/usr/include/boost/container/flat_set.hpp is in libboost1.54-dev 1.54.0-4ubuntu3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 | //////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2005-2012. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/container for documentation.
//
//////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_CONTAINER_FLAT_SET_HPP
#define BOOST_CONTAINER_FLAT_SET_HPP
#if (defined _MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif
#include <boost/container/detail/config_begin.hpp>
#include <boost/container/detail/workaround.hpp>
#include <boost/container/container_fwd.hpp>
#include <utility>
#include <functional>
#include <memory>
#include <boost/container/detail/flat_tree.hpp>
#include <boost/container/detail/mpl.hpp>
#include <boost/container/allocator_traits.hpp>
#include <boost/move/utility.hpp>
#include <boost/move/detail/move_helpers.hpp>
namespace boost {
namespace container {
/// @cond
// Forward declarations of operators < and ==, needed for friend declaration.
#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED
template <class Key, class Compare = std::less<Key>, class Allocator = std::allocator<Key> >
#else
template <class Key, class Compare, class Allocator>
#endif
class flat_set;
template <class Key, class Compare, class Allocator>
inline bool operator==(const flat_set<Key,Compare,Allocator>& x,
const flat_set<Key,Compare,Allocator>& y);
template <class Key, class Compare, class Allocator>
inline bool operator<(const flat_set<Key,Compare,Allocator>& x,
const flat_set<Key,Compare,Allocator>& y);
/// @endcond
//! flat_set is a Sorted Associative Container that stores objects of type Key.
//! flat_set is a Simple Associative Container, meaning that its value type,
//! as well as its key type, is Key. It is also a Unique Associative Container,
//! meaning that no two elements are the same.
//!
//! flat_set is similar to std::set but it's implemented like an ordered vector.
//! This means that inserting a new element into a flat_set invalidates
//! previous iterators and references
//!
//! Erasing an element of a flat_set invalidates iterators and references
//! pointing to elements that come after (their keys are bigger) the erased element.
#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED
template <class Key, class Compare = std::less<Key>, class Allocator = std::allocator<Key> >
#else
template <class Key, class Compare, class Allocator>
#endif
class flat_set
{
/// @cond
private:
BOOST_COPYABLE_AND_MOVABLE(flat_set)
typedef container_detail::flat_tree<Key, Key, container_detail::identity<Key>, Compare, Allocator> tree_t;
tree_t m_flat_tree; // flat tree representing flat_set
/// @endcond
public:
//////////////////////////////////////////////
//
// types
//
//////////////////////////////////////////////
typedef Key key_type;
typedef Key value_type;
typedef Compare key_compare;
typedef Compare value_compare;
typedef typename ::boost::container::allocator_traits<Allocator>::pointer pointer;
typedef typename ::boost::container::allocator_traits<Allocator>::const_pointer const_pointer;
typedef typename ::boost::container::allocator_traits<Allocator>::reference reference;
typedef typename ::boost::container::allocator_traits<Allocator>::const_reference const_reference;
typedef typename ::boost::container::allocator_traits<Allocator>::size_type size_type;
typedef typename ::boost::container::allocator_traits<Allocator>::difference_type difference_type;
typedef Allocator allocator_type;
typedef typename BOOST_CONTAINER_IMPDEF(tree_t::stored_allocator_type) stored_allocator_type;
typedef typename BOOST_CONTAINER_IMPDEF(tree_t::iterator) iterator;
typedef typename BOOST_CONTAINER_IMPDEF(tree_t::const_iterator) const_iterator;
typedef typename BOOST_CONTAINER_IMPDEF(tree_t::reverse_iterator) reverse_iterator;
typedef typename BOOST_CONTAINER_IMPDEF(tree_t::const_reverse_iterator) const_reverse_iterator;
public:
//////////////////////////////////////////////
//
// construct/copy/destroy
//
//////////////////////////////////////////////
//! <b>Effects</b>: Default constructs an empty flat_set.
//!
//! <b>Complexity</b>: Constant.
explicit flat_set()
: m_flat_tree()
{}
//! <b>Effects</b>: Constructs an empty flat_set using the specified
//! comparison object and allocator.
//!
//! <b>Complexity</b>: Constant.
explicit flat_set(const Compare& comp,
const allocator_type& a = allocator_type())
: m_flat_tree(comp, a)
{}
//! <b>Effects</b>: Constructs an empty set using the specified comparison object and
//! allocator, and inserts elements from the range [first ,last ).
//!
//! <b>Complexity</b>: Linear in N if the range [first ,last ) is already sorted using
//! comp and otherwise N logN, where N is last - first.
template <class InputIterator>
flat_set(InputIterator first, InputIterator last,
const Compare& comp = Compare(),
const allocator_type& a = allocator_type())
: m_flat_tree(true, first, last, comp, a)
{}
//! <b>Effects</b>: Constructs an empty flat_set using the specified comparison object and
//! allocator, and inserts elements from the ordered unique range [first ,last). This function
//! is more efficient than the normal range creation for ordered ranges.
//!
//! <b>Requires</b>: [first ,last) must be ordered according to the predicate and must be
//! unique values.
//!
//! <b>Complexity</b>: Linear in N.
//!
//! <b>Note</b>: Non-standard extension.
template <class InputIterator>
flat_set(ordered_unique_range_t, InputIterator first, InputIterator last,
const Compare& comp = Compare(),
const allocator_type& a = allocator_type())
: m_flat_tree(ordered_range, first, last, comp, a)
{}
//! <b>Effects</b>: Copy constructs a set.
//!
//! <b>Complexity</b>: Linear in x.size().
flat_set(const flat_set& x)
: m_flat_tree(x.m_flat_tree)
{}
//! <b>Effects</b>: Move constructs a set. Constructs *this using x's resources.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Postcondition</b>: x is emptied.
flat_set(BOOST_RV_REF(flat_set) mx)
: m_flat_tree(boost::move(mx.m_flat_tree))
{}
//! <b>Effects</b>: Copy constructs a set using the specified allocator.
