/usr/include/boost/container/vector.hpp is in libboost1.54-dev 1.54.0-4ubuntu3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 | //////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2005-2012. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/container for documentation.
//
//////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_CONTAINER_CONTAINER_VECTOR_HPP
#define BOOST_CONTAINER_CONTAINER_VECTOR_HPP
#if (defined _MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif
#include <boost/container/detail/config_begin.hpp>
#include <boost/container/detail/workaround.hpp>
#include <boost/container/container_fwd.hpp>
#include <cstddef>
#include <memory>
#include <algorithm>
#include <iterator>
#include <utility>
#include <boost/detail/no_exceptions_support.hpp>
#include <boost/type_traits/has_trivial_destructor.hpp>
#include <boost/type_traits/has_trivial_copy.hpp>
#include <boost/type_traits/has_trivial_assign.hpp>
#include <boost/type_traits/has_nothrow_copy.hpp>
#include <boost/type_traits/has_nothrow_assign.hpp>
#include <boost/type_traits/has_nothrow_constructor.hpp>
#include <boost/container/container_fwd.hpp>
#include <boost/container/detail/version_type.hpp>
#include <boost/container/detail/allocation_type.hpp>
#include <boost/container/detail/utilities.hpp>
#include <boost/container/detail/iterators.hpp>
#include <boost/container/detail/algorithms.hpp>
#include <boost/container/detail/destroyers.hpp>
#include <boost/container/allocator_traits.hpp>
#include <boost/container/detail/allocator_version_traits.hpp>
#include <boost/container/throw_exception.hpp>
#include <boost/move/utility.hpp>
#include <boost/move/iterator.hpp>
#include <boost/move/detail/move_helpers.hpp>
#include <boost/intrusive/pointer_traits.hpp>
#include <boost/container/detail/mpl.hpp>
#include <boost/container/detail/type_traits.hpp>
#include <boost/container/detail/advanced_insert_int.hpp>
#include <boost/assert.hpp>
namespace boost {
namespace container {
/// @cond
//#define BOOST_CONTAINER_VECTOR_ITERATOR_IS_POINTER
namespace container_detail {
#ifndef BOOST_CONTAINER_VECTOR_ITERATOR_IS_POINTER
//! Const vector_iterator used to iterate through a vector.
template <class Pointer>
class vector_const_iterator
{
public:
typedef std::random_access_iterator_tag iterator_category;
typedef typename boost::intrusive::pointer_traits<Pointer>::element_type value_type;
typedef typename boost::intrusive::pointer_traits<Pointer>::difference_type difference_type;
typedef typename boost::intrusive::pointer_traits<Pointer>::template
rebind_pointer<const value_type>::type pointer;
typedef const value_type& reference;
/// @cond
protected:
Pointer m_ptr;
public:
const Pointer &get_ptr() const BOOST_CONTAINER_NOEXCEPT
{ return m_ptr; }
Pointer &get_ptr() BOOST_CONTAINER_NOEXCEPT
{ return m_ptr; }
explicit vector_const_iterator(Pointer ptr) BOOST_CONTAINER_NOEXCEPT
: m_ptr(ptr)
{}
/// @endcond
public:
//Constructors
vector_const_iterator() BOOST_CONTAINER_NOEXCEPT
#ifndef NDEBUG
: m_ptr()
#else
// No value initialization of m_ptr() to speed up things a bit:
#endif
{}
//Pointer like operators
reference operator*() const BOOST_CONTAINER_NOEXCEPT
{ return *m_ptr; }
const value_type * operator->() const BOOST_CONTAINER_NOEXCEPT
{ return container_detail::to_raw_pointer(m_ptr); }
reference operator[](difference_type off) const BOOST_CONTAINER_NOEXCEPT
{ return m_ptr[off]; }
//Increment / Decrement
vector_const_iterator& operator++() BOOST_CONTAINER_NOEXCEPT
{ ++m_ptr; return *this; }
vector_const_iterator operator++(int) BOOST_CONTAINER_NOEXCEPT
{ return vector_const_iterator(m_ptr++); }
vector_const_iterator& operator--() BOOST_CONTAINER_NOEXCEPT
{ --m_ptr; return *this; }
vector_const_iterator operator--(int) BOOST_CONTAINER_NOEXCEPT
{ return vector_const_iterator(m_ptr--); }
//Arithmetic
vector_const_iterator& operator+=(difference_type off) BOOST_CONTAINER_NOEXCEPT
{ m_ptr += off; return *this; }
vector_const_iterator& operator-=(difference_type off) BOOST_CONTAINER_NOEXCEPT
{ m_ptr -= off; return *this; }
friend vector_const_iterator operator+(const vector_const_iterator &x, difference_type off) BOOST_CONTAINER_NOEXCEPT
{ return vector_const_iterator(x.m_ptr+off); }
friend vector_const_iterator operator+(difference_type off, vector_const_iterator right) BOOST_CONTAINER_NOEXCEPT
{ right.m_ptr += off; return right; }
friend vector_const_iterator operator-(vector_const_iterator left, difference_type off) BOOST_CONTAINER_NOEXCEPT
{ left.m_ptr -= off; return left; }
friend difference_type operator-(const vector_const_iterator &left, const vector_const_iterator& right) BOOST_CONTAINER_NOEXCEPT
{ return left.m_ptr - right.m_ptr; }
//Comparison operators
friend bool operator== (const vector_const_iterator& l, const vector_const_iterator& r) BOOST_CONTAINER_NOEXCEPT
{ return l.m_ptr == r.m_ptr; }
friend bool operator!= (const vector_const_iterator& l, const vector_const_iterator& r) BOOST_CONTAINER_NOEXCEPT
{ return l.m_ptr != r.m_ptr; }
friend bool operator< (const vector_const_iterator& l, const vector_const_iterator& r) BOOST_CONTAINER_NOEXCEPT
{ return l.m_ptr < r.m_ptr; }
friend bool operator<= (const vector_const_iterator& l, const vector_const_iterator& r) BOOST_CONTAINER_NOEXCEPT
{ return l.m_ptr <= r.m_ptr; }
friend bool operator> (const vector_const_iterator& l, const vector_const_iterator& r) BOOST_CONTAINER_NOEXCEPT
{ return l.m_ptr > r.m_ptr; }
friend bool operator>= (const vector_const_iterator& l, const vector_const_iterator& r) BOOST_CONTAINER_NOEXCEPT
{ return l.m_ptr >= r.m_ptr; }
};
//! Iterator used to iterate through a vector
template <class Pointer>
class vector_iterator
: public vector_const_iterator<Pointer>
{
typedef vector_const_iterator<Pointer> base_t;
public:
explicit vector_iterator(Pointer ptr) BOOST_CONTAINER_NOEXCEPT
: base_t(ptr)
{}
public:
typedef std::random_access_iterator_tag iterator_category;
typedef typename boost::intrusive::pointer_traits<Pointer>::element_type value_type;
typedef typename boost::intrusive::pointer_traits<Pointer>::difference_type difference_type;
typedef Pointer pointer;
typedef value_type& reference;
//Constructors
vector_iterator() BOOST_CONTAINER_NOEXCEPT
: base_t()
{}
//Pointer like operators
reference operator*() const BOOST_CONTAINER_NOEXCEPT
{ return *this->m_ptr; }
value_type* operator->() const BOOST_CONTAINER_NOEXCEPT
{ return container_detail::to_raw_pointer(this->m_ptr); }
reference operator[](difference_type off) const BOOST_CONTAINER_NOEXCEPT
{ return this->m_ptr[off]; }
//Increment / Decrement
vector_iterator& operator++() BOOST_CONTAINER_NOEXCEPT
{ ++this->m_ptr; return *this; }
vector_iterator operator++(int) BOOST_CONTAINER_NOEXCEPT
{ return vector_iterator(this->m_ptr++); }
vector_iterator& operator--() BOOST_CONTAINER_NOEXCEPT
{ --this->m_ptr; return *this; }
vector_iterator operator--(int) BOOST_CONTAINER_NOEXCEPT
{ return vector_iterator(this->m_ptr--); }
// Arithmetic
vector_iterator& operator+=(difference_type off) BOOST_CONTAINER_NOEXCEPT
{ this->m_ptr += off; return *this; }
vector_iterator& operator-=(difference_type off) BOOST_CONTAINER_NOEXCEPT
{ this->m_ptr -= off; return *this; }
friend vector_iterator operator+(vector_iterator left, difference_type off) BOOST_CONTAINER_NOEXCEPT
{ left.m_ptr += off; return left; }
friend vector_iterator operator+(difference_type off, vector_iterator right) BOOST_CONTAINER_NOEXCEPT
{ right.m_ptr += off; return right; }
friend vector_iterator operator-(vector_iterator left, difference_type off) BOOST_CONTAINER_NOEXCEPT
{ left.m_ptr -= off; return left; }
};
} //namespace container_detail {
template<class Pointer>
const Pointer &vector_iterator_get_ptr(const container_detail::vector_const_iterator<Pointer> &it) BOOST_CONTAINER_NOEXCEPT
{ return it.get_ptr(); }
template<class Pointer>
Pointer &get_ptr(container_detail::vector_const_iterator<Pointer> &it) BOOST_CONTAINER_NOEXCEPT
{ return it.get_ptr(); }
namespace container_detail {
#else //ifndef BOOST_CONTAINER_VECTOR_ITERATOR_IS_POINTER
template< class MaybeConstPointer
, bool ElementTypeIsConst
= is_const< typename boost::intrusive::pointer_traits<MaybeConstPointer>::element_type>::value >
struct vector_get_ptr_pointer_to_non_const
{
typedef MaybeConstPointer const_pointer;
typedef boost::intrusive::pointer_traits<const_pointer> pointer_traits_t;
typedef typename pointer_traits_t::element_type element_type;
typedef typename remove_const<element_type>::type non_const_element_type;
typedef typename pointer_traits_t
::template rebind_pointer<non_const_element_type>::type return_type;
static return_type get_ptr(const const_pointer &ptr)
{ return boost::intrusive::pointer_traits<return_type>::const_cast_from(ptr); }
};
template<class Pointer>
struct vector_get_ptr_pointer_to_non_const<Pointer, false>
{
typedef const Pointer & return_type;
static return_type get_ptr(const Pointer &ptr)
{ return ptr; }
};
} //namespace container_detail {
template<class MaybeConstPointer>
typename container_detail::vector_get_ptr_pointer_to_non_const<MaybeConstPointer>::return_type
vector_iterator_get_ptr(const MaybeConstPointer &ptr) BOOST_CONTAINER_NOEXCEPT
{
return container_detail::vector_get_ptr_pointer_to_non_const<MaybeConstPointer>::get_ptr(ptr);
}
namespace container_detail {
#endif //#ifndef BOOST_CONTAINER_VECTOR_ITERATOR_IS_POINTER
template <class T, class Allocator>
struct vector_value_traits
{
typedef T value_type;
typedef Allocator allocator_type;
static const bool trivial_dctr = boost::has_trivial_destructor<value_type>::value;
static const bool trivial_dctr_after_move = ::boost::has_trivial_destructor_after_move<value_type>::value;
static const bool trivial_copy = has_trivial_copy<value_type>::value;
static const bool nothrow_copy = has_nothrow_copy<value_type>::value || trivial_copy;
static const bool trivial_assign = has_trivial_assign<value_type>::value;
static const bool nothrow_assign = has_nothrow_assign<value_type>::value || trivial_assign;
//This is the anti-exception array destructor
//to deallocate values already constructed
typedef typename container_detail::if_c
<trivial_dctr
,container_detail::null_scoped_destructor_n<Allocator>
,container_detail::scoped_destructor_n<Allocator>
>::type OldArrayDestructor;
//This is the anti-exception array destructor
//to destroy objects created with copy construction
typedef typename container_detail::if_c
<nothrow_copy
,container_detail::null_scoped_destructor_n<Allocator>
,container_detail::scoped_destructor_n<Allocator>
>::type ArrayDestructor;
//This is the anti-exception array deallocator
typedef typename container_detail::if_c
<nothrow_copy
,container_detail::null_scoped_array_deallocator<Allocator>
,container_detail::scoped_array_deallocator<Allocator>
>::type ArrayDeallocator;
};
//!This struct deallocates and allocated memory
template < class Allocator
, class AllocatorVersion = container_detail::integral_constant
< unsigned
, boost::container::container_detail::version<Allocator>::value
>
>
struct vector_alloc_holder
: public Allocator
{
private:
BOOST_MOVABLE_BUT_NOT_COPYABLE(vector_alloc_holder)
public:
typedef boost::container::allocator_traits<Allocator> allocator_traits_type;
