=False),

    .. math::

       E[deg(u)] = \sum_{v \ne u} p_{uv}
                = w_u \left( 1 - \frac{w_u}{\sum_k w_k} \right) .


    NetworkX uses the standard convention that a self-loop edge counts 2
    in the degree of a node, so with self loops (selfloops=True),

    .. math::

       E[deg(u)] =  \sum_{v \ne u} p_{uv}  + 2 p_{uu}
                = w_u \left( 1 + \frac{w_u}{\sum_k w_k} \right) .

    References
    ----------
    .. [1] Fan Chung and L. Lu, Connected components in random graphs with
       given expected degree sequences, Ann. Combinatorics, 6,
       pp. 125-145, 2002.
    .. [2] Joel Miller and Aric Hagberg,
       Efficient generation of networks with given expected degrees,
       in Algorithms and Models for the Web-Graph (WAW 2011),
       Alan Frieze, Paul Horn, and Paweł Prałat (Eds), LNCS 6732,
       pp. 115-126, 2011.
    """
    n = len(w)
    G=nx.empty_graph(n)
    if n==0 or max(w)==0: # done if no edges
        return G
    if seed is not None:
        random.seed(seed)
    rho = 1/float(sum(w))
    # sort weights, largest first
    # preserve order of weights for integer node label mapping
    order = sorted(enumerate(w),key=itemgetter(1),reverse=True)
    mapping = dict((c,uv[0]) for c,uv in enumerate(order))
    seq = [v for u,v in order]
    last=n
    if not selfloops:
        last-=1
    for u in range(last):
        v = u
        if not selfloops:
            v += 1
        factor = seq[u] * rho
        p = seq[v]*factor
        if p>1:
            p = 1
        while v<n and p>0:
            if p != 1:
                r = random.random()
                v += int(math.floor(math.log(r)/math.log(1-p)))
            if v < n:
                q = seq[v]*factor
                if q>1:
                    q = 1
                if random.random() < q/p:
                    G.add_edge(mapping[u],mapping[v])
                v += 1
                p = q
    return G

def havel_hakimi_graph(deg_sequence,create_using=None):
    """Return a simple graph with given degree sequence constructed
    using the Havel-Hakimi algorithm.

    Parameters
    ----------
    deg_sequence: list of integers
        Each integer corresponds to the degree of a node (need not be sorted).
    create_using : graph, optional (default Graph)
        Return graph of this type. The instance will be cleared.
        Directed graphs are not allowed.

    Raises
    ------
    NetworkXException
        For a non-graphical degree sequence (i.e. one
        not realizable by some simple graph).

    Notes
    -----
    The Havel-Hakimi algorithm constructs a simple graph by
    successively connecting the node of highest degree to other nodes
    of highest degree, resorting remaining nodes by degree, and
    repeating the process. The resulting graph has a high
    degree-associativity.  Nodes are labeled 1,.., len(deg_sequence),
    corresponding to their position in deg_sequence.

    The basic algorithm is from Hakimi [1]_ and was generalized by
    Kleitman and Wang [2]_.

    References
    ----------
    .. [1] Hakimi S., On Realizability of a Set of Integers as 
       Degrees of the Vertices of a Linear Graph. I,
       Journal of SIAM, 10(3), pp. 496-506 (1962)
    .. [2] Kleitman D.J. and Wang D.L.
       Algorithms for Constructing Graphs and Digraphs with Given Valences
       and Factors  Discrete Mathematics, 6(1), pp. 79-88 (1973) 
    """
    if not nx.is_valid_degree_sequence(deg_sequence):
        raise nx.NetworkXError('Invalid degree sequence')
    if create_using is not None:
        if create_using.is_directed():
            raise nx.NetworkXError("Directed graphs are not supported")

    p = len(deg_sequence)
    G=nx.empty_graph(p,create_using)
    num_degs = []
    for i in range(p):
        num_degs.append([])
    dmax, dsum, n = 0, 0, 0
    for d in deg_sequence:
        # Process only the non-zero integers
        if d>0:
            num_degs[d].append(n)
            dmax, dsum, n = max(dmax,d), dsum+d, n+1
    # Return graph if no edges
    if n==0:
        return G

    modstubs = [(0,0)]*(dmax+1)
    # Successively reduce degree sequence by removing the maximum degree
    while n > 0:
        # Retrieve the maximum degree in the sequence
        while len(num_degs[dmax]) == 0:
            dmax -= 1;
        # If there are not enough stubs to connect to, then the sequence is
        # not graphical
        if dmax > n-1:
            raise nx.NetworkXError('Non-graphical integer sequence')

