This file is indexed.

/usr/lib/python2.7/dist-packages/networkx/generators/random_graphs.py is in python-networkx 1.8.1-0ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
# -*- coding: utf-8 -*-
"""
Generators for random graphs.

"""
#    Copyright (C) 2004-2011 by
#    Aric Hagberg <hagberg@lanl.gov>
#    Dan Schult <dschult@colgate.edu>
#    Pieter Swart <swart@lanl.gov>
#    All rights reserved.
#    BSD license.
__author__ = "\n".join(['Aric Hagberg (hagberg@lanl.gov)',
                        'Pieter Swart (swart@lanl.gov)',
                        'Dan Schult (dschult@colgate.edu)'])
import itertools
import random
import math
import networkx as nx
from networkx.generators.classic import empty_graph, path_graph, complete_graph

from collections import defaultdict

__all__ = ['fast_gnp_random_graph',
           'gnp_random_graph',
           'dense_gnm_random_graph',
           'gnm_random_graph',
           'erdos_renyi_graph',
           'binomial_graph',
           'newman_watts_strogatz_graph',
           'watts_strogatz_graph',
           'connected_watts_strogatz_graph',
           'random_regular_graph',
           'barabasi_albert_graph',
           'powerlaw_cluster_graph',
           'random_lobster',
           'random_shell_graph',
           'random_powerlaw_tree',
           'random_powerlaw_tree_sequence']


#-------------------------------------------------------------------------
#  Some Famous Random Graphs
#-------------------------------------------------------------------------


def fast_gnp_random_graph(n, p, seed=None, directed=False):
    """Return a random graph G_{n,p} (Erdős-Rényi graph, binomial graph).

    Parameters
    ----------
    n : int
        The number of nodes.
    p : float
        Probability for edge creation.
    seed : int, optional
        Seed for random number generator (default=None).
    directed : bool, optional (default=False)
        If True return a directed graph

    Notes
    -----
    The G_{n,p} graph algorithm chooses each of the [n(n-1)]/2
    (undirected) or n(n-1) (directed) possible edges with probability p.

    This algorithm is O(n+m) where m is the expected number of
    edges m=p*n*(n-1)/2.

    It should be faster than gnp_random_graph when p is small and
    the expected number of edges is small (sparse graph).

    See Also
    --------
    gnp_random_graph

    References
    ----------
    .. [1] Vladimir Batagelj and Ulrik Brandes,
       "Efficient generation of large random networks",
       Phys. Rev. E, 71, 036113, 2005.
    """
    G = empty_graph(n)
    G.name="fast_gnp_random_graph(%s,%s)"%(n,p)

    if not seed is None:
        random.seed(seed)

    if p <= 0 or p >= 1:
        return nx.gnp_random_graph(n,p,directed=directed)

    v = 1  # Nodes in graph are from 0,n-1 (this is the second node index).
    w = -1
    lp = math.log(1.0 - p)

    if directed:
        G=nx.DiGraph(G)
        while v < n:
            lr = math.log(1.0 - random.random())
            w = w + 1 + int(lr/lp)
            if v == w: # avoid self loops
                w = w + 1
            while  w >= n and v < n:
                w = w - n
                v = v + 1
                if v == w: # avoid self loops
                    w = w + 1
            if v < n:
                G.add_edge(v, w)
    else:
        while v < n:
            lr = math.log(1.0 - random.random())
            w = w + 1 + int(lr/lp)
            while w >= v and v < n:
                w = w - v
                v = v + 1
            if v < n:
                G.add_edge(v, w)
    return G


def gnp_random_graph(n, p, seed=None, directed=False):
    """Return a random graph G_{n,p} (Erdős-Rényi graph, binomial graph).

    Chooses each of the possible edges with probability p.

    This is also called binomial_graph and erdos_renyi_graph.

    Parameters
    ----------
    n : int
        The number of nodes.
    p : float
        Probability for edge creation.
    seed : int, optional
        Seed for random number generator (default=None).
    directed : bool, optional (default=False)
        If True return a directed graph

    See Also
    --------
    fast_gnp_random_graph

    Notes
    -----
    This is an O(n^2) algorithm.  For sparse graphs (small p) see
    fast_gnp_random_graph for a faster algorithm.