typedef typename allocator_traits_type::pointer pointer;
typedef typename allocator_traits_type::size_type size_type;
typedef typename allocator_traits_type::value_type value_type;
//Constructor, does not throw
vector_alloc_holder()
BOOST_CONTAINER_NOEXCEPT_IF(::boost::has_nothrow_default_constructor<Allocator>::value)
: Allocator(), m_start(), m_size(), m_capacity()
{}
//Constructor, does not throw
template<class AllocConvertible>
explicit vector_alloc_holder(BOOST_FWD_REF(AllocConvertible) a) BOOST_CONTAINER_NOEXCEPT
: Allocator(boost::forward<AllocConvertible>(a)), m_start(), m_size(), m_capacity()
{}
//Constructor, does not throw
template<class AllocConvertible>
explicit vector_alloc_holder(BOOST_FWD_REF(AllocConvertible) a, size_type initial_size)
: Allocator(boost::forward<AllocConvertible>(a))
, m_size(initial_size) //Size is initialized here so vector should only call uninitialized_xxx after this
{
m_start = this->allocation_command(allocate_new, initial_size, initial_size, m_capacity, m_start).first;
}
//Constructor, does not throw
explicit vector_alloc_holder(size_type initial_size)
: Allocator()
, m_size(initial_size) //Size is initialized here so vector should only call uninitialized_xxx after this
{
m_start = this->allocation_command
(allocate_new, initial_size, initial_size, m_capacity, m_start).first;
}
vector_alloc_holder(BOOST_RV_REF(vector_alloc_holder) holder) BOOST_CONTAINER_NOEXCEPT
: Allocator(boost::move(static_cast<Allocator&>(holder)))
, m_start(holder.m_start)
, m_size(holder.m_size)
, m_capacity(holder.m_capacity)
{
holder.m_start = pointer();
holder.m_size = holder.m_capacity = 0;
}
void first_allocation(size_type cap)
{
m_start = this->allocation_command
(allocate_new, cap, cap, m_capacity, m_start).first;
}
void first_allocation_same_allocator_type(size_type cap)
{ this->first_allocation(cap); }
~vector_alloc_holder() BOOST_CONTAINER_NOEXCEPT
{
if(this->m_capacity){
this->alloc().deallocate(this->m_start, this->m_capacity);
}
}
std::pair<pointer, bool>
allocation_command(allocation_type command,
size_type limit_size,
size_type preferred_size,
size_type &received_size, const pointer &reuse = pointer())
{
return allocator_version_traits<Allocator>::allocation_command
(this->alloc(), command, limit_size, preferred_size, received_size, reuse);
}
size_type next_capacity(size_type additional_objects) const
{
std::size_t num_objects = this->m_size + additional_objects;
std::size_t next_cap = this->m_capacity + this->m_capacity/2;
return num_objects > next_cap ? num_objects : next_cap;/*
return get_next_capacity( allocator_traits_type::max_size(this->m_holder.alloc())
, this->m_capacity, additional_objects);*/
}
pointer m_start;
size_type m_size;
size_type m_capacity;
void swap(vector_alloc_holder &x) BOOST_CONTAINER_NOEXCEPT
{
boost::container::swap_dispatch(this->m_start, x.m_start);
boost::container::swap_dispatch(this->m_size, x.m_size);
boost::container::swap_dispatch(this->m_capacity, x.m_capacity);
}
void move_from_empty(vector_alloc_holder &x) BOOST_CONTAINER_NOEXCEPT
{
this->m_start = x.m_start;
this->m_size = x.m_size;
this->m_capacity = x.m_capacity;
x.m_start = pointer();
x.m_size = x.m_capacity = 0;
}
Allocator &alloc() BOOST_CONTAINER_NOEXCEPT
{ return *this; }
const Allocator &alloc() const BOOST_CONTAINER_NOEXCEPT
{ return *this; }
const pointer &start() const BOOST_CONTAINER_NOEXCEPT { return m_start; }
const size_type &capacity() const BOOST_CONTAINER_NOEXCEPT { return m_capacity; }
void start(const pointer &p) BOOST_CONTAINER_NOEXCEPT { m_start = p; }
void capacity(const size_type &c) BOOST_CONTAINER_NOEXCEPT { m_capacity = c; }
};
//!This struct deallocates and allocated memory
template <class Allocator>
struct vector_alloc_holder<Allocator, container_detail::integral_constant<unsigned, 0> >
: public Allocator
{
private:
BOOST_MOVABLE_BUT_NOT_COPYABLE(vector_alloc_holder)
public:
typedef boost::container::allocator_traits<Allocator> allocator_traits_type;
typedef typename allocator_traits_type::pointer pointer;
typedef typename allocator_traits_type::size_type size_type;
typedef typename allocator_traits_type::value_type value_type;
template <class OtherAllocator, class OtherAllocatorVersion>
friend struct vector_alloc_holder;
//Constructor, does not throw
vector_alloc_holder()
BOOST_CONTAINER_NOEXCEPT_IF(::boost::has_nothrow_default_constructor<Allocator>::value)
: Allocator(), m_size()
{}
//Constructor, does not throw
template<class AllocConvertible>
explicit vector_alloc_holder(BOOST_FWD_REF(AllocConvertible) a) BOOST_CONTAINER_NOEXCEPT
: Allocator(boost::forward<AllocConvertible>(a)), m_size()
{}
//Constructor, does not throw
template<class AllocConvertible>
explicit vector_alloc_holder(BOOST_FWD_REF(AllocConvertible) a, size_type initial_size)
: Allocator(boost::forward<AllocConvertible>(a))
, m_size(initial_size) //Size is initialized here so vector should only call uninitialized_xxx after this
{
this->first_allocation(initial_size);
}
//Constructor, does not throw
explicit vector_alloc_holder(size_type initial_size)
: Allocator()
, m_size(initial_size) //Size is initialized here so vector should only call uninitialized_xxx after this
{
this->first_allocation(initial_size);
}
vector_alloc_holder(BOOST_RV_REF(vector_alloc_holder) holder)
: Allocator(boost::move(static_cast<Allocator&>(holder)))
, m_size(holder.m_size) //Size is initialized here so vector should only call uninitialized_xxx after this
{
::boost::container::uninitialized_move_alloc_n
(this->alloc(), container_detail::to_raw_pointer(holder.start()), m_size, container_detail::to_raw_pointer(this->start()));
}
template<class OtherAllocator, class OtherAllocatorVersion>
vector_alloc_holder(BOOST_RV_REF_BEG vector_alloc_holder<OtherAllocator, OtherAllocatorVersion> BOOST_RV_REF_END holder)
: Allocator()
, m_size(holder.m_size) //Initialize it to m_size as first_allocation can only succeed or abort
{
//Different allocator type so we must check we have enough storage
const size_type n = holder.m_size;
this->first_allocation(n);
::boost::container::uninitialized_move_alloc_n
(this->alloc(), container_detail::to_raw_pointer(holder.start()), n, container_detail::to_raw_pointer(this->start()));
}
void first_allocation(size_type cap)
{
if(cap > Allocator::internal_capacity){
throw_bad_alloc();
}
}
void first_allocation_same_allocator_type(size_type) BOOST_CONTAINER_NOEXCEPT
{}
//Destructor
~vector_alloc_holder() BOOST_CONTAINER_NOEXCEPT
{}
void swap(vector_alloc_holder &x)
{
this->priv_swap_members_impl(x);
}
template<class OtherAllocator, class OtherAllocatorVersion>
void swap(vector_alloc_holder<OtherAllocator, OtherAllocatorVersion> &x)
{
if(this->m_size > OtherAllocator::internal_capacity || x.m_size > Allocator::internal_capacity){
throw_bad_alloc();
}
this->priv_swap_members_impl(x);
}
void move_from_empty(vector_alloc_holder &)
{ //Containers with version 0 allocators can't be moved without move elements one by one
throw_bad_alloc();
}
Allocator &alloc() BOOST_CONTAINER_NOEXCEPT
{ return *this; }
const Allocator &alloc() const BOOST_CONTAINER_NOEXCEPT
{ return *this; }
pointer start() const BOOST_CONTAINER_NOEXCEPT { return Allocator::internal_storage(); }
size_type capacity() const BOOST_CONTAINER_NOEXCEPT { return Allocator::internal_capacity; }
size_type m_size;
private:
template<class OtherAllocator, class OtherAllocatorVersion>
void priv_swap_members_impl(vector_alloc_holder<OtherAllocator, OtherAllocatorVersion> &x)
{
const std::size_t MaxTmpStorage = sizeof(value_type)*Allocator::internal_capacity;
value_type *const first_this = container_detail::to_raw_pointer(this->start());
value_type *const first_x = container_detail::to_raw_pointer(x.start());
if(this->m_size < x.m_size){
boost::container::deep_swap_alloc_n<MaxTmpStorage>(this->alloc(), first_this, this->m_size, first_x, x.m_size);
}
else{
boost::container::deep_swap_alloc_n<MaxTmpStorage>(this->alloc(), first_x, x.m_size, first_this, this->m_size);
}
boost::container::swap_dispatch(this->m_size, x.m_size);
}
};
} //namespace container_detail {
/// @endcond
//! \class vector
//! A vector is a sequence that supports random access to elements, constant
//! time insertion and removal of elements at the end, and linear time insertion
//! and removal of elements at the beginning or in the middle. The number of
//! elements in a vector may vary dynamically; memory management is automatic.
//! boost::container::vector is similar to std::vector but it's compatible
//! with shared memory and memory mapped files.
#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED
template <class T, class Allocator = std::allocator<T> >
#else
template <class T, class Allocator>
#endif
class vector
{
/// @cond
typedef container_detail::integral_constant
<unsigned, boost::container::container_detail::version
<Allocator>::value > alloc_version;
boost::container::container_detail::vector_alloc_holder<Allocator, alloc_version> m_holder;
typedef container_detail::vector_alloc_holder<Allocator> base_t;
typedef allocator_traits<Allocator> allocator_traits_type;
template <class U, class UAllocator>
friend class vector;
/// @endcond
public:
//////////////////////////////////////////////
//
// types
//
//////////////////////////////////////////////
typedef T value_type;
typedef typename ::boost::container::allocator_traits<Allocator>::pointer pointer;
typedef typename ::boost::container::allocator_traits<Allocator>::const_pointer const_pointer;
typedef typename ::boost::container::allocator_traits<Allocator>::reference reference;
typedef typename ::boost::container::allocator_traits<Allocator>::const_reference const_reference;
typedef typename ::boost::container::allocator_traits<Allocator>::size_type size_type;
typedef typename ::boost::container::allocator_traits<Allocator>::difference_type difference_type;
typedef Allocator allocator_type;
typedef Allocator stored_allocator_type;
#if defined BOOST_CONTAINER_VECTOR_ITERATOR_IS_POINTER && !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
typedef BOOST_CONTAINER_IMPDEF(pointer) iterator;
typedef BOOST_CONTAINER_IMPDEF(const_pointer) const_iterator;
#else
typedef BOOST_CONTAINER_IMPDEF(container_detail::vector_iterator<pointer>) iterator;
typedef BOOST_CONTAINER_IMPDEF(container_detail::vector_const_iterator<pointer>) const_iterator;
#endif
typedef BOOST_CONTAINER_IMPDEF(std::reverse_iterator<iterator>) reverse_iterator;
typedef BOOST_CONTAINER_IMPDEF(std::reverse_iterator<const_iterator>) const_reverse_iterator;
/// @cond
private:
BOOST_COPYABLE_AND_MOVABLE(vector)
typedef container_detail::vector_value_traits<value_type, Allocator> value_traits;
typedef container_detail::integral_constant<unsigned, 0> allocator_v0;
typedef container_detail::integral_constant<unsigned, 1> allocator_v1;
typedef container_detail::integral_constant<unsigned, 2> allocator_v2;
typedef constant_iterator<T, difference_type> cvalue_iterator;
/// @endcond
public:
//////////////////////////////////////////////
//
// construct/copy/destroy
//
//////////////////////////////////////////////
//! <b>Effects</b>: Constructs a vector taking the allocator as parameter.
