This file is indexed.

/usr/lib/python2.7/dist-packages/networkx/generators/tests/test_small.py is in python-networkx 1.8.1-0ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
#!/usr/bin/env python

from nose.tools import *
from networkx import *
from networkx.algorithms.isomorphism.isomorph import graph_could_be_isomorphic
is_isomorphic=graph_could_be_isomorphic

"""Generators - Small
=====================

Some small graphs
"""

null=null_graph()

class TestGeneratorsSmall():
    def test_make_small_graph(self):
        d=["adjacencylist","Bull Graph",5,[[2,3],[1,3,4],[1,2,5],[2],[3]]]
        G=make_small_graph(d)
        assert_true(is_isomorphic(G, bull_graph()))

    def test__LCF_graph(self):
        # If n<=0, then return the null_graph
        G=LCF_graph(-10,[1,2],100)
        assert_true(is_isomorphic(G,null))
        G=LCF_graph(0,[1,2],3)
        assert_true(is_isomorphic(G,null))
        G=LCF_graph(0,[1,2],10)
        assert_true(is_isomorphic(G,null))

        # Test that LCF(n,[],0) == cycle_graph(n)
        for a, b, c in [(5, [], 0), (10, [], 0), (5, [], 1), (10, [], 10)]:
            G=LCF_graph(a, b, c)
            assert_true(is_isomorphic(G,cycle_graph(a)))

        # Generate the utility graph K_{3,3}
        G=LCF_graph(6,[3,-3],3)
        utility_graph=complete_bipartite_graph(3,3)
        assert_true(is_isomorphic(G, utility_graph))

    def test_properties_named_small_graphs(self):
        G=bull_graph()
        assert_equal(G.number_of_nodes(), 5)
        assert_equal(G.number_of_edges(), 5)
        assert_equal(sorted(G.degree().values()), [1, 1, 2, 3, 3])
        assert_equal(diameter(G), 3)
        assert_equal(radius(G), 2)

        G=chvatal_graph()
        assert_equal(G.number_of_nodes(), 12)
        assert_equal(G.number_of_edges(), 24)
        assert_equal(list(G.degree().values()), 12 * [4])
        assert_equal(diameter(G), 2)
        assert_equal(radius(G), 2)

        G=cubical_graph()
        assert_equal(G.number_of_nodes(), 8)
        assert_equal(G.number_of_edges(), 12)
        assert_equal(list(G.degree().values()), 8*[3])
        assert_equal(diameter(G), 3)
        assert_equal(radius(G), 3)

        G=desargues_graph()
        assert_equal(G.number_of_nodes(), 20)
        assert_equal(G.number_of_edges(), 30)
        assert_equal(list(G.degree().values()), 20*[3])
        
        G=diamond_graph()
        assert_equal(G.number_of_nodes(), 4)
        assert_equal(sorted(G.degree().values()), [2, 2, 3, 3])
        assert_equal(diameter(G), 2)
        assert_equal(radius(G), 1)

        G=dodecahedral_graph()
        assert_equal(G.number_of_nodes(), 20)
        assert_equal(G.number_of_edges(), 30)
        assert_equal(list(G.degree().values()), 20*[3])
        assert_equal(diameter(G), 5)
        assert_equal(radius(G), 5)

        G=frucht_graph()
        assert_equal(G.number_of_nodes(), 12)
        assert_equal(G.number_of_edges(), 18)
        assert_equal(list(G.degree().values()), 12*[3])
        assert_equal(diameter(G), 4)
        assert_equal(radius(G), 3)

        G=heawood_graph()
        assert_equal(G.number_of_nodes(), 14)
        assert_equal(G.number_of_edges(), 21)
        assert_equal(list(G.degree().values()), 14*[3])
        assert_equal(diameter(G), 3)
        assert_equal(radius(G), 3)

        G=house_graph()
        assert_equal(G.number_of_nodes(), 5)
        assert_equal(G.number_of_edges(), 6)
        assert_equal(sorted(G.degree().values()), [2, 2, 2, 3, 3])
        assert_equal(diameter(G), 2)
        assert_equal(radius(G), 2)

        G=house_x_graph()
        assert_equal(G.number_of_nodes(), 5)
        assert_equal(G.number_of_edges(), 8)
        assert_equal(sorted(G.degree().values()), [2, 3, 3, 4, 4])
        assert_equal(diameter(G), 2)
        assert_equal(radius(G), 1)

        G=icosahedral_graph()
        assert_equal(G.number_of_nodes(), 12)
        assert_equal(G.number_of_edges(), 30)
        assert_equal(list(G.degree().values()),
                     [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5])
        assert_equal(diameter(G), 3)
        assert_equal(radius(G), 3)

        G=krackhardt_kite_graph()
        assert_equal(G.number_of_nodes(), 10)
        assert_equal(G.number_of_edges(), 18)
        assert_equal(sorted(G.degree().values()),
                     [1, 2, 3, 3, 3, 4, 4, 5, 5, 6])

        G=moebius_kantor_graph()
        assert_equal(G.number_of_nodes(), 16)
        assert_equal(G.number_of_edges(), 24)
        assert_equal(list(G.degree().values()), 16*[3])
        assert_equal(diameter(G), 4)

        G=octahedral_graph()
        assert_equal(G.number_of_nodes(), 6)
        assert_equal(G.number_of_edges(), 12)
        assert_equal(list(G.degree().values()), 6*[4])
        assert_equal(diameter(G), 2)
        assert_equal(radius(G), 2)

        G=pappus_graph()
        assert_equal(G.number_of_nodes(), 18)
        assert_equal(G.number_of_edges(), 27)
        assert_equal(list(G.degree().values()), 18*[3])
        assert_equal(diameter(G), 4)

        G=petersen_graph()
        assert_equal(G.number_of_nodes(), 10)
        assert_equal(G.number_of_edges(), 15)
        assert_equal(list(G.degree().values()), 10*[3])
        assert_equal(diameter(G), 2)
        assert_equal(radius(G), 2)

        G=sedgewick_maze_graph()
        assert_equal(G.number_of_nodes(), 8)
        assert_equal(G.number_of_edges(), 10)
        assert_equal(sorted(G.degree().values()), [1, 2, 2, 2, 3, 3, 3, 4])

        G=tetrahedral_graph()
        assert_equal(G.number_of_nodes(), 4)
        assert_equal(G.number_of_edges(), 6)
        assert_equal(list(G.degree().values()), [3, 3, 3, 3])
        assert_equal(diameter(G), 1)
        assert_equal(radius(G), 1)

        G=truncated_cube_graph()
        assert_equal(G.number_of_nodes(), 24)
        assert_equal(G.number_of_edges(), 36)
        assert_equal(list(G.degree().values()), 24*[3])

        G=truncated_tetrahedron_graph()
        assert_equal(G.number_of_nodes(), 12)
        assert_equal(G.number_of_edges(), 18)
        assert_equal(list(G.degree().values()), 12*[3])

        G=tutte_graph()
        assert_equal(G.number_of_nodes(), 46)
        assert_equal(G.number_of_edges(), 69)
        assert_equal(list(G.degree().values()), 46*[3])

        # Test create_using with directed or multigraphs on small graphs
        assert_raises(networkx.exception.NetworkXError, tutte_graph,
                      create_using=DiGraph())
        MG=tutte_graph(create_using=MultiGraph())
        assert_equal(MG.edges(), G.edges())