/usr/include/boost/foreach.hpp is in libboost1.54-dev 1.54.0-4ubuntu3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 | ///////////////////////////////////////////////////////////////////////////////
// foreach.hpp header file
//
// Copyright 2004 Eric Niebler.
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org/libs/foreach for documentation
//
// Credits:
// Anson Tsao - for the initial inspiration and several good suggestions.
// Thorsten Ottosen - for Boost.Range, and for suggesting a way to detect
// const-qualified rvalues at compile time on VC7.1+
// Russell Hind - For help porting to Borland
// Alisdair Meredith - For help porting to Borland
// Stefan Slapeta - For help porting to Intel
// David Jenkins - For help finding a Microsoft Code Analysis bug
// mimomorin@... - For a patch to use rvalue refs on supporting compilers
#ifndef BOOST_FOREACH
// MS compatible compilers support #pragma once
#if defined(_MSC_VER) && (_MSC_VER >= 1020)
# pragma once
#endif
#include <cstddef>
#include <utility> // for std::pair
#include <boost/config.hpp>
#include <boost/detail/workaround.hpp>
// Some compilers let us detect even const-qualified rvalues at compile-time
#if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES) \
|| BOOST_WORKAROUND(BOOST_MSVC, >= 1310) && !defined(_PREFAST_) \
|| (BOOST_WORKAROUND(__GNUC__, == 4) && (__GNUC_MINOR__ <= 5) && !defined(BOOST_INTEL) && \
!defined(BOOST_CLANG)) \
|| (BOOST_WORKAROUND(__GNUC__, == 3) && (__GNUC_MINOR__ >= 4) && !defined(BOOST_INTEL) && \
!defined(BOOST_CLANG))
# define BOOST_FOREACH_COMPILE_TIME_CONST_RVALUE_DETECTION
#else
// Some compilers allow temporaries to be bound to non-const references.
// These compilers make it impossible to for BOOST_FOREACH to detect
// temporaries and avoid reevaluation of the collection expression.
# if BOOST_WORKAROUND(BOOST_MSVC, <= 1300) \
|| BOOST_WORKAROUND(__BORLANDC__, < 0x593) \
|| (BOOST_WORKAROUND(BOOST_INTEL_CXX_VERSION, <= 700) && defined(_MSC_VER)) \
|| BOOST_WORKAROUND(__SUNPRO_CC, < 0x5100) \
|| BOOST_WORKAROUND(__DECCXX_VER, <= 60590042)
# define BOOST_FOREACH_NO_RVALUE_DETECTION
# endif
// Some compilers do not correctly implement the lvalue/rvalue conversion
// rules of the ternary conditional operator.
# if defined(BOOST_FOREACH_NO_RVALUE_DETECTION) \
|| defined(BOOST_NO_SFINAE) \
|| BOOST_WORKAROUND(BOOST_MSVC, BOOST_TESTED_AT(1400)) \
|| BOOST_WORKAROUND(BOOST_INTEL_WIN, BOOST_TESTED_AT(1400)) \
|| BOOST_WORKAROUND(__GNUC__, < 3) \
|| (BOOST_WORKAROUND(__GNUC__, == 3) && (__GNUC_MINOR__ <= 2)) \
|| (BOOST_WORKAROUND(__GNUC__, == 3) && (__GNUC_MINOR__ <= 3) && defined(__APPLE_CC__)) \
|| BOOST_WORKAROUND(__IBMCPP__, BOOST_TESTED_AT(600)) \
|| BOOST_WORKAROUND(__MWERKS__, BOOST_TESTED_AT(0x3206)) \
|| BOOST_WORKAROUND(__SUNPRO_CC, >= 0x5100) \
|| BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x590))
# define BOOST_FOREACH_NO_CONST_RVALUE_DETECTION
# else
# define BOOST_FOREACH_RUN_TIME_CONST_RVALUE_DETECTION
# endif
#endif
#include <boost/mpl/if.hpp>
#include <boost/mpl/assert.hpp>
#include <boost/mpl/logical.hpp>
#include <boost/mpl/eval_if.hpp>
#include <boost/noncopyable.hpp>
#include <boost/range/end.hpp>
#include <boost/range/begin.hpp>
#include <boost/range/rend.hpp>
#include <boost/range/rbegin.hpp>
#include <boost/range/iterator.hpp>
#include <boost/range/reverse_iterator.hpp>
#include <boost/type_traits/is_array.hpp>
#include <boost/type_traits/is_const.hpp>
#include <boost/type_traits/is_abstract.hpp>
#include <boost/type_traits/is_base_and_derived.hpp>
#include <boost/type_traits/is_rvalue_reference.hpp>
#include <boost/iterator/iterator_traits.hpp>
#include <boost/utility/addressof.hpp>
#include <boost/foreach_fwd.hpp>
#ifdef BOOST_FOREACH_RUN_TIME_CONST_RVALUE_DETECTION
# include <new>
# include <boost/aligned_storage.hpp>
# include <boost/utility/enable_if.hpp>
# include <boost/type_traits/remove_const.hpp>
#endif
namespace boost
{
// forward declarations for iterator_range
template<typename T>
class iterator_range;
// forward declarations for sub_range
template<typename T>
class sub_range;
namespace foreach
{
///////////////////////////////////////////////////////////////////////////////
// in_range
//
template<typename T>
inline std::pair<T, T> in_range(T begin, T end)
{
return std::make_pair(begin, end);
}
///////////////////////////////////////////////////////////////////////////////
// boost::foreach::is_lightweight_proxy
// Specialize this for user-defined collection types if they are inexpensive to copy.