//!
//! <b>Throws</b>: If allocator_type's default constructor throws.
//!
//! <b>Complexity</b>: Constant.
vector()
BOOST_CONTAINER_NOEXCEPT_IF(::boost::has_nothrow_default_constructor<Allocator>::value)
: m_holder()
{}
//! <b>Effects</b>: Constructs a vector taking the allocator as parameter.
//!
//! <b>Throws</b>: Nothing
//!
//! <b>Complexity</b>: Constant.
explicit vector(const Allocator& a) BOOST_CONTAINER_NOEXCEPT
: m_holder(a)
{}
//! <b>Effects</b>: Constructs a vector that will use a copy of allocator a
//! and inserts n default contructed values.
//!
//! <b>Throws</b>: If allocator_type's default constructor or allocation
//! throws or T's default constructor throws.
//!
//! <b>Complexity</b>: Linear to n.
explicit vector(size_type n)
: m_holder(n)
{
boost::container::uninitialized_default_alloc_n(this->m_holder.alloc(), n, container_detail::to_raw_pointer(this->m_holder.start()));
}
//! <b>Effects</b>: Constructs a vector
//! and inserts n copies of value.
//!
//! <b>Throws</b>: If allocator_type's default constructor or allocation
//! throws or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to n.
vector(size_type n, const T& value)
: m_holder(n)
{
boost::container::uninitialized_fill_alloc_n
(this->m_holder.alloc(), value, n, container_detail::to_raw_pointer(this->m_holder.start()));
}
//! <b>Effects</b>: Constructs a vector that will use a copy of allocator a
//! and inserts n copies of value.
//!
//! <b>Throws</b>: If allocation
//! throws or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to n.
vector(size_type n, const T& value, const allocator_type& a)
: m_holder(a, n)
{
boost::container::uninitialized_fill_alloc_n
(this->m_holder.alloc(), value, n, container_detail::to_raw_pointer(this->m_holder.start()));
}
//! <b>Effects</b>: Constructs a vector
//! and inserts a copy of the range [first, last) in the vector.
//!
//! <b>Throws</b>: If allocator_type's default constructor or allocation
//! throws or T's constructor taking an dereferenced InIt throws.
//!
//! <b>Complexity</b>: Linear to the range [first, last).
template <class InIt>
vector(InIt first, InIt last)
: m_holder()
{ this->insert(this->cend(), first, last); }
//! <b>Effects</b>: Constructs a vector that will use a copy of allocator a
//! and inserts a copy of the range [first, last) in the vector.
//!
//! <b>Throws</b>: If allocator_type's default constructor or allocation
//! throws or T's constructor taking an dereferenced InIt throws.
//!
//! <b>Complexity</b>: Linear to the range [first, last).
template <class InIt>
vector(InIt first, InIt last, const allocator_type& a)
: m_holder(a)
{ this->insert(this->cend(), first, last); }
//! <b>Effects</b>: Copy constructs a vector.
//!
//! <b>Postcondition</b>: x == *this.
//!
//! <b>Throws</b>: If allocator_type's default constructor or allocation
//! throws or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to the elements x contains.
vector(const vector &x)
: m_holder(allocator_traits_type::select_on_container_copy_construction(x.m_holder.alloc()), x.size())
{
::boost::container::uninitialized_copy_alloc_n
( this->m_holder.alloc(), container_detail::to_raw_pointer(x.m_holder.start())
, x.size(), container_detail::to_raw_pointer(this->m_holder.start()));
}
//! <b>Effects</b>: Move constructor. Moves mx's resources to *this.
//!
//! <b>Throws</b>: Nothing
//!
//! <b>Complexity</b>: Constant.
vector(BOOST_RV_REF(vector) mx) BOOST_CONTAINER_NOEXCEPT
: m_holder(boost::move(mx.m_holder))
{}
#if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
//! <b>Effects</b>: Move constructor. Moves mx's resources to *this.
//!
//! <b>Throws</b>: If T's move constructor or allocation throws
//!
//! <b>Complexity</b>: Linear.
//!
//! <b>Note</b>: Non-standard extension
template<class OtherAllocator>
vector(BOOST_RV_REF_BEG vector<T, OtherAllocator> BOOST_RV_REF_END mx)
: m_holder(boost::move(mx.m_holder))
{}
#endif //!defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
//! <b>Effects</b>: Copy constructs a vector using the specified allocator.
//!
//! <b>Postcondition</b>: x == *this.
//!
//! <b>Throws</b>: If allocation
//! throws or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to the elements x contains.
vector(const vector &x, const allocator_type &a)
: m_holder(a, x.size())
{
::boost::container::uninitialized_copy_alloc_n_source
( this->m_holder.alloc(), container_detail::to_raw_pointer(x.m_holder.start())
, x.size(), container_detail::to_raw_pointer(this->m_holder.start()));
}
//! <b>Effects</b>: Move constructor using the specified allocator.
//! Moves mx's resources to *this if a == allocator_type().
//! Otherwise copies values from x to *this.
//!
//! <b>Throws</b>: If allocation or T's copy constructor throws.
//!
//! <b>Complexity</b>: Constant if a == mx.get_allocator(), linear otherwise.
vector(BOOST_RV_REF(vector) mx, const allocator_type &a)
: m_holder(a)
{
if(mx.m_holder.alloc() == a){
this->m_holder.move_from_empty(mx.m_holder);
}
else{
const size_type n = mx.size();
this->m_holder.first_allocation_same_allocator_type(n);
::boost::container::uninitialized_move_alloc_n_source
( this->m_holder.alloc(), container_detail::to_raw_pointer(mx.m_holder.start())
, n, container_detail::to_raw_pointer(this->m_holder.start()));
this->m_holder.m_size = n;
}
}
//! <b>Effects</b>: Destroys the vector. All stored values are destroyed
//! and used memory is deallocated.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements.
~vector() BOOST_CONTAINER_NOEXCEPT
{
boost::container::destroy_alloc_n
(this->get_stored_allocator(), container_detail::to_raw_pointer(this->m_holder.start()), this->m_holder.m_size);
//vector_alloc_holder deallocates the data
}
//! <b>Effects</b>: Makes *this contain the same elements as x.
//!
//! <b>Postcondition</b>: this->size() == x.size(). *this contains a copy
//! of each of x's elements.
//!
//! <b>Throws</b>: If memory allocation throws or T's copy/move constructor/assignment throws.
//!
//! <b>Complexity</b>: Linear to the number of elements in x.
vector& operator=(BOOST_COPY_ASSIGN_REF(vector) x)
{
if (&x != this){
this->priv_copy_assign(boost::move(x), alloc_version());
}
return *this;
}
//! <b>Effects</b>: Move assignment. All mx's values are transferred to *this.
//!
//! <b>Postcondition</b>: x.empty(). *this contains a the elements x had
//! before the function.
//!
//! <b>Throws</b>: Nothing
//!
//! <b>Complexity</b>: Linear.
vector& operator=(BOOST_RV_REF(vector) x)
//iG BOOST_CONTAINER_NOEXCEPT_IF(!allocator_type::propagate_on_container_move_assignment::value || is_nothrow_move_assignable<allocator_type>::value);)
BOOST_CONTAINER_NOEXCEPT
{
this->priv_move_assign(boost::move(x), alloc_version());
return *this;
}
#if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
//! <b>Effects</b>: Move assignment. All mx's values are transferred to *this.
//!
//! <b>Postcondition</b>: x.empty(). *this contains a the elements x had
//! before the function.
//!
//! <b>Throws</b>: If move constructor/assignment of T throws or allocation throws
//!
//! <b>Complexity</b>: Linear.
template<class OtherAllocator, class OtherAllocatorVersion>
vector& operator=(BOOST_RV_REF_BEG vector<OtherAllocator, OtherAllocatorVersion> BOOST_RV_REF_END x)
{
this->priv_move_assign(boost::move(x), alloc_version());
return *this;
}
#endif
//! <b>Effects</b>: Assigns the the range [first, last) to *this.
//!
//! <b>Throws</b>: If memory allocation throws or T's copy/move constructor/assignment or
//! T's constructor/assignment from dereferencing InpIt throws.
//!
//! <b>Complexity</b>: Linear to n.
template <class InIt>
void assign(InIt first, InIt last
#if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
, typename container_detail::enable_if_c
< !container_detail::is_convertible<InIt, size_type>::value
//&& container_detail::is_input_iterator<InIt>::value
>::type * = 0
#endif
)
{
//Overwrite all elements we can from [first, last)
iterator cur = this->begin();
const iterator end_it = this->end();
for ( ; first != last && cur != end_it; ++cur, ++first){
*cur = *first;
}
if (first == last){
//There are no more elements in the sequence, erase remaining
T* const end_pos = container_detail::to_raw_pointer(this->m_holder.start()) + this->m_holder.m_size;
size_type n = static_cast<size_type>(end_pos - container_detail::to_raw_pointer(vector_iterator_get_ptr(cur)));
this->priv_destroy_last_n(n);
}
else{
//There are more elements in the range, insert the remaining ones
this->insert(this->cend(), first, last);
}
}
//! <b>Effects</b>: Assigns the n copies of val to *this.
//!
//! <b>Throws</b>: If memory allocation throws or
//! T's copy/move constructor/assignment throws.
//!
//! <b>Complexity</b>: Linear to n.
void assign(size_type n, const value_type& val)
{ this->assign(cvalue_iterator(val, n), cvalue_iterator()); }
//! <b>Effects</b>: Returns a copy of the internal allocator.
//!
//! <b>Throws</b>: If allocator's copy constructor throws.
//!
//! <b>Complexity</b>: Constant.
allocator_type get_allocator() const BOOST_CONTAINER_NOEXCEPT
{ return this->m_holder.alloc(); }
//! <b>Effects</b>: Returns a reference to the internal allocator.
//!
//! <b>Throws</b>: Nothing
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Non-standard extension.
stored_allocator_type &get_stored_allocator() BOOST_CONTAINER_NOEXCEPT
{ return this->m_holder.alloc(); }
//! <b>Effects</b>: Returns a reference to the internal allocator.
//!