//!
//! <b>Complexity</b>: Linear in x.size().
flat_set(const flat_set& x, const allocator_type &a)
: m_flat_tree(x.m_flat_tree, a)
{}
//! <b>Effects</b>: Move constructs a set using the specified allocator.
//! Constructs *this using x's resources.
//!
//! <b>Complexity</b>: Constant if a == mx.get_allocator(), linear otherwise
flat_set(BOOST_RV_REF(flat_set) mx, const allocator_type &a)
: m_flat_tree(boost::move(mx.m_flat_tree), a)
{}
//! <b>Effects</b>: Makes *this a copy of x.
//!
//! <b>Complexity</b>: Linear in x.size().
flat_set& operator=(BOOST_COPY_ASSIGN_REF(flat_set) x)
{ m_flat_tree = x.m_flat_tree; return *this; }
//! <b>Effects</b>: Makes *this a copy of the previous value of xx.
//!
//! <b>Complexity</b>: Linear in x.size().
flat_set& operator=(BOOST_RV_REF(flat_set) mx)
{ m_flat_tree = boost::move(mx.m_flat_tree); return *this; }
//! <b>Effects</b>: Returns a copy of the Allocator that
//! was passed to the object's constructor.
//!
//! <b>Complexity</b>: Constant.
allocator_type get_allocator() const BOOST_CONTAINER_NOEXCEPT
{ return m_flat_tree.get_allocator(); }
//! <b>Effects</b>: Returns a reference to the internal allocator.
//!
//! <b>Throws</b>: Nothing
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Non-standard extension.
stored_allocator_type &get_stored_allocator() BOOST_CONTAINER_NOEXCEPT
{ return m_flat_tree.get_stored_allocator(); }
//! <b>Effects</b>: Returns a reference to the internal allocator.
//!
//! <b>Throws</b>: Nothing
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Non-standard extension.
const stored_allocator_type &get_stored_allocator() const BOOST_CONTAINER_NOEXCEPT
{ return m_flat_tree.get_stored_allocator(); }
//////////////////////////////////////////////
//
// iterators
//
//////////////////////////////////////////////
//! <b>Effects</b>: Returns an iterator to the first element contained in the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
iterator begin() BOOST_CONTAINER_NOEXCEPT
{ return m_flat_tree.begin(); }
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator begin() const BOOST_CONTAINER_NOEXCEPT
{ return m_flat_tree.begin(); }
//! <b>Effects</b>: Returns an iterator to the end of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
iterator end() BOOST_CONTAINER_NOEXCEPT
{ return m_flat_tree.end(); }
//! <b>Effects</b>: Returns a const_iterator to the end of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator end() const BOOST_CONTAINER_NOEXCEPT
{ return m_flat_tree.end(); }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reverse_iterator rbegin() BOOST_CONTAINER_NOEXCEPT
{ return m_flat_tree.rbegin(); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator rbegin() const BOOST_CONTAINER_NOEXCEPT
{ return m_flat_tree.rbegin(); }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the end
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reverse_iterator rend() BOOST_CONTAINER_NOEXCEPT
{ return m_flat_tree.rend(); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator rend() const BOOST_CONTAINER_NOEXCEPT
{ return m_flat_tree.rend(); }
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator cbegin() const BOOST_CONTAINER_NOEXCEPT
{ return m_flat_tree.cbegin(); }
//! <b>Effects</b>: Returns a const_iterator to the end of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator cend() const BOOST_CONTAINER_NOEXCEPT
{ return m_flat_tree.cend(); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator crbegin() const BOOST_CONTAINER_NOEXCEPT
{ return m_flat_tree.crbegin(); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator crend() const BOOST_CONTAINER_NOEXCEPT
{ return m_flat_tree.crend(); }
//////////////////////////////////////////////
//
// capacity
//
//////////////////////////////////////////////
//! <b>Effects</b>: Returns true if the container contains no elements.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
bool empty() const BOOST_CONTAINER_NOEXCEPT
{ return m_flat_tree.empty(); }
//! <b>Effects</b>: Returns the number of the elements contained in the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
size_type size() const BOOST_CONTAINER_NOEXCEPT
{ return m_flat_tree.size(); }
//! <b>Effects</b>: Returns the largest possible size of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
size_type max_size() const BOOST_CONTAINER_NOEXCEPT
{ return m_flat_tree.max_size(); }
//! <b>Effects</b>: Number of elements for which memory has been allocated.
//! capacity() is always greater than or equal to size().
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
size_type capacity() const BOOST_CONTAINER_NOEXCEPT
{ return m_flat_tree.capacity(); }
//! <b>Effects</b>: If n is less than or equal to capacity(), this call has no
//! effect. Otherwise, it is a request for allocation of additional memory.
//! If the request is successful, then capacity() is greater than or equal to
//! n; otherwise, capacity() is unchanged. In either case, size() is unchanged.
//!
//! <b>Throws</b>: If memory allocation allocation throws or Key's copy constructor throws.
//!
//! <b>Note</b>: If capacity() is less than "cnt", iterators and references to
//! to values might be invalidated.
void reserve(size_type cnt)
{ m_flat_tree.reserve(cnt); }
//! <b>Effects</b>: Tries to deallocate the excess of memory created
// with previous allocations. The size of the vector is unchanged
//!
//! <b>Throws</b>: If memory allocation throws, or Key's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to size().
void shrink_to_fit()
{ m_flat_tree.shrink_to_fit(); }
//////////////////////////////////////////////
//
// modifiers
//
//////////////////////////////////////////////
#if defined(BOOST_CONTAINER_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
//! <b>Effects</b>: Inserts an object x of type Key constructed with
//! std::forward<Args>(args)... if and only if there is no element in the container
//! with key equivalent to the key of x.