        # Remove largest stub in list
        source = num_degs[dmax].pop()
        n -= 1
        # Reduce the next dmax largest stubs
        mslen = 0
        k = dmax
        for i in range(dmax):
            while len(num_degs[k]) == 0:
                k -= 1
            target = num_degs[k].pop()
            G.add_edge(source, target)
            n -= 1
            if k > 1:
                modstubs[mslen] = (k-1,target)
                mslen += 1
        # Add back to the list any nonzero stubs that were removed
        for i  in range(mslen):
            (stubval, stubtarget) = modstubs[i]
            num_degs[stubval].append(stubtarget)
            n += 1

    G.name="havel_hakimi_graph %d nodes %d edges"%(G.order(),G.size())
    return G

def directed_havel_hakimi_graph(in_deg_sequence,
                                out_deg_sequence,
                                create_using=None):
    """Return a directed graph with the given degree sequences.

    Parameters
    ----------
    in_deg_sequence :  list of integers 
       Each list entry corresponds to the in-degree of a node.
    out_deg_sequence : list of integers 
       Each list entry corresponds to the out-degree of a node.
    create_using : graph, optional (default DiGraph)
       Return graph of this type. The instance will be cleared.

    Returns
    -------
    G : DiGraph
        A graph with the specified degree sequences.
        Nodes are labeled starting at 0 with an index
        corresponding to the position in deg_sequence

    Raises
    ------
    NetworkXError
        If the degree sequences are not digraphical.

    See Also
    --------
    configuration_model
    
    Notes
    -----
    Algorithm as described by Kleitman and Wang [1]_.

    References
    ----------
    .. [1] D.J. Kleitman and D.L. Wang
       Algorithms for Constructing Graphs and Digraphs with Given Valences
       and Factors Discrete Mathematics, 6(1), pp. 79-88 (1973) 
    """
    assert(nx.utils.is_list_of_ints(in_deg_sequence))
    assert(nx.utils.is_list_of_ints(out_deg_sequence))

    if create_using is None:
        create_using = nx.DiGraph()

    # Process the sequences and form two heaps to store degree pairs with
    # either zero or nonzero out degrees
    sumin, sumout, nin, nout = 0, 0, len(in_deg_sequence), len(out_deg_sequence)
    maxn = max(nin, nout) 
    G = nx.empty_graph(maxn,create_using)
    if maxn==0:
        return G
    maxin = 0
    stubheap, zeroheap = [ ], [ ]
    for n in range(maxn):
        in_deg, out_deg = 0, 0
        if n<nout:
            out_deg = out_deg_sequence[n]
        if n<nin:
            in_deg = in_deg_sequence[n]
        if in_deg<0 or out_deg<0:
            raise nx.NetworkXError(
                'Invalid degree sequences. Sequence values must be positive.')
        sumin, sumout, maxin = sumin+in_deg, sumout+out_deg, max(maxin, in_deg)
        if in_deg > 0:
            stubheap.append((-1*out_deg, -1*in_deg,n)) 
        elif out_deg > 0:
            zeroheap.append((-1*out_deg,n)) 
    if sumin != sumout:
        raise nx.NetworkXError(
            'Invalid degree sequences. Sequences must have equal sums.')
    heapq.heapify(stubheap)
    heapq.heapify(zeroheap)

    modstubs = [(0,0,0)]*(maxin+1)
    # Successively reduce degree sequence by removing the maximum 
    while stubheap:
        # Remove first value in the sequence with a non-zero in degree
        (freeout, freein, target) =  heapq.heappop(stubheap)
        freein *= -1   
        if freein > len(stubheap)+len(zeroheap):
            raise nx.NetworkXError('Non-digraphical integer sequence')