//! <b>Throws</b>: Nothing
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Non-standard extension.
const stored_allocator_type &get_stored_allocator() const BOOST_CONTAINER_NOEXCEPT
{ return this->m_holder.alloc(); }
//////////////////////////////////////////////
//
// iterators
//
//////////////////////////////////////////////
//! <b>Effects</b>: Returns an iterator to the first element contained in the vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
iterator begin() BOOST_CONTAINER_NOEXCEPT
{ return iterator(this->m_holder.start()); }
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator begin() const BOOST_CONTAINER_NOEXCEPT
{ return const_iterator(this->m_holder.start()); }
//! <b>Effects</b>: Returns an iterator to the end of the vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
iterator end() BOOST_CONTAINER_NOEXCEPT
{ return iterator(this->m_holder.start() + this->m_holder.m_size); }
//! <b>Effects</b>: Returns a const_iterator to the end of the vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator end() const BOOST_CONTAINER_NOEXCEPT
{ return this->cend(); }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning
//! of the reversed vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reverse_iterator rbegin() BOOST_CONTAINER_NOEXCEPT
{ return reverse_iterator(this->end()); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
//! of the reversed vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator rbegin() const BOOST_CONTAINER_NOEXCEPT
{ return this->crbegin(); }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the end
//! of the reversed vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reverse_iterator rend() BOOST_CONTAINER_NOEXCEPT
{ return reverse_iterator(this->begin()); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
//! of the reversed vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator rend() const BOOST_CONTAINER_NOEXCEPT
{ return this->crend(); }
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator cbegin() const BOOST_CONTAINER_NOEXCEPT
{ return const_iterator(this->m_holder.start()); }
//! <b>Effects</b>: Returns a const_iterator to the end of the vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator cend() const BOOST_CONTAINER_NOEXCEPT
{ return const_iterator(this->m_holder.start() + this->m_holder.m_size); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
//! of the reversed vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator crbegin() const BOOST_CONTAINER_NOEXCEPT
{ return const_reverse_iterator(this->end());}
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
//! of the reversed vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator crend() const BOOST_CONTAINER_NOEXCEPT
{ return const_reverse_iterator(this->begin()); }
//////////////////////////////////////////////
//
// capacity
//
//////////////////////////////////////////////
//! <b>Effects</b>: Returns true if the vector contains no elements.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
bool empty() const BOOST_CONTAINER_NOEXCEPT
{ return !this->m_holder.m_size; }
//! <b>Effects</b>: Returns the number of the elements contained in the vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
size_type size() const BOOST_CONTAINER_NOEXCEPT
{ return this->m_holder.m_size; }
//! <b>Effects</b>: Returns the largest possible size of the vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
size_type max_size() const BOOST_CONTAINER_NOEXCEPT
{ return allocator_traits_type::max_size(this->m_holder.alloc()); }
//! <b>Effects</b>: Inserts or erases elements at the end such that
//! the size becomes n. New elements are default constructed.
//!
//! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to the difference between size() and new_size.
void resize(size_type new_size)
{
const size_type sz = this->size();
if (new_size < sz){
//Destroy last elements
this->priv_destroy_last_n(sz - new_size);
}
else{
const size_type n = new_size - this->size();
container_detail::insert_default_constructed_n_proxy<Allocator, T*> proxy(this->m_holder.alloc());
this->priv_forward_range_insert_at_end(n, proxy, alloc_version());
}
}
//! <b>Effects</b>: Inserts or erases elements at the end such that
//! the size becomes n. New elements are copy constructed from x.
//!
//! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to the difference between size() and new_size.
void resize(size_type new_size, const T& x)
{
const size_type sz = this->size();
if (new_size < sz){
//Destroy last elements
this->priv_destroy_last_n(sz - new_size);
}
else{
const size_type n = new_size - this->size();
container_detail::insert_n_copies_proxy<Allocator, T*> proxy(this->m_holder.alloc(), x);
this->priv_forward_range_insert_at_end(n, proxy, alloc_version());
}
}
//! <b>Effects</b>: Number of elements for which memory has been allocated.
//! capacity() is always greater than or equal to size().
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
size_type capacity() const BOOST_CONTAINER_NOEXCEPT
{ return this->m_holder.capacity(); }
//! <b>Effects</b>: If n is less than or equal to capacity(), this call has no
//! effect. Otherwise, it is a request for allocation of additional memory.
//! If the request is successful, then capacity() is greater than or equal to
//! n; otherwise, capacity() is unchanged. In either case, size() is unchanged.
//!
//! <b>Throws</b>: If memory allocation allocation throws or T's copy/move constructor throws.
void reserve(size_type new_cap)
{
if (this->capacity() < new_cap){
this->priv_reserve(new_cap, alloc_version());
}
}
//! <b>Effects</b>: Tries to deallocate the excess of memory created
//! with previous allocations. The size of the vector is unchanged
//!
//! <b>Throws</b>: If memory allocation throws, or T's copy/move constructor throws.
//!
//! <b>Complexity</b>: Linear to size().
void shrink_to_fit()
{ this->priv_shrink_to_fit(alloc_version()); }
//////////////////////////////////////////////
//
// element access
//
//////////////////////////////////////////////
//! <b>Requires</b>: !empty()
//!
//! <b>Effects</b>: Returns a reference to the first
//! element of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reference front() BOOST_CONTAINER_NOEXCEPT
{ return *this->m_holder.start(); }
//! <b>Requires</b>: !empty()
//!
//! <b>Effects</b>: Returns a const reference to the first
//! element of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reference front() const BOOST_CONTAINER_NOEXCEPT
{ return *this->m_holder.start(); }
//! <b>Requires</b>: !empty()
//!
//! <b>Effects</b>: Returns a reference to the last
//! element of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reference back() BOOST_CONTAINER_NOEXCEPT
{ return this->m_holder.start()[this->m_holder.m_size - 1]; }
//! <b>Requires</b>: !empty()
//!
//! <b>Effects</b>: Returns a const reference to the last
//! element of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reference back() const BOOST_CONTAINER_NOEXCEPT
{ return this->m_holder.start()[this->m_holder.m_size - 1]; }
//! <b>Requires</b>: size() > n.
//!
//! <b>Effects</b>: Returns a reference to the nth element
//! from the beginning of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reference operator[](size_type n) BOOST_CONTAINER_NOEXCEPT
{ return this->m_holder.start()[n]; }
//! <b>Requires</b>: size() > n.
//!
//! <b>Effects</b>: Returns a const reference to the nth element
//! from the beginning of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reference operator[](size_type n) const BOOST_CONTAINER_NOEXCEPT
{ return this->m_holder.start()[n]; }
//! <b>Requires</b>: size() > n.
//!
//! <b>Effects</b>: Returns a reference to the nth element
//! from the beginning of the container.
//!
//! <b>Throws</b>: std::range_error if n >= size()
//!
//! <b>Complexity</b>: Constant.
reference at(size_type n)
{ this->priv_check_range(n); return this->m_holder.start()[n]; }
//! <b>Requires</b>: size() > n.
//!
//! <b>Effects</b>: Returns a const reference to the nth element
//! from the beginning of the container.
//!
//! <b>Throws</b>: std::range_error if n >= size()
//!
//! <b>Complexity</b>: Constant.
const_reference at(size_type n) const
{ this->priv_check_range(n); return this->m_holder.start()[n]; }
//////////////////////////////////////////////
//
// data access
//
//////////////////////////////////////////////
//! <b>Returns</b>: Allocator pointer such that [data(),data() + size()) is a valid range.
//! For a non-empty vector, data() == &front().
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
T* data() BOOST_CONTAINER_NOEXCEPT
{ return container_detail::to_raw_pointer(this->m_holder.start()); }
//! <b>Returns</b>: Allocator pointer such that [data(),data() + size()) is a valid range.
//! For a non-empty vector, data() == &front().
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const T * data() const BOOST_CONTAINER_NOEXCEPT
{ return container_detail::to_raw_pointer(this->m_holder.start()); }
//////////////////////////////////////////////
//
// modifiers
//
//////////////////////////////////////////////
#if defined(BOOST_CONTAINER_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
//! <b>Effects</b>: Inserts an object of type T constructed with
//! std::forward<Args>(args)... in the end of the vector.
//!
//! <b>Throws</b>: If memory allocation throws or the in-place constructor throws or
//! T's move constructor throws.
//!
//! <b>Complexity</b>: Amortized constant time.
template<class ...Args>
void emplace_back(Args &&...args)
{
T* back_pos = container_detail::to_raw_pointer(this->m_holder.start()) + this->m_holder.m_size;
if (this->m_holder.m_size < this->m_holder.capacity()){
//There is more memory, just construct a new object at the end
allocator_traits_type::construct(this->m_holder.alloc(), back_pos, ::boost::forward<Args>(args)...);
++this->m_holder.m_size;
}
else{
typedef container_detail::insert_emplace_proxy<Allocator, T*, Args...> type;
this->priv_forward_range_insert_no_capacity
(vector_iterator_get_ptr(this->cend()), 1, type(this->m_holder.alloc(), ::boost::forward<Args>(args)...), alloc_version());
}
}
//! <b>Requires</b>: position must be a valid iterator of *this.
//!
//! <b>Effects</b>: Inserts an object of type T constructed with
//! std::forward<Args>(args)... before position
//!
//! <b>Throws</b>: If memory allocation throws or the in-place constructor throws or
//! T's move constructor/assignment throws.
//!
//! <b>Complexity</b>: If position is end(), amortized constant time
//! Linear time otherwise.
template<class ...Args>
iterator emplace(const_iterator position, Args && ...args)
{
//Just call more general insert(pos, size, value) and return iterator
typedef container_detail::insert_emplace_proxy<Allocator, T*, Args...> type;
return this->priv_forward_range_insert( vector_iterator_get_ptr(position), 1, type(this->m_holder.alloc()
, ::boost::forward<Args>(args)...), alloc_version());
}
#else
#define BOOST_PP_LOCAL_MACRO(n) \
BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \
void emplace_back(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \
{ \
T* back_pos = container_detail::to_raw_pointer \
(this->m_holder.start()) + this->m_holder.m_size; \
if (this->m_holder.m_size < this->m_holder.capacity()){ \
allocator_traits_type::construct (this->m_holder.alloc() \
, back_pos BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _) ); \
++this->m_holder.m_size; \
} \
else{ \
container_detail::BOOST_PP_CAT(insert_emplace_proxy_arg, n) \
<Allocator, T* BOOST_PP_ENUM_TRAILING_PARAMS(n, P)> proxy \
(this->m_holder.alloc() BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)); \
this->priv_forward_range_insert_no_capacity \
(vector_iterator_get_ptr(this->cend()), 1, proxy, alloc_version()); \
} \
} \
\
BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \
iterator emplace(const_iterator pos \
BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \
{ \
container_detail::BOOST_PP_CAT(insert_emplace_proxy_arg, n) \
<Allocator, T* BOOST_PP_ENUM_TRAILING_PARAMS(n, P)> proxy \
(this->m_holder.alloc() BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)); \
return this->priv_forward_range_insert \
(container_detail::to_raw_pointer(vector_iterator_get_ptr(pos)), 1, proxy, alloc_version()); \
} \
//!
#define BOOST_PP_LOCAL_LIMITS (0, BOOST_CONTAINER_MAX_CONSTRUCTOR_PARAMETERS)
#include BOOST_PP_LOCAL_ITERATE()
#endif //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING
#if defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
//! <b>Effects</b>: Inserts a copy of x at the end of the vector.
//!
//! <b>Throws</b>: If memory allocation throws or
//! T's copy/move constructor throws.
//!
//! <b>Complexity</b>: Amortized constant time.
void push_back(const T &x);
//! <b>Effects</b>: Constructs a new element in the end of the vector
//! and moves the resources of mx to this new element.
//!
//! <b>Throws</b>: If memory allocation throws or
//! T's move constructor throws.
//!
//! <b>Complexity</b>: Amortized constant time.
void push_back(T &&x);
#else
BOOST_MOVE_CONVERSION_AWARE_CATCH(push_back, T, void, priv_push_back)
#endif
#if defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
//! <b>Requires</b>: position must be a valid iterator of *this.