//!
//! <b>Returns</b>: The bool component of the returned pair is true if and only
//! if the insertion takes place, and the iterator component of the pair
//! points to the element with key equivalent to the key of x.
//!
//! <b>Complexity</b>: Logarithmic search time plus linear insertion
//! to the elements with bigger keys than x.
//!
//! <b>Note</b>: If an element is inserted it might invalidate elements.
template <class... Args>
std::pair<iterator,bool> emplace(Args&&... args)
{ return m_flat_tree.emplace_unique(boost::forward<Args>(args)...); }
//! <b>Effects</b>: Inserts an object of type Key constructed with
//! std::forward<Args>(args)... in the container if and only if there is
//! no element in the container with key equivalent to the key of x.
//! p is a hint pointing to where the insert should start to search.
//!
//! <b>Returns</b>: An iterator pointing to the element with key equivalent
//! to the key of x.
//!
//! <b>Complexity</b>: Logarithmic search time (constant if x is inserted
//! right before p) plus insertion linear to the elements with bigger keys than x.
//!
//! <b>Note</b>: If an element is inserted it might invalidate elements.
template <class... Args>
iterator emplace_hint(const_iterator hint, Args&&... args)
{ return m_flat_tree.emplace_hint_unique(hint, boost::forward<Args>(args)...); }
#else //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING
#define BOOST_PP_LOCAL_MACRO(n) \
BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \
std::pair<iterator,bool> emplace(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \
{ return m_flat_tree.emplace_unique(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)); } \
\
BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \
iterator emplace_hint(const_iterator hint \
BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \
{ return m_flat_tree.emplace_hint_unique \
(hint BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)); } \
//!
#define BOOST_PP_LOCAL_LIMITS (0, BOOST_CONTAINER_MAX_CONSTRUCTOR_PARAMETERS)
#include BOOST_PP_LOCAL_ITERATE()
#endif //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING
#if defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
//! <b>Effects</b>: Inserts x if and only if there is no element in the container
//! with key equivalent to the key of x.
//!
//! <b>Returns</b>: The bool component of the returned pair is true if and only
//! if the insertion takes place, and the iterator component of the pair
//! points to the element with key equivalent to the key of x.
//!
//! <b>Complexity</b>: Logarithmic search time plus linear insertion
//! to the elements with bigger keys than x.
//!
//! <b>Note</b>: If an element is inserted it might invalidate elements.
std::pair<iterator, bool> insert(const value_type &x);
//! <b>Effects</b>: Inserts a new value_type move constructed from the pair if and
//! only if there is no element in the container with key equivalent to the key of x.
//!
//! <b>Returns</b>: The bool component of the returned pair is true if and only
//! if the insertion takes place, and the iterator component of the pair
//! points to the element with key equivalent to the key of x.
//!
//! <b>Complexity</b>: Logarithmic search time plus linear insertion
//! to the elements with bigger keys than x.
//!
//! <b>Note</b>: If an element is inserted it might invalidate elements.
std::pair<iterator, bool> insert(value_type &&x);
#else
private:
typedef std::pair<iterator, bool> insert_return_pair;
public:
BOOST_MOVE_CONVERSION_AWARE_CATCH(insert, value_type, insert_return_pair, this->priv_insert)
#endif
#if defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
//! <b>Effects</b>: Inserts a copy of x in the container if and only if there is
//! no element in the container with key equivalent to the key of x.
//! p is a hint pointing to where the insert should start to search.
//!
//! <b>Returns</b>: An iterator pointing to the element with key equivalent
//! to the key of x.
//!
//! <b>Complexity</b>: Logarithmic search time (constant if x is inserted
//! right before p) plus insertion linear to the elements with bigger keys than x.
//!
//! <b>Note</b>: If an element is inserted it might invalidate elements.
iterator insert(const_iterator p, const value_type &x);
//! <b>Effects</b>: Inserts an element move constructed from x in the container.
//! p is a hint pointing to where the insert should start to search.
//!
//! <b>Returns</b>: An iterator pointing to the element with key equivalent to the key of x.
//!
//! <b>Complexity</b>: Logarithmic search time (constant if x is inserted
//! right before p) plus insertion linear to the elements with bigger keys than x.
//!
//! <b>Note</b>: If an element is inserted it might invalidate elements.
iterator insert(const_iterator position, value_type &&x);
#else
BOOST_MOVE_CONVERSION_AWARE_CATCH_1ARG(insert, value_type, iterator, this->priv_insert, const_iterator)
#endif
//! <b>Requires</b>: first, last are not iterators into *this.
//!
//! <b>Effects</b>: inserts each element from the range [first,last) if and only
//! if there is no element with key equivalent to the key of that element.
//!
//! <b>Complexity</b>: At most N log(size()+N) (N is the distance from first to last)
//! search time plus N*size() insertion time.
//!
//! <b>Note</b>: If an element is inserted it might invalidate elements.
template <class InputIterator>
void insert(InputIterator first, InputIterator last)
{ m_flat_tree.insert_unique(first, last); }
//! <b>Requires</b>: first, last are not iterators into *this and
//! must be ordered according to the predicate and must be
//! unique values.
//!
//! <b>Effects</b>: inserts each element from the range [first,last) .This function
//! is more efficient than the normal range creation for ordered ranges.
//!
//! <b>Complexity</b>: At most N log(size()+N) (N is the distance from first to last)
//! search time plus N*size() insertion time.
//!