    References
    ----------
    .. [1] P. Erdős and A. Rényi, On Random Graphs, Publ. Math. 6, 290 (1959).
    .. [2] E. N. Gilbert, Random Graphs, Ann. Math. Stat., 30, 1141 (1959).
    """
    if directed:
        G=nx.DiGraph()
    else:
        G=nx.Graph()
    G.add_nodes_from(range(n))
    G.name="gnp_random_graph(%s,%s)"%(n,p)
    if p<=0:
        return G
    if p>=1:
        return complete_graph(n,create_using=G)

    if not seed is None:
        random.seed(seed)

    if G.is_directed():
        edges=itertools.permutations(range(n),2)
    else:
        edges=itertools.combinations(range(n),2)

    for e in edges:
        if random.random() < p:
            G.add_edge(*e)
    return G


# add some aliases to common names
binomial_graph=gnp_random_graph
erdos_renyi_graph=gnp_random_graph

def dense_gnm_random_graph(n, m, seed=None):
    """Return the random graph G_{n,m}.

    Gives a graph picked randomly out of the set of all graphs
    with n nodes and m edges.
    This algorithm should be faster than gnm_random_graph for dense graphs.

    Parameters
    ----------
    n : int
        The number of nodes.
    m : int
        The number of edges.
    seed : int, optional
        Seed for random number generator (default=None).

    See Also
    --------
    gnm_random_graph()

    Notes
    -----
    Algorithm by Keith M. Briggs Mar 31, 2006.
    Inspired by Knuth's Algorithm S (Selection sampling technique),
    in section 3.4.2 of [1]_.

    References
    ----------
    .. [1] Donald E. Knuth, The Art of Computer Programming,
        Volume 2/Seminumerical algorithms, Third Edition, Addison-Wesley, 1997.
    """
    mmax=n*(n-1)/2
    if m>=mmax:
        G=complete_graph(n)
    else:
        G=empty_graph(n)
    G.name="dense_gnm_random_graph(%s,%s)"%(n,m)

    if n==1 or m>=mmax:
        return G

    if seed is not None:
        random.seed(seed)

    u=0
    v=1
    t=0
    k=0
    while True:
        if random.randrange(mmax-t)<m-k:
            G.add_edge(u,v)
            k+=1
            if k==m: return G
        t+=1
        v+=1
        if v==n: # go to next row of adjacency matrix
            u+=1
            v=u+1

def gnm_random_graph(n, m, seed=None, directed=False):
    """Return the random graph G_{n,m}.

    Produces a graph picked randomly out of the set of all graphs
    with n nodes and m edges.

    Parameters
    ----------
    n : int
        The number of nodes.
    m : int
        The number of edges.
    seed : int, optional
        Seed for random number generator (default=None).
    directed : bool, optional (default=False)
        If True return a directed graph
    """
    if directed:
        G=nx.DiGraph()
    else:
        G=nx.Graph()
    G.add_nodes_from(range(n))
    G.name="gnm_random_graph(%s,%s)"%(n,m)

    if seed is not None:
        random.seed(seed)

    if n==1:
        return G
    max_edges=n*(n-1)
    if not directed:
        max_edges/=2.0
    if m>=max_edges:
        return complete_graph(n,create_using=G)

    nlist=G.nodes()
    edge_count=0
    while edge_count < m:
        # generate random edge,u,v
        u = random.choice(nlist)
        v = random.choice(nlist)
        if u==v or G.has_edge(u,v):
            continue
        else:
            G.add_edge(u,v)
            edge_count=edge_count+1
    return G


def newman_watts_strogatz_graph(n, k, p, seed=None):
    """Return a Newman-Watts-Strogatz small world graph.

    Parameters
    ----------
    n : int
        The number of nodes
    k : int
        Each node is connected to k nearest neighbors in ring topology
    p : float
        The probability of adding a new edge for each edge
    seed : int, optional
       seed for random number generator (default=None)

    Notes
    -----
    First create a ring over n nodes.  Then each node in the ring is
    connected with its k nearest neighbors (k-1 neighbors if k is odd).
    Then shortcuts are created by adding new edges as follows:
    for each edge u-v in the underlying "n-ring with k nearest neighbors"
    with probability p add a new edge u-w with randomly-chosen existing
    node w.  In contrast with watts_strogatz_graph(), no edges are removed.