//!
//! <b>Effects</b>: Insert a copy of x before position.
//!
//! <b>Throws</b>: If memory allocation throws or T's copy/move constructor/assignment throws.
//!
//! <b>Complexity</b>: If position is end(), amortized constant time
//! Linear time otherwise.
iterator insert(const_iterator position, const T &x);
//! <b>Requires</b>: position must be a valid iterator of *this.
//!
//! <b>Effects</b>: Insert a new element before position with mx's resources.
//!
//! <b>Throws</b>: If memory allocation throws.
//!
//! <b>Complexity</b>: If position is end(), amortized constant time
//! Linear time otherwise.
iterator insert(const_iterator position, T &&x);
#else
BOOST_MOVE_CONVERSION_AWARE_CATCH_1ARG(insert, T, iterator, priv_insert, const_iterator)
#endif
//! <b>Requires</b>: p must be a valid iterator of *this.
//!
//! <b>Effects</b>: Insert n copies of x before pos.
//!
//! <b>Returns</b>: an iterator to the first inserted element or p if n is 0.
//!
//! <b>Throws</b>: If memory allocation throws or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to n.
iterator insert(const_iterator p, size_type n, const T& x)
{
container_detail::insert_n_copies_proxy<Allocator, T*> proxy(this->m_holder.alloc(), x);
return this->priv_forward_range_insert(vector_iterator_get_ptr(p), n, proxy, alloc_version());
}
//! <b>Requires</b>: p must be a valid iterator of *this.
//!
//! <b>Effects</b>: Insert a copy of the [first, last) range before pos.
//!
//! <b>Returns</b>: an iterator to the first inserted element or pos if first == last.
//!
//! <b>Throws</b>: If memory allocation throws, T's constructor from a
//! dereferenced InpIt throws or T's copy/move constructor/assignment throws.
//!
//! <b>Complexity</b>: Linear to std::distance [first, last).
template <class InIt>
iterator insert(const_iterator pos, InIt first, InIt last
#if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
, typename container_detail::enable_if_c
< !container_detail::is_convertible<InIt, size_type>::value
&& container_detail::is_input_iterator<InIt>::value
>::type * = 0
#endif
)
{
const size_type n_pos = pos - this->cbegin();
iterator it(vector_iterator_get_ptr(pos));
for(;first != last; ++first){
it = this->emplace(it, *first);
++it;
}
return iterator(this->m_holder.start() + n_pos);
}
#if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
template <class FwdIt>
iterator insert(const_iterator pos, FwdIt first, FwdIt last
, typename container_detail::enable_if_c
< !container_detail::is_convertible<FwdIt, size_type>::value
&& !container_detail::is_input_iterator<FwdIt>::value
>::type * = 0
)
{
container_detail::insert_range_proxy<Allocator, FwdIt, T*> proxy(this->m_holder.alloc(), first);
return this->priv_forward_range_insert(vector_iterator_get_ptr(pos), std::distance(first, last), proxy, alloc_version());
}
#endif
//! <b>Effects</b>: Removes the last element from the vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant time.
void pop_back() BOOST_CONTAINER_NOEXCEPT
{
//Destroy last element
--this->m_holder.m_size;
this->priv_destroy(container_detail::to_raw_pointer(this->m_holder.start()) + this->m_holder.m_size);
}
//! <b>Effects</b>: Erases the element at position pos.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the elements between pos and the
//! last element. Constant if pos is the last element.
iterator erase(const_iterator position)
{
T *const pos = container_detail::to_raw_pointer(vector_iterator_get_ptr(position));
T *const beg = container_detail::to_raw_pointer(this->m_holder.start());
//Move elements forward and destroy last
this->priv_destroy(::boost::move(pos + 1, beg + this->m_holder.m_size, pos));
--this->m_holder.m_size;
return iterator(vector_iterator_get_ptr(position));
}
//! <b>Effects</b>: Erases the elements pointed by [first, last).
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the distance between first and last
//! plus linear to the elements between pos and the last element.
iterator erase(const_iterator first, const_iterator last)
{
if (first != last){
T* const end_pos = container_detail::to_raw_pointer(this->m_holder.start()) + this->m_holder.m_size;
T* const ptr = container_detail::to_raw_pointer(boost::move
(container_detail::to_raw_pointer(vector_iterator_get_ptr(last))
,end_pos
,container_detail::to_raw_pointer(vector_iterator_get_ptr(first))
));
const size_type destroyed = (end_pos - ptr);
boost::container::destroy_alloc_n(this->get_stored_allocator(), ptr, destroyed);
this->m_holder.m_size -= destroyed;
}
return iterator(vector_iterator_get_ptr(first));
}
//! <b>Effects</b>: Swaps the contents of *this and x.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
void swap(vector& x) BOOST_CONTAINER_NOEXCEPT_IF((!container_detail::is_same<alloc_version, allocator_v0>::value))
{
//Just swap internals in case of !allocator_v0. Otherwise, deep swap
this->m_holder.swap(x.m_holder);
//And now the allocator
container_detail::bool_<allocator_traits_type::propagate_on_container_swap::value> flag;
container_detail::swap_alloc(this->m_holder.alloc(), x.m_holder.alloc(), flag);
}
#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
//! <b>Effects</b>: Swaps the contents of *this and x.
//!
//! <b>Throws</b>: If T's move constructor throws.
//!
//! <b>Complexity</b>: Linear
//!
//! <b>Note</b>: non-standard extension.
template<class OtherAllocator>
void swap(vector<T, OtherAllocator> & x)
{
this->m_holder.swap(x.m_holder);
}
#endif //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
//! <b>Effects</b>: Erases all the elements of the vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements in the vector.
void clear() BOOST_CONTAINER_NOEXCEPT
{ this->priv_destroy_all(); }
/// @cond
//Absolutely experimental. This function might change, disappear or simply crash!
template<class BiDirPosConstIt, class BiDirValueIt>
void insert_ordered_at(size_type element_count, BiDirPosConstIt last_position_it, BiDirValueIt last_value_it)
{
const size_type *dummy = 0;
this->priv_insert_ordered_at(element_count, last_position_it, false, &dummy[0], last_value_it);
}
//Absolutely experimental. This function might change, disappear or simply crash!
template<class BiDirPosConstIt, class BiDirSkipConstIt, class BiDirValueIt>
void insert_ordered_at(size_type element_count, BiDirPosConstIt last_position_it, BiDirSkipConstIt last_skip_it, BiDirValueIt last_value_it)
{
this->priv_insert_ordered_at(element_count, last_position_it, true, last_skip_it, last_value_it);
}
private:
template<class OtherAllocator, class AllocVersion>
void priv_move_assign(BOOST_RV_REF_BEG vector<T, OtherAllocator> BOOST_RV_REF_END x
, AllocVersion
, typename container_detail::enable_if_c
< container_detail::is_same<AllocVersion, allocator_v0>::value &&
!container_detail::is_same<OtherAllocator, allocator_type>::value
>::type * = 0)
{
if(this->capacity() < x.size()){
throw_bad_alloc();
}
this->priv_move_assign_impl(boost::move(x), AllocVersion());
}
template<class OtherAllocator, class AllocVersion>
void priv_move_assign(BOOST_RV_REF_BEG vector<T, OtherAllocator> BOOST_RV_REF_END x
, AllocVersion
, typename container_detail::enable_if_c
< !container_detail::is_same<AllocVersion, allocator_v0>::value ||
container_detail::is_same<OtherAllocator, allocator_type>::value
>::type * = 0)
{
this->priv_move_assign_impl(boost::move(x), AllocVersion());
}
template<class OtherAllocator, class AllocVersion>
void priv_move_assign_impl(BOOST_RV_REF_BEG vector<T, OtherAllocator> BOOST_RV_REF_END x
, AllocVersion
, typename container_detail::enable_if_c
< container_detail::is_same<AllocVersion, allocator_v0>::value
>::type * = 0)
{
T* const this_start = container_detail::to_raw_pointer(m_holder.start());
T* const other_start = container_detail::to_raw_pointer(x.m_holder.start());
const size_type this_sz = m_holder.m_size;
const size_type other_sz = static_cast<size_type>(x.m_holder.m_size);
boost::container::move_assign_range_alloc_n(this->m_holder.alloc(), other_start, other_sz, this_start, this_sz);
this->m_holder.m_size = other_sz;
}
template<class OtherAllocator, class AllocVersion>
void priv_move_assign_impl(BOOST_RV_REF_BEG vector<T, OtherAllocator> BOOST_RV_REF_END x
, AllocVersion
, typename container_detail::enable_if_c
< !container_detail::is_same<AllocVersion, allocator_v0>::value
>::type * = 0)
{
//for move constructor, no aliasing (&x != this) is assummed.
allocator_type &this_alloc = this->m_holder.alloc();
allocator_type &x_alloc = x.m_holder.alloc();
//If allocators are equal we can just swap pointers
if(this_alloc == x_alloc){
//Destroy objects but retain memory in case x reuses it in the future
this->clear();
this->m_holder.swap(x.m_holder);
//Move allocator if needed
container_detail::bool_<allocator_traits_type::
propagate_on_container_move_assignment::value> flag;
container_detail::move_alloc(this_alloc, x_alloc, flag);
}
//If unequal allocators, then do a one by one move
else{
//TO-DO: optimize this
this->assign( boost::make_move_iterator(container_detail::to_raw_pointer(x.m_holder.start()))
, boost::make_move_iterator(container_detail::to_raw_pointer(x.m_holder.start() + x.m_holder.m_size)));
}
}
template<class AllocVersion>
void priv_copy_assign(const vector &x, AllocVersion
, typename container_detail::enable_if_c
< container_detail::is_same<AllocVersion, allocator_v0>::value
>::type * = 0)
{
T* const this_start = container_detail::to_raw_pointer(m_holder.start());
T* const other_start = container_detail::to_raw_pointer(x.m_holder.start());
const size_type this_sz = m_holder.m_size;
const size_type other_sz = static_cast<size_type>(x.m_holder.m_size);
boost::container::copy_assign_range_alloc_n(this->m_holder.alloc(), other_start, other_sz, this_start, this_sz);
this->m_holder.m_size = other_sz;
}
template<class AllocVersion>
void priv_copy_assign(const vector &x, AllocVersion
, typename container_detail::enable_if_c
< !container_detail::is_same<AllocVersion, allocator_v0>::value
>::type * = 0)
{
allocator_type &this_alloc = this->m_holder.alloc();
const allocator_type &x_alloc = x.m_holder.alloc();
container_detail::bool_<allocator_traits_type::
propagate_on_container_copy_assignment::value> flag;
if(flag && this_alloc != x_alloc){
this->clear();
this->shrink_to_fit();
}
container_detail::assign_alloc(this_alloc, x_alloc, flag);
this->assign( container_detail::to_raw_pointer(x.m_holder.start())
, container_detail::to_raw_pointer(x.m_holder.start() + x.m_holder.m_size));
}
void priv_reserve(size_type, allocator_v0)
{
throw_bad_alloc();
}
void priv_reserve(size_type new_cap, allocator_v1)
{
//There is not enough memory, allocate a new buffer
pointer p = this->m_holder.allocate(new_cap);
//Backwards (and possibly forward) expansion
#ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
++this->num_alloc;
#endif
T * const raw_beg = container_detail::to_raw_pointer(this->m_holder.start());
const size_type sz = m_holder.m_size;
::boost::container::uninitialized_move_alloc_n_source
( this->m_holder.alloc(), raw_beg, sz, container_detail::to_raw_pointer(p) );
boost::container::destroy_alloc_n(this->m_holder.alloc(), raw_beg, sz);
this->m_holder.start(p);
this->m_holder.capacity(new_cap);
}
void priv_reserve(size_type new_cap, allocator_v2)
{
//There is not enough memory, allocate a new
//buffer or expand the old one.