//! <b>Note</b>: Non-standard extension. If an element is inserted it might invalidate elements.
template <class InputIterator>
void insert(ordered_unique_range_t, InputIterator first, InputIterator last)
{ m_flat_tree.insert_unique(ordered_unique_range, first, last); }
//! <b>Effects</b>: Erases the element pointed to by position.
//!
//! <b>Returns</b>: Returns an iterator pointing to the element immediately
//! following q prior to the element being erased. If no such element exists,
//! returns end().
//!
//! <b>Complexity</b>: Linear to the elements with keys bigger than position
//!
//! <b>Note</b>: Invalidates elements with keys
//! not less than the erased element.
iterator erase(const_iterator position)
{ return m_flat_tree.erase(position); }
//! <b>Effects</b>: Erases all elements in the container with key equivalent to x.
//!
//! <b>Returns</b>: Returns the number of erased elements.
//!
//! <b>Complexity</b>: Logarithmic search time plus erasure time
//! linear to the elements with bigger keys.
size_type erase(const key_type& x)
{ return m_flat_tree.erase(x); }
//! <b>Effects</b>: Erases all the elements in the range [first, last).
//!
//! <b>Returns</b>: Returns last.
//!
//! <b>Complexity</b>: size()*N where N is the distance from first to last.
//!
//! <b>Complexity</b>: Logarithmic search time plus erasure time
//! linear to the elements with bigger keys.
iterator erase(const_iterator first, const_iterator last)
{ return m_flat_tree.erase(first, last); }
//! <b>Effects</b>: Swaps the contents of *this and x.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
void swap(flat_set& x)
{ m_flat_tree.swap(x.m_flat_tree); }
//! <b>Effects</b>: erase(a.begin(),a.end()).
//!
//! <b>Postcondition</b>: size() == 0.
//!
//! <b>Complexity</b>: linear in size().
void clear() BOOST_CONTAINER_NOEXCEPT
{ m_flat_tree.clear(); }
//////////////////////////////////////////////
//
// observers
//
//////////////////////////////////////////////
//! <b>Effects</b>: Returns the comparison object out
//! of which a was constructed.
//!
//! <b>Complexity</b>: Constant.
key_compare key_comp() const
{ return m_flat_tree.key_comp(); }
//! <b>Effects</b>: Returns an object of value_compare constructed out
//! of the comparison object.
//!
//! <b>Complexity</b>: Constant.
value_compare value_comp() const
{ return m_flat_tree.key_comp(); }
//////////////////////////////////////////////
//
// set operations
//
//////////////////////////////////////////////
//! <b>Returns</b>: An iterator pointing to an element with the key
//! equivalent to x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic.
iterator find(const key_type& x)
{ return m_flat_tree.find(x); }
//! <b>Returns</b>: Allocator const_iterator pointing to an element with the key
//! equivalent to x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic.s
const_iterator find(const key_type& x) const
{ return m_flat_tree.find(x); }
//! <b>Returns</b>: The number of elements with key equivalent to x.
//!
//! <b>Complexity</b>: log(size())+count(k)
size_type count(const key_type& x) const
{ return m_flat_tree.find(x) == m_flat_tree.end() ? 0 : 1; }
//! <b>Returns</b>: An iterator pointing to the first element with key not less
//! than k, or a.end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
iterator lower_bound(const key_type& x)
{ return m_flat_tree.lower_bound(x); }
//! <b>Returns</b>: Allocator const iterator pointing to the first element with key not
//! less than k, or a.end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
const_iterator lower_bound(const key_type& x) const
{ return m_flat_tree.lower_bound(x); }
//! <b>Returns</b>: An iterator pointing to the first element with key not less
//! than x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
iterator upper_bound(const key_type& x)
{ return m_flat_tree.upper_bound(x); }
//! <b>Returns</b>: Allocator const iterator pointing to the first element with key not
//! less than x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
const_iterator upper_bound(const key_type& x) const
{ return m_flat_tree.upper_bound(x); }
//! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
//!
//! <b>Complexity</b>: Logarithmic
std::pair<const_iterator, const_iterator> equal_range(const key_type& x) const
{ return m_flat_tree.equal_range(x); }
//! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
//!
//! <b>Complexity</b>: Logarithmic
std::pair<iterator,iterator> equal_range(const key_type& x)
{ return m_flat_tree.equal_range(x); }
/// @cond
template <class K1, class C1, class A1>
friend bool operator== (const flat_set<K1,C1,A1>&, const flat_set<K1,C1,A1>&);
template <class K1, class C1, class A1>
friend bool operator< (const flat_set<K1,C1,A1>&, const flat_set<K1,C1,A1>&);
private:
template<class KeyType>
std::pair<iterator, bool> priv_insert(BOOST_FWD_REF(KeyType) x)
{ return m_flat_tree.insert_unique(::boost::forward<KeyType>(x)); }
template<class KeyType>
iterator priv_insert(const_iterator p, BOOST_FWD_REF(KeyType) x)
{ return m_flat_tree.insert_unique(p, ::boost::forward<KeyType>(x)); }
/// @endcond
};
template <class Key, class Compare, class Allocator>
inline bool operator==(const flat_set<Key,Compare,Allocator>& x,
const flat_set<Key,Compare,Allocator>& y)
{ return x.m_flat_tree == y.m_flat_tree; }
template <class Key, class Compare, class Allocator>
inline bool operator<(const flat_set<Key,Compare,Allocator>& x,
const flat_set<Key,Compare,Allocator>& y)
{ return x.m_flat_tree < y.m_flat_tree; }
template <class Key, class Compare, class Allocator>
inline bool operator!=(const flat_set<Key,Compare,Allocator>& x,
const flat_set<Key,Compare,Allocator>& y)
{ return !(x == y); }
template <class Key, class Compare, class Allocator>
inline bool operator>(const flat_set<Key,Compare,Allocator>& x,
const flat_set<Key,Compare,Allocator>& y)
{ return y < x; }
template <class Key, class Compare, class Allocator>
inline bool operator<=(const flat_set<Key,Compare,Allocator>& x,
const flat_set<Key,Compare,Allocator>& y)
{ return !(y < x); }
template <class Key, class Compare, class Allocator>
inline bool operator>=(const flat_set<Key,Compare,Allocator>& x,
const flat_set<Key,Compare,Allocator>& y)
{ return !(x < y); }
template <class Key, class Compare, class Allocator>
inline void swap(flat_set<Key,Compare,Allocator>& x, flat_set<Key,Compare,Allocator>& y)
{ x.swap(y); }
/// @cond
} //namespace container {
//!has_trivial_destructor_after_move<> == true_type
//!specialization for optimizations
template <class Key, class C, class Allocator>
struct has_trivial_destructor_after_move<boost::container::flat_set<Key, C, Allocator> >
{
static const bool value = has_trivial_destructor_after_move<Allocator>::value &&has_trivial_destructor_after_move<C>::value;
};
namespace container {
// Forward declaration of operators < and ==, needed for friend declaration.