    See Also
    --------
    watts_strogatz_graph()

    References
    ----------
    .. [1] M. E. J. Newman and D. J. Watts,
       Renormalization group analysis of the small-world network model,
       Physics Letters A, 263, 341, 1999.
       http://dx.doi.org/10.1016/S0375-9601(99)00757-4
    """
    if seed is not None:
        random.seed(seed)
    if k>=n:
        raise nx.NetworkXError("k>=n, choose smaller k or larger n")
    G=empty_graph(n)
    G.name="newman_watts_strogatz_graph(%s,%s,%s)"%(n,k,p)
    nlist = G.nodes()
    fromv = nlist
    # connect the k/2 neighbors
    for j in range(1, k // 2+1):
        tov = fromv[j:] + fromv[0:j] # the first j are now last
        for i in range(len(fromv)):
            G.add_edge(fromv[i], tov[i])
    # for each edge u-v, with probability p, randomly select existing
    # node w and add new edge u-w
    e = G.edges()
    for (u, v) in e:
        if random.random() < p:
            w = random.choice(nlist)
            # no self-loops and reject if edge u-w exists
            # is that the correct NWS model?
            while w == u or G.has_edge(u, w):
                w = random.choice(nlist)
                if G.degree(u) >= n-1:
                    break # skip this rewiring
            else:
                G.add_edge(u,w)
    return G


def watts_strogatz_graph(n, k, p, seed=None):
    """Return a Watts-Strogatz small-world graph.


    Parameters
    ----------
    n : int
        The number of nodes
    k : int
        Each node is connected to k nearest neighbors in ring topology
    p : float
        The probability of rewiring each edge
    seed : int, optional
        Seed for random number generator (default=None)

    See Also
    --------
    newman_watts_strogatz_graph()
    connected_watts_strogatz_graph()

    Notes
    -----
    First create a ring over n nodes.  Then each node in the ring is
    connected with its k nearest neighbors (k-1 neighbors if k is odd).
    Then shortcuts are created by replacing some edges as follows:
    for each edge u-v in the underlying "n-ring with k nearest neighbors"
    with probability p replace it with a new edge u-w with uniformly
    random choice of existing node w.

    In contrast with newman_watts_strogatz_graph(), the random
    rewiring does not increase the number of edges. The rewired graph
    is not guaranteed to be connected as in  connected_watts_strogatz_graph().

    References
    ----------
    .. [1] Duncan J. Watts and Steven H. Strogatz,
       Collective dynamics of small-world networks,
       Nature, 393, pp. 440--442, 1998.
    """
    if k>=n:
        raise nx.NetworkXError("k>=n, choose smaller k or larger n")
    if seed is not None:
        random.seed(seed)

    G = nx.Graph()
    G.name="watts_strogatz_graph(%s,%s,%s)"%(n,k,p)
    nodes = list(range(n)) # nodes are labeled 0 to n-1
    # connect each node to k/2 neighbors
    for j in range(1, k // 2+1):
        targets = nodes[j:] + nodes[0:j] # first j nodes are now last in list
        G.add_edges_from(zip(nodes,targets))
    # rewire edges from each node
    # loop over all nodes in order (label) and neighbors in order (distance)
    # no self loops or multiple edges allowed
    for j in range(1, k // 2+1): # outer loop is neighbors
        targets = nodes[j:] + nodes[0:j] # first j nodes are now last in list
        # inner loop in node order
        for u,v in zip(nodes,targets):
            if random.random() < p:
                w = random.choice(nodes)
                # Enforce no self-loops or multiple edges
                while w == u or G.has_edge(u, w):
                    w = random.choice(nodes)
                    if G.degree(u) >= n-1:
                        break # skip this rewiring
                else:
                    G.remove_edge(u,v)
                    G.add_edge(u,w)
    return G

def connected_watts_strogatz_graph(n, k, p, tries=100, seed=None):
    """Return a connected Watts-Strogatz small-world graph.

    Attempt to generate a connected realization by repeated
    generation of Watts-Strogatz small-world graphs.
    An exception is raised if the maximum number of tries is exceeded.

    Parameters
    ----------
    n : int
        The number of nodes
    k : int
        Each node is connected to k nearest neighbors in ring topology
    p : float
        The probability of rewiring each edge
    tries : int
        Number of attempts to generate a connected graph.
    seed : int, optional
         The seed for random number generator.

    See Also
    --------
    newman_watts_strogatz_graph()
    watts_strogatz_graph()

    """
    G = watts_strogatz_graph(n, k, p, seed)
    t=1
    while not nx.is_connected(G):
        G = watts_strogatz_graph(n, k, p, seed)
        t=t+1
        if t>tries:
            raise nx.NetworkXError("Maximum number of tries exceeded")
    return G


def random_regular_graph(d, n, seed=None):
    """Return a random regular graph of n nodes each with degree d.