bool same_buffer_start;
size_type real_cap = 0;
std::pair<pointer, bool> ret =
this->m_holder.allocation_command
(allocate_new | expand_fwd | expand_bwd,
new_cap, new_cap, real_cap, this->m_holder.start());
//Check for forward expansion
same_buffer_start = ret.second && this->m_holder.start() == ret.first;
if(same_buffer_start){
#ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
++this->num_expand_fwd;
#endif
this->m_holder.capacity(real_cap);
}
//If there is no forward expansion, move objects
else{
//Backwards (and possibly forward) expansion
if(ret.second){
//We will reuse insert code, so create a dummy input iterator
container_detail::insert_range_proxy<Allocator, boost::move_iterator<T*>, T*>
proxy(this->m_holder.alloc(), ::boost::make_move_iterator((T *)0));
#ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
++this->num_expand_bwd;
#endif
this->priv_forward_range_insert_expand_backwards
( container_detail::to_raw_pointer(ret.first)
, real_cap
, container_detail::to_raw_pointer(this->m_holder.start())
, 0
, proxy);
}
//New buffer
else{
//Backwards (and possibly forward) expansion
#ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
++this->num_alloc;
#endif
T * const raw_beg = container_detail::to_raw_pointer(this->m_holder.start());
const size_type sz = m_holder.m_size;
::boost::container::uninitialized_move_alloc_n_source
( this->m_holder.alloc(), raw_beg, sz, container_detail::to_raw_pointer(ret.first) );
boost::container::destroy_alloc_n(this->m_holder.alloc(), raw_beg, sz);
this->m_holder.start(ret.first);
this->m_holder.capacity(real_cap);
}
}
}
template<class Proxy>
void priv_uninitialized_fill(Proxy proxy, size_type n) const
{
//Copy first new elements in pos
proxy.uninitialized_copy_n_and_update
(container_detail::to_raw_pointer(this->m_holder.start()), n);
//m_holder.size was already initialized to n in vector_alloc_holder's constructor
}
void priv_destroy(value_type* p) BOOST_CONTAINER_NOEXCEPT
{
if(!value_traits::trivial_dctr)
allocator_traits_type::destroy(this->get_stored_allocator(), p);
}
void priv_destroy_last_n(size_type n) BOOST_CONTAINER_NOEXCEPT
{
T* const end_pos = container_detail::to_raw_pointer(this->m_holder.start()) + this->m_holder.m_size;
boost::container::destroy_alloc_n(this->get_stored_allocator(), end_pos-n, n);
this->m_holder.m_size -= n;
}
void priv_destroy_all() BOOST_CONTAINER_NOEXCEPT
{
boost::container::destroy_alloc_n
(this->get_stored_allocator(), container_detail::to_raw_pointer(this->m_holder.start()), this->m_holder.m_size);
this->m_holder.m_size = 0;
}
template<class U>
iterator priv_insert(const const_iterator &p, BOOST_FWD_REF(U) x)
{
return this->priv_forward_range_insert
( vector_iterator_get_ptr(p), 1, container_detail::get_insert_value_proxy<T*>(this->m_holder.alloc()
, ::boost::forward<U>(x)), alloc_version());
}
void priv_push_back(const T &x)
{
if (this->m_holder.m_size < this->m_holder.capacity()){
//There is more memory, just construct a new object at the end
allocator_traits_type::construct
( this->m_holder.alloc()
, container_detail::to_raw_pointer(this->m_holder.start() + this->m_holder.m_size)
, x );
++this->m_holder.m_size;
}
else{
container_detail::insert_copy_proxy<Allocator, T*> proxy(this->m_holder.alloc(), x);
this->priv_forward_range_insert_no_capacity(vector_iterator_get_ptr(this->cend()), 1, proxy, alloc_version());
}
}
void priv_push_back(BOOST_RV_REF(T) x)
{
if (this->m_holder.m_size < this->m_holder.capacity()){
//There is more memory, just construct a new object at the end
allocator_traits_type::construct
( this->m_holder.alloc()
, container_detail::to_raw_pointer(this->m_holder.start() + this->m_holder.m_size)
, ::boost::move(x) );
++this->m_holder.m_size;
}
else{
container_detail::insert_move_proxy<Allocator, T*> proxy(this->m_holder.alloc(), x);
this->priv_forward_range_insert_no_capacity(vector_iterator_get_ptr(this->cend()), 1, proxy, alloc_version());
}
}
void priv_shrink_to_fit(allocator_v0) BOOST_CONTAINER_NOEXCEPT
{}
void priv_shrink_to_fit(allocator_v1)
{
const size_type cp = this->m_holder.capacity();
if(cp){
const size_type sz = this->size();
if(!sz){
this->m_holder.alloc().deallocate(this->m_holder.m_start, cp);
this->m_holder.m_start = pointer();
this->m_holder.m_capacity = 0;
}
else if(sz < cp){
//Allocate a new buffer.
pointer p = this->m_holder.allocate(sz);
//We will reuse insert code, so create a dummy input iterator
container_detail::insert_range_proxy<Allocator, boost::move_iterator<T*>, T*>
proxy(this->m_holder.alloc(), ::boost::make_move_iterator((T *)0));
#ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
++this->num_alloc;
#endif
this->priv_forward_range_insert_new_allocation
( container_detail::to_raw_pointer(p)
, sz
, container_detail::to_raw_pointer(this->m_holder.start())
, 0
, proxy);
}
}
}
void priv_shrink_to_fit(allocator_v2) BOOST_CONTAINER_NOEXCEPT
{
const size_type cp = this->m_holder.capacity();
if(cp){
const size_type sz = this->size();
if(!sz){
this->m_holder.alloc().deallocate(this->m_holder.m_start, cp);
this->m_holder.m_start = pointer();
this->m_holder.m_capacity = 0;
}
else{
size_type received_size;
if(this->m_holder.allocation_command
( shrink_in_place | nothrow_allocation
, cp, sz, received_size, this->m_holder.start()).first){
this->m_holder.capacity(received_size);
#ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
++this->num_shrink;
#endif
}
}
}
}
template <class InsertionProxy>
iterator priv_forward_range_insert_no_capacity
(const pointer &pos, const size_type, const InsertionProxy , allocator_v0)
{
throw_bad_alloc();
return iterator(pos);
}
template <class InsertionProxy>
iterator priv_forward_range_insert_no_capacity
(const pointer &pos, const size_type n, const InsertionProxy insert_range_proxy, allocator_v1)
{
//Check if we have enough memory or try to expand current memory
const size_type n_pos = pos - this->m_holder.start();
T *const raw_pos = container_detail::to_raw_pointer(pos);
const size_type new_cap = this->m_holder.next_capacity(n);
T * new_buf = container_detail::to_raw_pointer(this->m_holder.alloc().allocate(new_cap));
#ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
++this->num_alloc;
#endif
this->priv_forward_range_insert_new_allocation
( new_buf, new_cap, raw_pos, n, insert_range_proxy);
return iterator(this->m_holder.start() + n_pos);
}
template <class InsertionProxy>
iterator priv_forward_range_insert_no_capacity
(const pointer &pos, const size_type n, const InsertionProxy insert_range_proxy, allocator_v2)
{
//Check if we have enough memory or try to expand current memory
T *const raw_pos = container_detail::to_raw_pointer(pos);
const size_type n_pos = raw_pos - container_detail::to_raw_pointer(this->m_holder.start());
size_type real_cap = 0;
//There is not enough memory, allocate a new
//buffer or expand the old one.
std::pair<pointer, bool> ret = (this->m_holder.allocation_command
(allocate_new | expand_fwd | expand_bwd,
this->m_holder.m_size + n, this->m_holder.next_capacity(n), real_cap, this->m_holder.start()));
//Buffer reallocated
if(ret.second){
//Forward expansion, delay insertion
if(this->m_holder.start() == ret.first){
#ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
++this->num_expand_fwd;
#endif
this->m_holder.capacity(real_cap);
//Expand forward
this->priv_forward_range_insert_expand_forward(raw_pos, n, insert_range_proxy);
}
//Backwards (and possibly forward) expansion
else{
#ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
++this->num_expand_bwd;
#endif
this->priv_forward_range_insert_expand_backwards
( container_detail::to_raw_pointer(ret.first)
, real_cap, raw_pos, n, insert_range_proxy);
}
}
//New buffer
else{
#ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
++this->num_alloc;
#endif
this->priv_forward_range_insert_new_allocation
( container_detail::to_raw_pointer(ret.first)
, real_cap, raw_pos, n, insert_range_proxy);
}
return iterator(this->m_holder.start() + n_pos);
}
template <class InsertionProxy>
iterator priv_forward_range_insert
(const pointer &pos, const size_type n, const InsertionProxy insert_range_proxy, allocator_v0)
{
//Check if we have enough memory or try to expand current memory
const size_type remaining = this->m_holder.capacity() - this->m_holder.m_size;
if (n > remaining){
//This will trigger an error
throw_bad_alloc();
}
const size_type n_pos = pos - this->m_holder.start();
T *const raw_pos = container_detail::to_raw_pointer(pos);
this->priv_forward_range_insert_expand_forward(raw_pos, n, insert_range_proxy);
return iterator(this->m_holder.start() + n_pos);
}
template <class InsertionProxy>
iterator priv_forward_range_insert
(const pointer &pos, const size_type n, const InsertionProxy insert_range_proxy, allocator_v1)
{
//Check if we have enough memory or try to expand current memory
const size_type remaining = this->m_holder.capacity() - this->m_holder.m_size;
T *const raw_pos = container_detail::to_raw_pointer(pos);
if (n <= remaining){
const size_type n_pos = raw_pos - container_detail::to_raw_pointer(this->m_holder.start());
this->priv_forward_range_insert_expand_forward
(raw_pos, n, insert_range_proxy);
return iterator(this->m_holder.start() + n_pos);
}
else{
return this->priv_forward_range_insert_no_capacity(pos, n, insert_range_proxy, alloc_version());
}
}
template <class InsertionProxy>
iterator priv_forward_range_insert
(const pointer &pos, const size_type n, const InsertionProxy insert_range_proxy, allocator_v2)
{
//Check if we have enough memory or try to expand current memory
const size_type remaining = this->m_holder.capacity() - this->m_holder.m_size;
bool same_buffer_start = n <= remaining;
if (!same_buffer_start){
return priv_forward_range_insert_no_capacity(pos, n, insert_range_proxy, alloc_version());
}
else{
//Expand forward
T *const raw_pos = container_detail::to_raw_pointer(pos);
const size_type n_pos = raw_pos - container_detail::to_raw_pointer(this->m_holder.start());
this->priv_forward_range_insert_expand_forward(raw_pos, n, insert_range_proxy);
return iterator(this->m_holder.start() + n_pos);
}
}
template <class InsertionProxy>
iterator priv_forward_range_insert_at_end
(const size_type n, const InsertionProxy insert_range_proxy, allocator_v0)
{
//Check if we have enough memory or try to expand current memory
const size_type remaining = this->m_holder.capacity() - this->m_holder.m_size;
if (n > remaining){
//This will trigger an error
throw_bad_alloc();
}
this->priv_forward_range_insert_at_end_expand_forward(n, insert_range_proxy);
return this->end();
}
template <class InsertionProxy>
iterator priv_forward_range_insert_at_end
(const size_type n, const InsertionProxy insert_range_proxy, allocator_v1)
{
return this->priv_forward_range_insert(vector_iterator_get_ptr(this->cend()), n, insert_range_proxy, allocator_v1());
}
template <class InsertionProxy>
iterator priv_forward_range_insert_at_end
(const size_type n, const InsertionProxy insert_range_proxy, allocator_v2)
{
return this->priv_forward_range_insert(vector_iterator_get_ptr(this->cend()), n, insert_range_proxy, allocator_v2());
}
//Absolutely experimental. This function might change, disappear or simply crash!
template<class BiDirPosConstIt, class BiDirSkipConstIt, class BiDirValueIt>
void priv_insert_ordered_at( size_type element_count, BiDirPosConstIt last_position_it
, bool do_skip, BiDirSkipConstIt last_skip_it, BiDirValueIt last_value_it)
{
const size_type old_size_pos = this->size();
this->reserve(old_size_pos + element_count);
T* const begin_ptr = container_detail::to_raw_pointer(this->m_holder.start());
size_type insertions_left = element_count;
size_type next_pos = old_size_pos;
size_type hole_size = element_count;
//Exception rollback. If any copy throws before the hole is filled, values
//already inserted/copied at the end of the buffer will be destroyed.
typename value_traits::ArrayDestructor past_hole_values_destroyer
(begin_ptr + old_size_pos + element_count, this->m_holder.alloc(), size_type(0u));
//Loop for each insertion backwards, first moving the elements after the insertion point,
//then inserting the element.
while(insertions_left){
if(do_skip){
size_type n = *(--last_skip_it);
std::advance(last_value_it, -difference_type(n));
}
const size_type pos = static_cast<size_type>(*(--last_position_it));
BOOST_ASSERT(pos <= old_size_pos);
//If needed shift the range after the insertion point and the previous insertion point.