#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED
template <class Key, class Compare = std::less<Key>, class Allocator = std::allocator<Key> >
#else
template <class Key, class Compare, class Allocator>
#endif
class flat_multiset;
template <class Key, class Compare, class Allocator>
inline bool operator==(const flat_multiset<Key,Compare,Allocator>& x,
const flat_multiset<Key,Compare,Allocator>& y);
template <class Key, class Compare, class Allocator>
inline bool operator<(const flat_multiset<Key,Compare,Allocator>& x,
const flat_multiset<Key,Compare,Allocator>& y);
/// @endcond
//! flat_multiset is a Sorted Associative Container that stores objects of type Key.
//! flat_multiset is a Simple Associative Container, meaning that its value type,
//! as well as its key type, is Key.
//! flat_Multiset can store multiple copies of the same key value.
//!
//! flat_multiset is similar to std::multiset but it's implemented like an ordered vector.
//! This means that inserting a new element into a flat_multiset invalidates
//! previous iterators and references
//!
//! Erasing an element of a flat_multiset invalidates iterators and references
//! pointing to elements that come after (their keys are equal or bigger) the erased element.
#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED
template <class Key, class Compare = std::less<Key>, class Allocator = std::allocator<Key> >
#else
template <class Key, class Compare, class Allocator>
#endif
class flat_multiset
{
/// @cond
private:
BOOST_COPYABLE_AND_MOVABLE(flat_multiset)
typedef container_detail::flat_tree<Key, Key, container_detail::identity<Key>, Compare, Allocator> tree_t;
tree_t m_flat_tree; // flat tree representing flat_multiset
/// @endcond
public:
//////////////////////////////////////////////
//
// types
//
//////////////////////////////////////////////
typedef Key key_type;
typedef Key value_type;
typedef Compare key_compare;
typedef Compare value_compare;
typedef typename ::boost::container::allocator_traits<Allocator>::pointer pointer;
typedef typename ::boost::container::allocator_traits<Allocator>::const_pointer const_pointer;
typedef typename ::boost::container::allocator_traits<Allocator>::reference reference;
typedef typename ::boost::container::allocator_traits<Allocator>::const_reference const_reference;
typedef typename ::boost::container::allocator_traits<Allocator>::size_type size_type;
typedef typename ::boost::container::allocator_traits<Allocator>::difference_type difference_type;
typedef Allocator allocator_type;
typedef typename BOOST_CONTAINER_IMPDEF(tree_t::stored_allocator_type) stored_allocator_type;
typedef typename BOOST_CONTAINER_IMPDEF(tree_t::iterator) iterator;
typedef typename BOOST_CONTAINER_IMPDEF(tree_t::const_iterator) const_iterator;
typedef typename BOOST_CONTAINER_IMPDEF(tree_t::reverse_iterator) reverse_iterator;
typedef typename BOOST_CONTAINER_IMPDEF(tree_t::const_reverse_iterator) const_reverse_iterator;
//! <b>Effects</b>: Default constructs an empty flat_multiset.
//!
//! <b>Complexity</b>: Constant.
explicit flat_multiset()
: m_flat_tree()
{}
explicit flat_multiset(const Compare& comp,
const allocator_type& a = allocator_type())
: m_flat_tree(comp, a) {}
template <class InputIterator>
flat_multiset(InputIterator first, InputIterator last,
const Compare& comp = Compare(),
const allocator_type& a = allocator_type())
: m_flat_tree(false, first, last, comp, a)
{}
//! <b>Effects</b>: Constructs an empty flat_multiset using the specified comparison object and
//! allocator, and inserts elements from the ordered range [first ,last ). This function
//! is more efficient than the normal range creation for ordered ranges.
//!
//! <b>Requires</b>: [first ,last) must be ordered according to the predicate.
//!
//! <b>Complexity</b>: Linear in N.
//!
//! <b>Note</b>: Non-standard extension.
template <class InputIterator>
flat_multiset(ordered_range_t, InputIterator first, InputIterator last,
const Compare& comp = Compare(),
const allocator_type& a = allocator_type())
: m_flat_tree(ordered_range, first, last, comp, a)
{}
//! <b>Effects</b>: Copy constructs a flat_multiset.
//!
//! <b>Complexity</b>: Linear in x.size().
flat_multiset(const flat_multiset& x)
: m_flat_tree(x.m_flat_tree)
{}
//! <b>Effects</b>: Move constructs a flat_multiset. Constructs *this using x's resources.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Postcondition</b>: x is emptied.
flat_multiset(BOOST_RV_REF(flat_multiset) mx)
: m_flat_tree(boost::move(mx.m_flat_tree))
{}
//! <b>Effects</b>: Copy constructs a flat_multiset using the specified allocator.