    The resulting graph G has no self-loops or parallel edges.

    Parameters
    ----------
    d : int
      Degree
    n : integer
      Number of nodes. The value of n*d must be even.
    seed : hashable object
        The seed for random number generator.

    Notes
    -----
    The nodes are numbered form 0 to n-1.

    Kim and Vu's paper [2]_ shows that this algorithm samples in an
    asymptotically uniform way from the space of random graphs when
    d = O(n**(1/3-epsilon)).

    References
    ----------
    .. [1] A. Steger and N. Wormald,
       Generating random regular graphs quickly,
       Probability and Computing 8 (1999), 377-396, 1999.
       http://citeseer.ist.psu.edu/steger99generating.html

    .. [2] Jeong Han Kim and Van H. Vu,
       Generating random regular graphs,
       Proceedings of the thirty-fifth ACM symposium on Theory of computing,
       San Diego, CA, USA, pp 213--222, 2003.
       http://portal.acm.org/citation.cfm?id=780542.780576
    """
    if (n * d) % 2 != 0:
        raise nx.NetworkXError("n * d must be even")

    if not 0 <= d < n:
        raise nx.NetworkXError("the 0 <= d < n inequality must be satisfied")

    if seed is not None:
        random.seed(seed)

    def _suitable(edges, potential_edges):
    # Helper subroutine to check if there are suitable edges remaining
    # If False, the generation of the graph has failed
        if not potential_edges:
            return True
        for s1 in potential_edges:
            for s2 in potential_edges:
                # Two iterators on the same dictionary are guaranteed
                # to visit it in the same order if there are no
                # intervening modifications.
                if s1 == s2:
                    # Only need to consider s1-s2 pair one time
                    break
                if s1 > s2:
                    s1, s2 = s2, s1
                if (s1, s2) not in edges:
                    return True
        return False

    def _try_creation():
        # Attempt to create an edge set

        edges = set()
        stubs = list(range(n)) * d

        while stubs:
            potential_edges = defaultdict(lambda: 0)
            random.shuffle(stubs)
            stubiter = iter(stubs)
            for s1, s2 in zip(stubiter, stubiter):
                if s1 > s2:
                    s1, s2 = s2, s1
                if s1 != s2 and ((s1, s2) not in edges):
                    edges.add((s1, s2))
                else:
                    potential_edges[s1] += 1
                    potential_edges[s2] += 1

            if not _suitable(edges, potential_edges):
                return None # failed to find suitable edge set

            stubs = [node for node, potential in potential_edges.items()
                     for _ in range(potential)]
        return edges

    # Even though a suitable edge set exists,
    # the generation of such a set is not guaranteed.
    # Try repeatedly to find one.
    edges = _try_creation()
    while edges is None:
        edges = _try_creation()

    G = nx.Graph()
    G.name = "random_regular_graph(%s, %s)" % (d, n)
    G.add_edges_from(edges)

    return G

def _random_subset(seq,m):
    """ Return m unique elements from seq.

    This differs from random.sample which can return repeated
    elements if seq holds repeated elements.
    """
    targets=set()
    while len(targets)<m:
        x=random.choice(seq)
        targets.add(x)
    return targets

def barabasi_albert_graph(n, m, seed=None):
    """Return random graph using Barabási-Albert preferential attachment model.

    A graph of n nodes is grown by attaching new nodes each with m
    edges that are preferentially attached to existing nodes with high
    degree.

    Parameters
    ----------
    n : int
        Number of nodes
    m : int
        Number of edges to attach from a new node to existing nodes
    seed : int, optional
        Seed for random number generator (default=None).

    Returns
    -------
    G : Graph

    Notes
    -----
    The initialization is a graph with with m nodes and no edges.