        # Attach arcs from the nodes with the most stubs
        mslen = 0
        for i in range(freein):
            if zeroheap and (not stubheap or stubheap[0][0] > zeroheap[0][0]):
                (stubout, stubsource) = heapq.heappop(zeroheap)
                stubin = 0
            else:
                (stubout, stubin, stubsource) = heapq.heappop(stubheap)
            if stubout == 0:
                raise nx.NetworkXError('Non-digraphical integer sequence')
            G.add_edge(stubsource, target)
            # Check if source is now totally connected
            if stubout+1<0 or stubin<0:
                modstubs[mslen] = (stubout+1, stubin, stubsource)
                mslen += 1

        # Add the nodes back to the heaps that still have available stubs
        for i in range(mslen):
            stub = modstubs[i]
            if stub[1] < 0:
                heapq.heappush(stubheap, stub)
            else:
                heapq.heappush(zeroheap, (stub[0], stub[2]))
        if freeout<0:
            heapq.heappush(zeroheap, (freeout, target))

    G.name="directed_havel_hakimi_graph %d nodes %d edges"%(G.order(),G.size())
    return G

def degree_sequence_tree(deg_sequence,create_using=None):
    """Make a tree for the given degree sequence.

    A tree has #nodes-#edges=1 so
    the degree sequence must have
    len(deg_sequence)-sum(deg_sequence)/2=1
    """

    if not len(deg_sequence)-sum(deg_sequence)/2.0 == 1.0:
        raise nx.NetworkXError("Degree sequence invalid")
    if create_using is not None and create_using.is_directed():
        raise nx.NetworkXError("Directed Graph not supported")

    # single node tree
    if len(deg_sequence)==1:
        G=nx.empty_graph(0,create_using)
        return G

    # all degrees greater than 1
    deg=[s for s in deg_sequence if s>1]
    deg.sort(reverse=True)

    # make path graph as backbone
    n=len(deg)+2
    G=nx.path_graph(n,create_using)
    last=n

    # add the leaves
    for source in range(1,n-1):
        nedges=deg.pop()-2
        for target in range(last,last+nedges):
            G.add_edge(source, target)
        last+=nedges

    # in case we added one too many
    if len(G.degree())>len(deg_sequence):
        G.remove_node(0)
    return G

def random_degree_sequence_graph(sequence, seed=None, tries=10):
    r"""Return a simple random graph with the given degree sequence.

    If the maximum degree `d_m` in the sequence is `O(m^{1/4})` then the
    algorithm produces almost uniform random graphs in `O(m d_m)` time
    where `m` is the number of edges.

    Parameters
    ----------
    sequence :  list of integers
        Sequence of degrees
    seed : hashable object, optional
        Seed for random number generator
    tries : int, optional
        Maximum number of tries to create a graph

    Returns
    -------
    G : Graph
        A graph with the specified degree sequence.
        Nodes are labeled starting at 0 with an index
        corresponding to the position in the sequence.

    Raises
    ------
    NetworkXUnfeasible
        If the degree sequence is not graphical.
    NetworkXError
        If a graph is not produced in specified number of tries

    See Also
    --------
    is_valid_degree_sequence, configuration_model

    Notes
    -----
    The generator algorithm [1]_ is not guaranteed to produce a graph.

    References
    ----------
    .. [1] Moshen Bayati, Jeong Han Kim, and Amin Saberi,
       A sequential algorithm for generating random graphs.
       Algorithmica, Volume 58, Number 4, 860-910,
       DOI: 10.1007/s00453-009-9340-1