//!
//! <b>Complexity</b>: Linear in x.size().
flat_multiset(const flat_multiset& x, const allocator_type &a)
: m_flat_tree(x.m_flat_tree, a)
{}
//! <b>Effects</b>: Move constructs a flat_multiset using the specified allocator.
//! Constructs *this using x's resources.
//!
//! <b>Complexity</b>: Constant if a == mx.get_allocator(), linear otherwise
flat_multiset(BOOST_RV_REF(flat_multiset) mx, const allocator_type &a)
: m_flat_tree(boost::move(mx.m_flat_tree), a)
{}
//! <b>Effects</b>: Makes *this a copy of x.
//!
//! <b>Complexity</b>: Linear in x.size().
flat_multiset& operator=(BOOST_COPY_ASSIGN_REF(flat_multiset) x)
{ m_flat_tree = x.m_flat_tree; return *this; }
//! <b>Effects</b>: Makes *this a copy of x.
//!
//! <b>Complexity</b>: Linear in x.size().
flat_multiset& operator=(BOOST_RV_REF(flat_multiset) mx)
{ m_flat_tree = boost::move(mx.m_flat_tree); return *this; }
//! <b>Effects</b>: Returns a copy of the Allocator that
//! was passed to the object's constructor.
//!
//! <b>Complexity</b>: Constant.
allocator_type get_allocator() const BOOST_CONTAINER_NOEXCEPT
{ return m_flat_tree.get_allocator(); }
//! <b>Effects</b>: Returns a reference to the internal allocator.
//!
//! <b>Throws</b>: Nothing
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Non-standard extension.
stored_allocator_type &get_stored_allocator() BOOST_CONTAINER_NOEXCEPT
{ return m_flat_tree.get_stored_allocator(); }
//! <b>Effects</b>: Returns a reference to the internal allocator.
//!
//! <b>Throws</b>: Nothing
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Non-standard extension.
const stored_allocator_type &get_stored_allocator() const BOOST_CONTAINER_NOEXCEPT
{ return m_flat_tree.get_stored_allocator(); }
//! <b>Effects</b>: Returns an iterator to the first element contained in the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
iterator begin() BOOST_CONTAINER_NOEXCEPT
{ return m_flat_tree.begin(); }
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator begin() const
{ return m_flat_tree.begin(); }
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator cbegin() const BOOST_CONTAINER_NOEXCEPT
{ return m_flat_tree.cbegin(); }
//! <b>Effects</b>: Returns an iterator to the end of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
iterator end() BOOST_CONTAINER_NOEXCEPT
{ return m_flat_tree.end(); }
//! <b>Effects</b>: Returns a const_iterator to the end of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator end() const BOOST_CONTAINER_NOEXCEPT
{ return m_flat_tree.end(); }
//! <b>Effects</b>: Returns a const_iterator to the end of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator cend() const BOOST_CONTAINER_NOEXCEPT
{ return m_flat_tree.cend(); }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reverse_iterator rbegin() BOOST_CONTAINER_NOEXCEPT
{ return m_flat_tree.rbegin(); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator rbegin() const BOOST_CONTAINER_NOEXCEPT
{ return m_flat_tree.rbegin(); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator crbegin() const BOOST_CONTAINER_NOEXCEPT
{ return m_flat_tree.crbegin(); }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the end
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reverse_iterator rend() BOOST_CONTAINER_NOEXCEPT
{ return m_flat_tree.rend(); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator rend() const BOOST_CONTAINER_NOEXCEPT
{ return m_flat_tree.rend(); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator crend() const BOOST_CONTAINER_NOEXCEPT
{ return m_flat_tree.crend(); }
//////////////////////////////////////////////
//
// capacity
//
//////////////////////////////////////////////
//! <b>Effects</b>: Returns true if the container contains no elements.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
bool empty() const BOOST_CONTAINER_NOEXCEPT
{ return m_flat_tree.empty(); }
//! <b>Effects</b>: Returns the number of the elements contained in the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
size_type size() const BOOST_CONTAINER_NOEXCEPT
{ return m_flat_tree.size(); }
//! <b>Effects</b>: Returns the largest possible size of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
size_type max_size() const BOOST_CONTAINER_NOEXCEPT
{ return m_flat_tree.max_size(); }
//! <b>Effects</b>: Number of elements for which memory has been allocated.
//! capacity() is always greater than or equal to size().
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
size_type capacity() const BOOST_CONTAINER_NOEXCEPT
{ return m_flat_tree.capacity(); }
//! <b>Effects</b>: If n is less than or equal to capacity(), this call has no
//! effect. Otherwise, it is a request for allocation of additional memory.
//! If the request is successful, then capacity() is greater than or equal to
//! n; otherwise, capacity() is unchanged. In either case, size() is unchanged.
//!
//! <b>Throws</b>: If memory allocation allocation throws or Key's copy constructor throws.
//!
//! <b>Note</b>: If capacity() is less than "cnt", iterators and references to
//! to values might be invalidated.
void reserve(size_type cnt)
{ m_flat_tree.reserve(cnt); }
//! <b>Effects</b>: Tries to deallocate the excess of memory created
// with previous allocations. The size of the vector is unchanged
//!
//! <b>Throws</b>: If memory allocation throws, or Key's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to size().
void shrink_to_fit()
{ m_flat_tree.shrink_to_fit(); }
//////////////////////////////////////////////
//
// modifiers
//
//////////////////////////////////////////////
#if defined(BOOST_CONTAINER_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
//! <b>Effects</b>: Inserts an object of type Key constructed with
//! std::forward<Args>(args)... and returns the iterator pointing to the
//! newly inserted element.
//!
//! <b>Complexity</b>: Logarithmic search time plus linear insertion
//! to the elements with bigger keys than x.
//!