    References
    ----------
    .. [1] A. L. Barabási and R. Albert "Emergence of scaling in
       random networks", Science 286, pp 509-512, 1999.
    """

    if m < 1 or  m >=n:
        raise nx.NetworkXError(\
              "Barabási-Albert network must have m>=1 and m<n, m=%d,n=%d"%(m,n))
    if seed is not None:
        random.seed(seed)

    # Add m initial nodes (m0 in barabasi-speak)
    G=empty_graph(m)
    G.name="barabasi_albert_graph(%s,%s)"%(n,m)
    # Target nodes for new edges
    targets=list(range(m))
    # List of existing nodes, with nodes repeated once for each adjacent edge
    repeated_nodes=[]
    # Start adding the other n-m nodes. The first node is m.
    source=m
    while source<n:
        # Add edges to m nodes from the source.
        G.add_edges_from(zip([source]*m,targets))
        # Add one node to the list for each new edge just created.
        repeated_nodes.extend(targets)
        # And the new node "source" has m edges to add to the list.
        repeated_nodes.extend([source]*m)
        # Now choose m unique nodes from the existing nodes
        # Pick uniformly from repeated_nodes (preferential attachement)
        targets = _random_subset(repeated_nodes,m)
        source += 1
    return G

def powerlaw_cluster_graph(n, m, p, seed=None):
    """Holme and Kim algorithm for growing graphs with powerlaw
    degree distribution and approximate average clustering.

    Parameters
    ----------
    n : int
        the number of nodes
    m : int
        the number of random edges to add for each new node
    p : float,
        Probability of adding a triangle after adding a random edge
    seed : int, optional
        Seed for random number generator (default=None).

    Notes
    -----
    The average clustering has a hard time getting above
    a certain cutoff that depends on m.  This cutoff is often quite low.
    Note that the transitivity (fraction of triangles to possible
    triangles) seems to go down with network size.

    It is essentially the Barabási-Albert (B-A) growth model with an
    extra step that each random edge is followed by a chance of
    making an edge to one of its neighbors too (and thus a triangle).

    This algorithm improves on B-A in the sense that it enables a
    higher average clustering to be attained if desired.

    It seems possible to have a disconnected graph with this algorithm
    since the initial m nodes may not be all linked to a new node
    on the first iteration like the B-A model.

    References
    ----------
    .. [1] P. Holme and B. J. Kim,
       "Growing scale-free networks with tunable clustering",
       Phys. Rev. E, 65, 026107, 2002.
    """

    if m < 1 or n < m:
        raise nx.NetworkXError(\
              "NetworkXError must have m>1 and m<n, m=%d,n=%d"%(m,n))

    if p > 1 or p < 0:
        raise nx.NetworkXError(\
              "NetworkXError p must be in [0,1], p=%f"%(p))
    if seed is not None:
        random.seed(seed)

    G=empty_graph(m) # add m initial nodes (m0 in barabasi-speak)
    G.name="Powerlaw-Cluster Graph"
    repeated_nodes=G.nodes()  # list of existing nodes to sample from
                           # with nodes repeated once for each adjacent edge
    source=m               # next node is m
    while source<n:        # Now add the other n-1 nodes
        possible_targets = _random_subset(repeated_nodes,m)
        # do one preferential attachment for new node
        target=possible_targets.pop()
        G.add_edge(source,target)
        repeated_nodes.append(target) # add one node to list for each new link
        count=1
        while count<m:  # add m-1 more new links
            if random.random()<p: # clustering step: add triangle
                neighborhood=[nbr for nbr in G.neighbors(target) \
                               if not G.has_edge(source,nbr) \
                               and not nbr==source]
                if neighborhood: # if there is a neighbor without a link
                    nbr=random.choice(neighborhood)
                    G.add_edge(source,nbr) # add triangle
                    repeated_nodes.append(nbr)
                    count=count+1
                    continue # go to top of while loop
            # else do preferential attachment step if above fails
            target=possible_targets.pop()
            G.add_edge(source,target)
            repeated_nodes.append(target)
            count=count+1

        repeated_nodes.extend([source]*m)  # add source node to list m times
        source += 1
    return G

def random_lobster(n, p1, p2, seed=None):
    """Return a random lobster.

     A lobster is a tree that reduces to a caterpillar when pruning all
     leaf nodes.

     A caterpillar is a tree that reduces to a path graph when pruning
     all leaf nodes (p2=0).

    Parameters
    ----------
    n : int
        The expected number of nodes in the backbone
    p1 : float
        Probability of adding an edge to the backbone
    p2 : float
        Probability of adding an edge one level beyond backbone
    seed : int, optional
        Seed for random number generator (default=None).
    """
    # a necessary ingredient in any self-respecting graph library
    if seed is not None:
        random.seed(seed)
    llen=int(2*random.random()*n + 0.5)
    L=path_graph(llen)
    L.name="random_lobster(%d,%s,%s)"%(n,p1,p2)
    # build caterpillar: add edges to path graph with probability p1
    current_node=llen-1
    for n in range(llen):
        if random.random()<p1: # add fuzzy caterpillar parts
            current_node+=1
            L.add_edge(n,current_node)
            if random.random()<p2: # add crunchy lobster bits
                current_node+=1
                L.add_edge(current_node-1,current_node)
    return L # voila, un lobster!

def random_shell_graph(constructor, seed=None):
    """Return a random shell graph for the constructor given.