    Examples
    --------
    >>> sequence = [1, 2, 2, 3]
    >>> G = nx.random_degree_sequence_graph(sequence)
    >>> sorted(G.degree().values())
    [1, 2, 2, 3]
    """
    DSRG = DegreeSequenceRandomGraph(sequence, seed=seed)
    for try_n in range(tries):
        try:
            return DSRG.generate()
        except nx.NetworkXUnfeasible:
            pass
    raise nx.NetworkXError('failed to generate graph in %d tries'%tries)

class DegreeSequenceRandomGraph(object):
    # class to generate random graphs with a given degree sequence
    # use random_degree_sequence_graph()
    def __init__(self, degree, seed=None):
        if not nx.is_valid_degree_sequence(degree):
            raise nx.NetworkXUnfeasible('degree sequence is not graphical')
        if seed is not None:
            random.seed(seed)
        self.degree = list(degree)
        # node labels are integers 0,...,n-1
        self.m = sum(self.degree)/2.0 # number of edges
        try:
            self.dmax = max(self.degree) # maximum degree
        except ValueError:
            self.dmax = 0

    def generate(self):
        # remaining_degree is mapping from int->remaining degree
        self.remaining_degree = dict(enumerate(self.degree))
        # add all nodes to make sure we get isolated nodes
        self.graph = nx.Graph()
        self.graph.add_nodes_from(self.remaining_degree)
        # remove zero degree nodes
        for n,d in list(self.remaining_degree.items()):
            if d == 0:
                del self.remaining_degree[n]
        if len(self.remaining_degree) > 0:
        # build graph in three phases according to how many unmatched edges
            self.phase1()
            self.phase2()
            self.phase3()
        return self.graph

    def update_remaining(self, u, v, aux_graph=None):
        # decrement remaining nodes, modify auxilliary graph if in phase3
        if aux_graph is not None:
            # remove edges from auxilliary graph
            aux_graph.remove_edge(u,v)
        if self.remaining_degree[u] == 1:
            del self.remaining_degree[u]
            if aux_graph is not None:
                aux_graph.remove_node(u)
        else:
            self.remaining_degree[u] -= 1
        if self.remaining_degree[v] == 1:
            del self.remaining_degree[v]
            if aux_graph is not None:
                aux_graph.remove_node(v)
        else:
            self.remaining_degree[v] -= 1

    def p(self,u,v):
        # degree probability
        return 1 - self.degree[u]*self.degree[v]/(4.0*self.m)

    def q(self,u,v):
        # remaining degree probability
        norm = float(max(self.remaining_degree.values()))**2
        return self.remaining_degree[u]*self.remaining_degree[v]/norm

    def suitable_edge(self):
        # Check if there is a suitable edge that is not in the graph
        # True if an (arbitrary) remaining node has at least one possible 
        # connection to another remaining node
        nodes = iter(self.remaining_degree)
        u = next(nodes) # one arbitrary node
        for v in nodes: # loop over all other remaining nodes
            if not self.graph.has_edge(u, v):
                return True
        return False

    def phase1(self):
        # choose node pairs from (degree) weighted distribution
        while sum(self.remaining_degree.values()) >= 2 * self.dmax**2:
            u,v = sorted(random_weighted_sample(self.remaining_degree, 2))
            if self.graph.has_edge(u,v):
                continue
            if random.random() < self.p(u,v):  # accept edge
                self.graph.add_edge(u,v)
                self.update_remaining(u,v)

    def phase2(self):
        # choose remaining nodes uniformly at random and use rejection sampling
        while len(self.remaining_degree) >= 2 * self.dmax:
            norm = float(max(self.remaining_degree.values()))**2
            while True:
                u,v = sorted(random.sample(self.remaining_degree.keys(), 2))
                if self.graph.has_edge(u,v):
                    continue
                if random.random() < self.q(u,v):
                    break
            if random.random() < self.p(u,v):  # accept edge
                self.graph.add_edge(u,v)
                self.update_remaining(u,v)

    def phase3(self):
        # build potential remaining edges and choose with rejection sampling
        potential_edges = combinations(self.remaining_degree, 2)
        # build auxilliary graph of potential edges not already in graph
        H = nx.Graph([(u,v) for (u,v) in potential_edges
                      if not self.graph.has_edge(u,v)])
        while self.remaining_degree:
            if not self.suitable_edge():
                raise nx.NetworkXUnfeasible('no suitable edges left')
            while True:
                u,v = sorted(random.choice(H.edges()))
                if random.random() < self.q(u,v):
                    break
            if random.random() < self.p(u,v): # accept edge
                self.graph.add_edge(u,v)
                self.update_remaining(u,v, aux_graph=H)