//Function will take care if the shift crosses the size() boundary, using copy/move
//or uninitialized copy/move if necessary.
size_type new_hole_size = (pos != next_pos)
? priv_insert_ordered_at_shift_range(pos, next_pos, this->size(), insertions_left)
: hole_size
;
if(new_hole_size > 0){
//The hole was reduced by priv_insert_ordered_at_shift_range so expand exception rollback range backwards
past_hole_values_destroyer.increment_size_backwards(next_pos - pos);
//Insert the new value in the hole
allocator_traits_type::construct(this->m_holder.alloc(), begin_ptr + pos + insertions_left - 1, *(--last_value_it));
--new_hole_size;
if(new_hole_size == 0){
//Hole was just filled, disable exception rollback and change vector size
past_hole_values_destroyer.release();
this->m_holder.m_size += element_count;
}
else{
//The hole was reduced by the new insertion by one
past_hole_values_destroyer.increment_size_backwards(size_type(1u));
}
}
else{
if(hole_size){
//Hole was just filled by priv_insert_ordered_at_shift_range, disable exception rollback and change vector size
past_hole_values_destroyer.release();
this->m_holder.m_size += element_count;
}
//Insert the new value in the already constructed range
begin_ptr[pos + insertions_left - 1] = *(--last_value_it);
}
--insertions_left;
hole_size = new_hole_size;
next_pos = pos;
}
}
//Takes the range pointed by [first_pos, last_pos) and shifts it to the right
//by 'shift_count'. 'limit_pos' marks the end of constructed elements.
//
//Precondition: first_pos <= last_pos <= limit_pos
//
//The shift operation might cross limit_pos so elements to moved beyond limit_pos
//are uninitialized_moved with an allocator. Other elements are moved.
//
//The shift operation might left uninitialized elements after limit_pos
//and the number of uninitialized elements is returned by the function.
//
//Old situation:
// first_pos last_pos old_limit
// | | |
// ____________V_______V__________________V_____________
//| prefix | range | suffix |raw_mem ~
//|____________|_______|__________________|_____________~
//
//New situation in Case Allocator (hole_size == 0):
// range is moved through move assignments
//
// first_pos last_pos limit_pos
// | | |
// ____________V_______V__________________V_____________
//| prefix' | | | range |suffix'|raw_mem ~
//|________________+______|___^___|_______|_____________~
// | |
// |_>_>_>_>_>^
//
//
//New situation in Case B (hole_size > 0):
// range is moved through uninitialized moves
//
// first_pos last_pos limit_pos
// | | |
// ____________V_______V__________________V________________
//| prefix' | | | [hole] | range |
//|_______________________________________|________|___^___|
// | |
// |_>_>_>_>_>_>_>_>_>_>_>_>_>_>_>_>_>_^
//
//New situation in Case C (hole_size == 0):
// range is moved through move assignments and uninitialized moves
//
// first_pos last_pos limit_pos
// | | |
// ____________V_______V__________________V___
//| prefix' | | | range |
//|___________________________________|___^___|
// | |
// |_>_>_>_>_>_>_>_>_>_>_>^
size_type priv_insert_ordered_at_shift_range
(size_type first_pos, size_type last_pos, size_type limit_pos, size_type shift_count)
{
BOOST_ASSERT(first_pos <= last_pos);
BOOST_ASSERT(last_pos <= limit_pos);
//
T* const begin_ptr = container_detail::to_raw_pointer(this->m_holder.start());
T* const first_ptr = begin_ptr + first_pos;
T* const last_ptr = begin_ptr + last_pos;
size_type hole_size = 0;
//Case Allocator:
if((last_pos + shift_count) <= limit_pos){
//All move assigned
boost::move_backward(first_ptr, last_ptr, last_ptr + shift_count);
}
//Case B:
else if((first_pos + shift_count) >= limit_pos){
//All uninitialized_moved
::boost::container::uninitialized_move_alloc
(this->m_holder.alloc(), first_ptr, last_ptr, first_ptr + shift_count);
hole_size = last_pos + shift_count - limit_pos;
}
//Case C:
else{
//Some uninitialized_moved
T* const limit_ptr = begin_ptr + limit_pos;
T* const boundary_ptr = limit_ptr - shift_count;
::boost::container::uninitialized_move_alloc(this->m_holder.alloc(), boundary_ptr, last_ptr, limit_ptr);
//The rest is move assigned
boost::move_backward(first_ptr, boundary_ptr, limit_ptr);
}
return hole_size;
}
private:
template <class InsertionProxy>
void priv_forward_range_insert_at_end_expand_forward(const size_type n, InsertionProxy insert_range_proxy)
{
T* const old_finish = container_detail::to_raw_pointer(this->m_holder.start()) + this->m_holder.m_size;
insert_range_proxy.uninitialized_copy_n_and_update(old_finish, n);
this->m_holder.m_size += n;
}
template <class InsertionProxy>
void priv_forward_range_insert_expand_forward(T* const pos, const size_type n, InsertionProxy insert_range_proxy)
{
//n can't be 0, because there is nothing to do in that case
if(!n) return;
//There is enough memory
T* const old_finish = container_detail::to_raw_pointer(this->m_holder.start()) + this->m_holder.m_size;
const size_type elems_after = old_finish - pos;
if (!elems_after){
insert_range_proxy.uninitialized_copy_n_and_update(old_finish, n);
this->m_holder.m_size += n;
}
else if (elems_after >= n){
//New elements can be just copied.
//Move to uninitialized memory last objects
::boost::container::uninitialized_move_alloc
(this->m_holder.alloc(), old_finish - n, old_finish, old_finish);
this->m_holder.m_size += n;
//Copy previous to last objects to the initialized end
boost::move_backward(pos, old_finish - n, old_finish);
//Insert new objects in the pos
insert_range_proxy.copy_n_and_update(pos, n);
}
else {
//The new elements don't fit in the [pos, end()) range.
//Copy old [pos, end()) elements to the uninitialized memory (a gap is created)
::boost::container::uninitialized_move_alloc(this->m_holder.alloc(), pos, old_finish, pos + n);
BOOST_TRY{
//Copy first new elements in pos (gap is still there)
insert_range_proxy.copy_n_and_update(pos, elems_after);
//Copy to the beginning of the unallocated zone the last new elements (the gap is closed).
insert_range_proxy.uninitialized_copy_n_and_update(old_finish, n - elems_after);
this->m_holder.m_size += n;
}
BOOST_CATCH(...){
boost::container::destroy_alloc_n(this->get_stored_allocator(), pos + n, elems_after);
BOOST_RETHROW
}
BOOST_CATCH_END
}
}
template <class InsertionProxy>
void priv_forward_range_insert_new_allocation
(T* const new_start, size_type new_cap, T* const pos, const size_type n, InsertionProxy insert_range_proxy)
{
//n can be zero, if we want to reallocate!
T *new_finish = new_start;
T *old_finish;
//Anti-exception rollbacks
typename value_traits::ArrayDeallocator scoped_alloc(new_start, this->m_holder.alloc(), new_cap);
typename value_traits::ArrayDestructor constructed_values_destroyer(new_start, this->m_holder.alloc(), 0u);
//Initialize with [begin(), pos) old buffer
//the start of the new buffer
T *old_buffer = container_detail::to_raw_pointer(this->m_holder.start());
if(old_buffer){
new_finish = ::boost::container::uninitialized_move_alloc
(this->m_holder.alloc(), container_detail::to_raw_pointer(this->m_holder.start()), pos, old_finish = new_finish);
constructed_values_destroyer.increment_size(new_finish - old_finish);
}
//Initialize new objects, starting from previous point
insert_range_proxy.uninitialized_copy_n_and_update(old_finish = new_finish, n);
new_finish += n;
constructed_values_destroyer.increment_size(new_finish - old_finish);
//Initialize from the rest of the old buffer,
//starting from previous point
if(old_buffer){
new_finish = ::boost::container::uninitialized_move_alloc
(this->m_holder.alloc(), pos, old_buffer + this->m_holder.m_size, new_finish);
//Destroy and deallocate old elements
//If there is allocated memory, destroy and deallocate
if(!value_traits::trivial_dctr_after_move)
boost::container::destroy_alloc_n(this->get_stored_allocator(), old_buffer, this->m_holder.m_size);
this->m_holder.alloc().deallocate(this->m_holder.start(), this->m_holder.capacity());
}
this->m_holder.start(new_start);
this->m_holder.m_size = new_finish - new_start;
this->m_holder.capacity(new_cap);
//All construction successful, disable rollbacks
constructed_values_destroyer.release();
scoped_alloc.release();
}
template <class InsertionProxy>
void priv_forward_range_insert_expand_backwards
(T* const new_start, const size_type new_capacity,
T* const pos, const size_type n, InsertionProxy insert_range_proxy)
{
//n can be zero to just expand capacity
//Backup old data
T* const old_start = container_detail::to_raw_pointer(this->m_holder.start());
T* const old_finish = old_start + this->m_holder.m_size;
const size_type old_size = this->m_holder.m_size;
//We can have 8 possibilities:
const size_type elemsbefore = static_cast<size_type>(pos - old_start);
const size_type s_before = static_cast<size_type>(old_start - new_start);
const size_type before_plus_new = elemsbefore + n;
//Update the vector buffer information to a safe state
this->m_holder.start(new_start);
this->m_holder.capacity(new_capacity);
this->m_holder.m_size = 0;
//If anything goes wrong, this object will destroy
//all the old objects to fulfill previous vector state
typename value_traits::OldArrayDestructor old_values_destroyer(old_start, this->m_holder.alloc(), old_size);
//Check if s_before is big enough to hold the beginning of old data + new data
if(s_before >= before_plus_new){
//Copy first old values before pos, after that the new objects
T *const new_elem_pos = ::boost::container::uninitialized_move_alloc(this->m_holder.alloc(), old_start, pos, new_start);
this->m_holder.m_size = elemsbefore;
insert_range_proxy.uninitialized_copy_n_and_update(new_elem_pos, n);
this->m_holder.m_size += n;
//Check if s_before is so big that even copying the old data + new data
//there is a gap between the new data and the old data
const size_type new_size = old_size + n;
if(s_before >= new_size){
//Old situation:
// _________________________________________________________
//| raw_mem | old_begin | old_end |
//| __________________________________|___________|_________|
//
//New situation:
// _________________________________________________________
//| old_begin | new | old_end | raw_mem |
//|___________|__________|_________|________________________|
//
//Now initialize the rest of memory with the last old values
::boost::container::uninitialized_move_alloc
(this->m_holder.alloc(), pos, old_finish, new_start + before_plus_new);
//All new elements correctly constructed, avoid new element destruction
this->m_holder.m_size = new_size;
//Old values destroyed automatically with "old_values_destroyer"
//when "old_values_destroyer" goes out of scope unless the have trivial
//destructor after move.