    Parameters
    ----------
    constructor: a list of three-tuples
        (n,m,d) for each shell starting at the center shell.
    n : int
        The number of nodes in the shell
    m : int
        The number or edges in the shell
    d : float
        The ratio of inter-shell (next) edges to intra-shell edges.
        d=0 means no intra shell edges, d=1 for the last shell
    seed : int, optional
        Seed for random number generator (default=None).

    Examples
    --------
    >>> constructor=[(10,20,0.8),(20,40,0.8)]
    >>> G=nx.random_shell_graph(constructor)

    """
    G=empty_graph(0)
    G.name="random_shell_graph(constructor)"

    if seed is not None:
        random.seed(seed)

    glist=[]
    intra_edges=[]
    nnodes=0
    # create gnm graphs for each shell
    for (n,m,d) in constructor:
        inter_edges=int(m*d)
        intra_edges.append(m-inter_edges)
        g=nx.convert_node_labels_to_integers(
            gnm_random_graph(n,inter_edges),
            first_label=nnodes)
        glist.append(g)
        nnodes+=n
        G=nx.operators.union(G,g)

    # connect the shells randomly
    for gi in range(len(glist)-1):
        nlist1=glist[gi].nodes()
        nlist2=glist[gi+1].nodes()
        total_edges=intra_edges[gi]
        edge_count=0
        while edge_count < total_edges:
            u = random.choice(nlist1)
            v = random.choice(nlist2)
            if u==v or G.has_edge(u,v):
                continue
            else:
                G.add_edge(u,v)
                edge_count=edge_count+1
    return G


def random_powerlaw_tree(n, gamma=3, seed=None, tries=100):
    """Return a tree with a powerlaw degree distribution.

    Parameters
    ----------
    n : int,
        The number of nodes
    gamma : float
        Exponent of the power-law
    seed : int, optional
        Seed for random number generator (default=None).
    tries : int
        Number of attempts to adjust sequence to make a tree

    Notes
    -----
    A trial powerlaw degree sequence is chosen and then elements are
    swapped with new elements from a powerlaw distribution until
    the sequence makes a tree (#edges=#nodes-1).

    """
    from networkx.generators.degree_seq import degree_sequence_tree
    try:
        s=random_powerlaw_tree_sequence(n,
                                        gamma=gamma,
                                        seed=seed,
                                        tries=tries)
    except:
        raise nx.NetworkXError(\
              "Exceeded max (%d) attempts for a valid tree sequence."%tries)
    G=degree_sequence_tree(s)
    G.name="random_powerlaw_tree(%s,%s)"%(n,gamma)
    return G


def random_powerlaw_tree_sequence(n, gamma=3, seed=None, tries=100):
    """ Return a degree sequence for a tree with a powerlaw distribution.

    Parameters
    ----------
    n : int,
        The number of nodes
    gamma : float
        Exponent of the power-law
    seed : int, optional
        Seed for random number generator (default=None).
    tries : int
        Number of attempts to adjust sequence to make a tree

    Notes
    -----
    A trial powerlaw degree sequence is chosen and then elements are
    swapped with new elements from a powerlaw distribution until
    the sequence makes a tree (#edges=#nodes-1).


    """
    if seed is not None:
        random.seed(seed)

    # get trial sequence
    z=nx.utils.powerlaw_sequence(n,exponent=gamma)
    # round to integer values in the range [0,n]
    zseq=[min(n, max( int(round(s)),0 )) for s in z]

    # another sequence to swap values from
    z=nx.utils.powerlaw_sequence(tries,exponent=gamma)
    # round to integer values in the range [0,n]
    swap=[min(n, max( int(round(s)),0 )) for s in z]

    for deg in swap:
        if n-sum(zseq)/2.0 == 1.0: # is a tree, return sequence
            return zseq
        index=random.randint(0,n-1)
        zseq[index]=swap.pop()

    raise nx.NetworkXError(\
          "Exceeded max (%d) attempts for a valid tree sequence."%tries)
    return False