//! <b>Note</b>: If an element is inserted it might invalidate elements.
template <class... Args>
iterator emplace(Args&&... args)
{ return m_flat_tree.emplace_equal(boost::forward<Args>(args)...); }
//! <b>Effects</b>: Inserts an object of type Key constructed with
//! std::forward<Args>(args)... in the container.
//! p is a hint pointing to where the insert should start to search.
//!
//! <b>Returns</b>: An iterator pointing to the element with key equivalent
//! to the key of x.
//!
//! <b>Complexity</b>: Logarithmic search time (constant if x is inserted
//! right before p) plus insertion linear to the elements with bigger keys than x.
//!
//! <b>Note</b>: If an element is inserted it might invalidate elements.
template <class... Args>
iterator emplace_hint(const_iterator hint, Args&&... args)
{ return m_flat_tree.emplace_hint_equal(hint, boost::forward<Args>(args)...); }
#else //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING
#define BOOST_PP_LOCAL_MACRO(n) \
BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \
iterator emplace(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \
{ return m_flat_tree.emplace_equal(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)); } \
\
BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \
iterator emplace_hint(const_iterator hint \
BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \
{ return m_flat_tree.emplace_hint_equal \
(hint BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)); } \
//!
#define BOOST_PP_LOCAL_LIMITS (0, BOOST_CONTAINER_MAX_CONSTRUCTOR_PARAMETERS)
#include BOOST_PP_LOCAL_ITERATE()
#endif //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING
#if defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
//! <b>Effects</b>: Inserts x and returns the iterator pointing to the
//! newly inserted element.
//!
//! <b>Complexity</b>: Logarithmic search time plus linear insertion
//! to the elements with bigger keys than x.
//!
//! <b>Note</b>: If an element is inserted it might invalidate elements.
iterator insert(const value_type &x);
//! <b>Effects</b>: Inserts a new value_type move constructed from x
//! and returns the iterator pointing to the newly inserted element.
//!
//! <b>Complexity</b>: Logarithmic search time plus linear insertion
//! to the elements with bigger keys than x.
//!
//! <b>Note</b>: If an element is inserted it might invalidate elements.
iterator insert(value_type &&x);
#else
BOOST_MOVE_CONVERSION_AWARE_CATCH(insert, value_type, iterator, this->priv_insert)
#endif
#if defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
//! <b>Effects</b>: Inserts a copy of x in the container.
//! p is a hint pointing to where the insert should start to search.
//!
//! <b>Returns</b>: An iterator pointing to the element with key equivalent
//! to the key of x.
//!
//! <b>Complexity</b>: Logarithmic search time (constant if x is inserted
//! right before p) plus insertion linear to the elements with bigger keys than x.
//!
//! <b>Note</b>: If an element is inserted it might invalidate elements.
iterator insert(const_iterator p, const value_type &x);
//! <b>Effects</b>: Inserts a new value move constructed from x in the container.
//! p is a hint pointing to where the insert should start to search.
//!
//! <b>Returns</b>: An iterator pointing to the element with key equivalent
//! to the key of x.
//!
//! <b>Complexity</b>: Logarithmic search time (constant if x is inserted
//! right before p) plus insertion linear to the elements with bigger keys than x.
//!
//! <b>Note</b>: If an element is inserted it might invalidate elements.
iterator insert(const_iterator position, value_type &&x);
#else
BOOST_MOVE_CONVERSION_AWARE_CATCH_1ARG(insert, value_type, iterator, this->priv_insert, const_iterator)
#endif
//! <b>Requires</b>: first, last are not iterators into *this.
//!
//! <b>Effects</b>: inserts each element from the range [first,last) .
//!
//! <b>Complexity</b>: At most N log(size()+N) (N is the distance from first to last)
//! search time plus N*size() insertion time.
//!
//! <b>Note</b>: If an element is inserted it might invalidate elements.
template <class InputIterator>
void insert(InputIterator first, InputIterator last)
{ m_flat_tree.insert_equal(first, last); }
//! <b>Requires</b>: first, last are not iterators into *this and
//! must be ordered according to the predicate.
//!
//! <b>Effects</b>: inserts each element from the range [first,last) .This function
//! is more efficient than the normal range creation for ordered ranges.
//!
//! <b>Complexity</b>: At most N log(size()+N) (N is the distance from first to last)
//! search time plus N*size() insertion time.
//!
//! <b>Note</b>: Non-standard extension. If an element is inserted it might invalidate elements.
template <class InputIterator>
void insert(ordered_range_t, InputIterator first, InputIterator last)
{ m_flat_tree.insert_equal(ordered_range, first, last); }
//! <b>Effects</b>: Erases the element pointed to by position.
//!
//! <b>Returns</b>: Returns an iterator pointing to the element immediately
//! following q prior to the element being erased. If no such element exists,
//! returns end().
//!
//! <b>Complexity</b>: Linear to the elements with keys bigger than position
//!
//! <b>Note</b>: Invalidates elements with keys
//! not less than the erased element.
iterator erase(const_iterator position)
{ return m_flat_tree.erase(position); }
//! <b>Effects</b>: Erases all elements in the container with key equivalent to x.
//!
//! <b>Returns</b>: Returns the number of erased elements.
//!
//! <b>Complexity</b>: Logarithmic search time plus erasure time
//! linear to the elements with bigger keys.
size_type erase(const key_type& x)
{ return m_flat_tree.erase(x); }
//! <b>Effects</b>: Erases all the elements in the range [first, last).
//!
//! <b>Returns</b>: Returns last.
//!
//! <b>Complexity</b>: size()*N where N is the distance from first to last.
//!