if(value_traits::trivial_dctr_after_move)
old_values_destroyer.release();
}
//s_before is so big that divides old_end
else{
//Old situation:
// __________________________________________________
//| raw_mem | old_begin | old_end |
//| ___________________________|___________|_________|
//
//New situation:
// __________________________________________________
//| old_begin | new | old_end | raw_mem |
//|___________|__________|_________|_________________|
//
//Now initialize the rest of memory with the last old values
//All new elements correctly constructed, avoid new element destruction
const size_type raw_gap = s_before - before_plus_new;
//Now initialize the rest of s_before memory with the
//first of elements after new values
::boost::container::uninitialized_move_alloc_n
(this->m_holder.alloc(), pos, raw_gap, new_start + before_plus_new);
//Update size since we have a contiguous buffer
this->m_holder.m_size = old_size + s_before;
//All new elements correctly constructed, avoid old element destruction
old_values_destroyer.release();
//Now copy remaining last objects in the old buffer begin
T * const to_destroy = ::boost::move(pos + raw_gap, old_finish, old_start);
//Now destroy redundant elements except if they were moved and
//they have trivial destructor after move
size_type n_destroy = old_finish - to_destroy;
if(!value_traits::trivial_dctr_after_move)
boost::container::destroy_alloc_n(this->get_stored_allocator(), to_destroy, n_destroy);
this->m_holder.m_size -= n_destroy;
}
}
else{
//Check if we have to do the insertion in two phases
//since maybe s_before is not big enough and
//the buffer was expanded both sides
//
//Old situation:
// _________________________________________________
//| raw_mem | old_begin + old_end | raw_mem |
//|_________|_____________________|_________________|
//
//New situation with do_after:
// _________________________________________________
//| old_begin + new + old_end | raw_mem |
//|___________________________________|_____________|
//
//New without do_after:
// _________________________________________________
//| old_begin + new + old_end | raw_mem |
//|____________________________|____________________|
//
const bool do_after = n > s_before;
//Now we can have two situations: the raw_mem of the
//beginning divides the old_begin, or the new elements:
if (s_before <= elemsbefore) {
//The raw memory divides the old_begin group:
//
//If we need two phase construction (do_after)
//new group is divided in new = new_beg + new_end groups
//In this phase only new_beg will be inserted
//
//Old situation:
// _________________________________________________
//| raw_mem | old_begin | old_end | raw_mem |
//|_________|___________|_________|_________________|
//
//New situation with do_after(1):
//This is not definitive situation, the second phase
//will include
// _________________________________________________
//| old_begin | new_beg | old_end | raw_mem |
//|___________|_________|_________|_________________|
//
//New situation without do_after:
// _________________________________________________
//| old_begin | new | old_end | raw_mem |
//|___________|_____|_________|_____________________|
//
//Copy the first part of old_begin to raw_mem
::boost::container::uninitialized_move_alloc_n
(this->m_holder.alloc(), old_start, s_before, new_start);
//The buffer is all constructed until old_end,
//release destroyer and update size
old_values_destroyer.release();
this->m_holder.m_size = old_size + s_before;
//Now copy the second part of old_begin overwriting itself
T *const next = ::boost::move(old_start + s_before, pos, old_start);
if(do_after){
//Now copy the new_beg elements
insert_range_proxy.copy_n_and_update(next, s_before);
}
else{
//Now copy the all the new elements
insert_range_proxy.copy_n_and_update(next, n);
//Now displace old_end elements
T* const move_end = ::boost::move(pos, old_finish, next + n);
//Destroy remaining moved elements from old_end except if
//they have trivial destructor after being moved
const size_type n_destroy = s_before - n;
if(!value_traits::trivial_dctr_after_move)
boost::container::destroy_alloc_n(this->get_stored_allocator(), move_end, n_destroy);
this->m_holder.m_size -= n_destroy;
}
}
else {
//If we have to expand both sides,
//we will play if the first new values so
//calculate the upper bound of new values
//The raw memory divides the new elements
//
//If we need two phase construction (do_after)
//new group is divided in new = new_beg + new_end groups
//In this phase only new_beg will be inserted
//
//Old situation:
// _______________________________________________________
//| raw_mem | old_begin | old_end | raw_mem |
//|_______________|___________|_________|_________________|
//
//New situation with do_after():
// ____________________________________________________
//| old_begin | new_beg | old_end | raw_mem |
//|___________|_______________|_________|______________|
//
//New situation without do_after:
// ______________________________________________________
//| old_begin | new | old_end | raw_mem |
//|___________|_____|_________|__________________________|
//
//First copy whole old_begin and part of new to raw_mem
T * const new_pos = ::boost::container::uninitialized_move_alloc
(this->m_holder.alloc(), old_start, pos, new_start);
this->m_holder.m_size = elemsbefore;
const size_type mid_n = s_before - elemsbefore;
insert_range_proxy.uninitialized_copy_n_and_update(new_pos, mid_n);
//The buffer is all constructed until old_end,
//release destroyer
this->m_holder.m_size = old_size + s_before;
old_values_destroyer.release();
if(do_after){
//Copy new_beg part
insert_range_proxy.copy_n_and_update(old_start, elemsbefore);
}
else{
//Copy all new elements
const size_type rest_new = n - mid_n;
insert_range_proxy.copy_n_and_update(old_start, rest_new);
T* move_start = old_start + rest_new;
//Displace old_end
T* move_end = ::boost::move(pos, old_finish, move_start);
//Destroy remaining moved elements from old_end except if they
//have trivial destructor after being moved
size_type n_destroy = s_before - n;
if(!value_traits::trivial_dctr_after_move)
boost::container::destroy_alloc_n(this->get_stored_allocator(), move_end, n_destroy);
this->m_holder.m_size -= n_destroy;
}
}
//This is only executed if two phase construction is needed
if(do_after){
//The raw memory divides the new elements
//
//Old situation:
// ______________________________________________________
//| raw_mem | old_begin | old_end | raw_mem |
//|______________|___________|____________|______________|
//
//New situation with do_after(1):
// _______________________________________________________
//| old_begin + new_beg | new_end |old_end | raw_mem |
//|__________________________|_________|________|_________|
//
//New situation with do_after(2):
// ______________________________________________________
//| old_begin + new | old_end |raw |
//|_______________________________________|_________|____|
//
const size_type n_after = n - s_before;
const size_type elemsafter = old_size - elemsbefore;
//We can have two situations:
if (elemsafter >= n_after){
//The raw_mem from end will divide displaced old_end
//
//Old situation:
// ______________________________________________________
//| raw_mem | old_begin | old_end | raw_mem |
//|______________|___________|____________|______________|
//
//New situation with do_after(1):
// _______________________________________________________
//| old_begin + new_beg | new_end |old_end | raw_mem |
//|__________________________|_________|________|_________|
//
//First copy the part of old_end raw_mem
T* finish_n = old_finish - n_after;
::boost::container::uninitialized_move_alloc
(this->m_holder.alloc(), finish_n, old_finish, old_finish);
this->m_holder.m_size += n_after;
//Displace the rest of old_end to the new position
boost::move_backward(pos, finish_n, old_finish);
//Now overwrite with new_end
//The new_end part is [first + (n - n_after), last)
insert_range_proxy.copy_n_and_update(pos, n_after);
}
else {
//The raw_mem from end will divide new_end part
//
//Old situation:
// _____________________________________________________________
//| raw_mem | old_begin | old_end | raw_mem |
//|______________|___________|____________|_____________________|
//
//New situation with do_after(2):
// _____________________________________________________________
//| old_begin + new_beg | new_end |old_end | raw_mem |
//|__________________________|_______________|________|_________|
//
const size_type mid_last_dist = n_after - elemsafter;
//First initialize data in raw memory
//Copy to the old_end part to the uninitialized zone leaving a gap.
::boost::container::uninitialized_move_alloc
(this->m_holder.alloc(), pos, old_finish, old_finish + mid_last_dist);
BOOST_TRY{
//Copy the first part to the already constructed old_end zone
insert_range_proxy.copy_n_and_update(pos, elemsafter);
//Copy the rest to the uninitialized zone filling the gap
insert_range_proxy.uninitialized_copy_n_and_update(old_finish, mid_last_dist);
this->m_holder.m_size += n_after;
}
BOOST_CATCH(...){
boost::container::destroy_alloc_n(this->get_stored_allocator(), pos, mid_last_dist);
BOOST_RETHROW
}
BOOST_CATCH_END
/*
size_type mid_last_dist = n_after - elemsafter;
//First initialize data in raw memory
//The new_end part is [first + (n - n_after), last)
insert_range_proxy.uninitialized_copy_last_and_update(old_finish, elemsafter);
this->m_holder.m_size += mid_last_dist;
::boost::container::uninitialized_move_alloc
(this->m_holder.alloc(), pos, old_finish, old_finish + mid_last_dist);
this->m_holder.m_size += n_after - mid_last_dist;
//Now copy the part of new_end over constructed elements
insert_range_proxy.copy_remaining_to(pos);*/
}
}
}
}
void priv_check_range(size_type n) const
{
//If n is out of range, throw an out_of_range exception
if (n >= this->size()){
throw_out_of_range("vector::at out of range");
}
}
#ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
public:
unsigned int num_expand_fwd;
unsigned int num_expand_bwd;
unsigned int num_shrink;
unsigned int num_alloc;
void reset_alloc_stats()
{ num_expand_fwd = num_expand_bwd = num_alloc = 0, num_shrink = 0; }
#endif
/// @endcond
};
template <class T, class Allocator>
inline bool
operator==(const vector<T, Allocator>& x, const vector<T, Allocator>& y)
{
//Check first size and each element if needed
return x.size() == y.size() && std::equal(x.begin(), x.end(), y.begin());
}
template <class T, class Allocator>
inline bool
operator!=(const vector<T, Allocator>& x, const vector<T, Allocator>& y)
{
//Check first size and each element if needed
return x.size() != y.size() || !std::equal(x.begin(), x.end(), y.begin());
}
template <class T, class Allocator>
inline bool
operator<(const vector<T, Allocator>& x, const vector<T, Allocator>& y)
{
return std::lexicographical_compare(x.begin(), x.end(), y.begin(), y.end());
}
template <class T, class Allocator>
inline void swap(vector<T, Allocator>& x, vector<T, Allocator>& y)
{ x.swap(y); }
}}
/// @cond
namespace boost {
//!has_trivial_destructor_after_move<> == true_type
//!specialization for optimizations
template <class T, class Allocator>
struct has_trivial_destructor_after_move<boost::container::vector<T, Allocator> >
: public ::boost::has_trivial_destructor_after_move<Allocator>
{};
}
//#define BOOST_CONTAINER_PUT_SWAP_OVERLOAD_IN_NAMESPACE_STD
#ifdef BOOST_CONTAINER_PUT_SWAP_OVERLOAD_IN_NAMESPACE_STD
namespace std {
template <class T, class Allocator>
inline void swap(boost::container::vector<T, Allocator>& x, boost::container::vector<T, Allocator>& y)
{ x.swap(y); }
} //namespace std {
#endif
/// @endcond
#include <boost/container/detail/config_end.hpp>
#endif // #ifndef BOOST_CONTAINER_CONTAINER_VECTOR_HPP
|