//! <b>Complexity</b>: Logarithmic search time plus erasure time
//! linear to the elements with bigger keys.
iterator erase(const_iterator first, const_iterator last)
{ return m_flat_tree.erase(first, last); }
//! <b>Effects</b>: Swaps the contents of *this and x.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
void swap(flat_multiset& x)
{ m_flat_tree.swap(x.m_flat_tree); }
//! <b>Effects</b>: erase(a.begin(),a.end()).
//!
//! <b>Postcondition</b>: size() == 0.
//!
//! <b>Complexity</b>: linear in size().
void clear() BOOST_CONTAINER_NOEXCEPT
{ m_flat_tree.clear(); }
//////////////////////////////////////////////
//
// observers
//
//////////////////////////////////////////////
//! <b>Effects</b>: Returns the comparison object out
//! of which a was constructed.
//!
//! <b>Complexity</b>: Constant.
key_compare key_comp() const
{ return m_flat_tree.key_comp(); }
//! <b>Effects</b>: Returns an object of value_compare constructed out
//! of the comparison object.
//!
//! <b>Complexity</b>: Constant.
value_compare value_comp() const
{ return m_flat_tree.key_comp(); }
//////////////////////////////////////////////
//
// set operations
//
//////////////////////////////////////////////
//! <b>Returns</b>: An iterator pointing to an element with the key
//! equivalent to x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic.
iterator find(const key_type& x)
{ return m_flat_tree.find(x); }
//! <b>Returns</b>: Allocator const_iterator pointing to an element with the key
//! equivalent to x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic.s
const_iterator find(const key_type& x) const
{ return m_flat_tree.find(x); }
//! <b>Returns</b>: The number of elements with key equivalent to x.
//!
//! <b>Complexity</b>: log(size())+count(k)
size_type count(const key_type& x) const
{ return m_flat_tree.count(x); }
//! <b>Returns</b>: An iterator pointing to the first element with key not less
//! than k, or a.end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
iterator lower_bound(const key_type& x)
{ return m_flat_tree.lower_bound(x); }
//! <b>Returns</b>: Allocator const iterator pointing to the first element with key not
//! less than k, or a.end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
const_iterator lower_bound(const key_type& x) const
{ return m_flat_tree.lower_bound(x); }
//! <b>Returns</b>: An iterator pointing to the first element with key not less
//! than x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
iterator upper_bound(const key_type& x)
{ return m_flat_tree.upper_bound(x); }
//! <b>Returns</b>: Allocator const iterator pointing to the first element with key not
//! less than x, or end() if such an element is not found.
//!
//! <b>Complexity</b>: Logarithmic
const_iterator upper_bound(const key_type& x) const
{ return m_flat_tree.upper_bound(x); }
//! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
//!
//! <b>Complexity</b>: Logarithmic
std::pair<const_iterator, const_iterator> equal_range(const key_type& x) const
{ return m_flat_tree.equal_range(x); }
//! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
//!
//! <b>Complexity</b>: Logarithmic
std::pair<iterator,iterator> equal_range(const key_type& x)
{ return m_flat_tree.equal_range(x); }
/// @cond
template <class K1, class C1, class A1>
friend bool operator== (const flat_multiset<K1,C1,A1>&,
const flat_multiset<K1,C1,A1>&);
template <class K1, class C1, class A1>
friend bool operator< (const flat_multiset<K1,C1,A1>&,
const flat_multiset<K1,C1,A1>&);
private:
template <class KeyType>
iterator priv_insert(BOOST_FWD_REF(KeyType) x)
{ return m_flat_tree.insert_equal(::boost::forward<KeyType>(x)); }
template <class KeyType>
iterator priv_insert(const_iterator p, BOOST_FWD_REF(KeyType) x)
{ return m_flat_tree.insert_equal(p, ::boost::forward<KeyType>(x)); }
/// @endcond
};
template <class Key, class Compare, class Allocator>
inline bool operator==(const flat_multiset<Key,Compare,Allocator>& x,
const flat_multiset<Key,Compare,Allocator>& y)
{ return x.m_flat_tree == y.m_flat_tree; }
template <class Key, class Compare, class Allocator>
inline bool operator<(const flat_multiset<Key,Compare,Allocator>& x,
const flat_multiset<Key,Compare,Allocator>& y)
{ return x.m_flat_tree < y.m_flat_tree; }
template <class Key, class Compare, class Allocator>
inline bool operator!=(const flat_multiset<Key,Compare,Allocator>& x,
const flat_multiset<Key,Compare,Allocator>& y)
{ return !(x == y); }
template <class Key, class Compare, class Allocator>
inline bool operator>(const flat_multiset<Key,Compare,Allocator>& x,
const flat_multiset<Key,Compare,Allocator>& y)
{ return y < x; }
template <class Key, class Compare, class Allocator>
inline bool operator<=(const flat_multiset<Key,Compare,Allocator>& x,
const flat_multiset<Key,Compare,Allocator>& y)
{ return !(y < x); }
template <class Key, class Compare, class Allocator>
inline bool operator>=(const flat_multiset<Key,Compare,Allocator>& x,
const flat_multiset<Key,Compare,Allocator>& y)
{ return !(x < y); }
template <class Key, class Compare, class Allocator>
inline void swap(flat_multiset<Key,Compare,Allocator>& x, flat_multiset<Key,Compare,Allocator>& y)
{ x.swap(y); }
/// @cond
} //namespace container {
//!has_trivial_destructor_after_move<> == true_type
//!specialization for optimizations
template <class Key, class C, class Allocator>
struct has_trivial_destructor_after_move<boost::container::flat_multiset<Key, C, Allocator> >
{
static const bool value = has_trivial_destructor_after_move<Allocator>::value && has_trivial_destructor_after_move<C>::value;
};
namespace container {
/// @endcond
}}
#include <boost/container/detail/config_end.hpp>
#endif /* BOOST_CONTAINER_FLAT_SET_HPP */
|