// This tells BOOST_FOREACH it can avoid the rvalue/lvalue detection stuff.
template<typename T>
struct is_lightweight_proxy
: boost::mpl::false_
{
};
///////////////////////////////////////////////////////////////////////////////
// boost::foreach::is_noncopyable
// Specialize this for user-defined collection types if they cannot be copied.
// This also tells BOOST_FOREACH to avoid the rvalue/lvalue detection stuff.
template<typename T>
struct is_noncopyable
#if !defined(BOOST_BROKEN_IS_BASE_AND_DERIVED) && !defined(BOOST_NO_IS_ABSTRACT)
: boost::mpl::or_<
boost::is_abstract<T>
, boost::is_base_and_derived<boost::noncopyable, T>
>
#elif !defined(BOOST_BROKEN_IS_BASE_AND_DERIVED)
: boost::is_base_and_derived<boost::noncopyable, T>
#elif !defined(BOOST_NO_IS_ABSTRACT)
: boost::is_abstract<T>
#else
: boost::mpl::false_
#endif
{
};
} // namespace foreach
} // namespace boost
// vc6/7 needs help ordering the following overloads
#ifdef BOOST_NO_FUNCTION_TEMPLATE_ORDERING
# define BOOST_FOREACH_TAG_DEFAULT ...
#else
# define BOOST_FOREACH_TAG_DEFAULT boost::foreach::tag
#endif
///////////////////////////////////////////////////////////////////////////////
// boost_foreach_is_lightweight_proxy
// Another customization point for the is_lightweight_proxy optimization,
// this one works on legacy compilers. Overload boost_foreach_is_lightweight_proxy
// at the global namespace for your type.
template<typename T>
inline boost::foreach::is_lightweight_proxy<T> *
boost_foreach_is_lightweight_proxy(T *&, BOOST_FOREACH_TAG_DEFAULT) { return 0; }
template<typename T>
inline boost::mpl::true_ *
boost_foreach_is_lightweight_proxy(std::pair<T, T> *&, boost::foreach::tag) { return 0; }
template<typename T>
inline boost::mpl::true_ *
boost_foreach_is_lightweight_proxy(boost::iterator_range<T> *&, boost::foreach::tag) { return 0; }
template<typename T>
inline boost::mpl::true_ *
boost_foreach_is_lightweight_proxy(boost::sub_range<T> *&, boost::foreach::tag) { return 0; }
template<typename T>
inline boost::mpl::true_ *
boost_foreach_is_lightweight_proxy(T **&, boost::foreach::tag) { return 0; }
///////////////////////////////////////////////////////////////////////////////
// boost_foreach_is_noncopyable
// Another customization point for the is_noncopyable trait,
// this one works on legacy compilers. Overload boost_foreach_is_noncopyable
// at the global namespace for your type.
template<typename T>
inline boost::foreach::is_noncopyable<T> *
boost_foreach_is_noncopyable(T *&, BOOST_FOREACH_TAG_DEFAULT) { return 0; }
namespace boost
{
namespace foreach_detail_
{
///////////////////////////////////////////////////////////////////////////////
// Define some utilities for assessing the properties of expressions
//
template<typename Bool1, typename Bool2>
inline boost::mpl::and_<Bool1, Bool2> *and_(Bool1 *, Bool2 *) { return 0; }
template<typename Bool1, typename Bool2, typename Bool3>
inline boost::mpl::and_<Bool1, Bool2, Bool3> *and_(Bool1 *, Bool2 *, Bool3 *) { return 0; }
template<typename Bool1, typename Bool2>
inline boost::mpl::or_<Bool1, Bool2> *or_(Bool1 *, Bool2 *) { return 0; }
template<typename Bool1, typename Bool2, typename Bool3>
inline boost::mpl::or_<Bool1, Bool2, Bool3> *or_(Bool1 *, Bool2 *, Bool3 *) { return 0; }
template<typename Bool1>
inline boost::mpl::not_<Bool1> *not_(Bool1 *) { return 0; }
template<typename T>
inline boost::is_array<T> *is_array_(T const &) { return 0; }
template<typename T>
inline boost::is_const<T> *is_const_(T &) { return 0; }
#ifndef BOOST_FOREACH_NO_RVALUE_DETECTION
template<typename T>
inline boost::mpl::true_ *is_const_(T const &) { return 0; }
#endif
#ifdef BOOST_NO_CXX11_RVALUE_REFERENCES
template<typename T>
inline boost::mpl::false_ *is_rvalue_(T &, int) { return 0; }
template<typename T>
inline boost::mpl::true_ *is_rvalue_(T const &, ...) { return 0; }
#else
template<typename T>
inline boost::is_rvalue_reference<T &&> *is_rvalue_(T &&, int) { return 0; }
#endif
///////////////////////////////////////////////////////////////////////////////
// auto_any_t/auto_any
// General utility for putting an object of any type into automatic storage
struct auto_any_base
{
// auto_any_base must evaluate to false in boolean context so that
// they can be declared in if() statements.
operator bool() const
{
return false;
}
};
template<typename T>
struct auto_any : auto_any_base
{
explicit auto_any(T const &t)
: item(t)
{
}
// temporaries of type auto_any will be bound to const auto_any_base
// references, but we still want to be able to mutate the stored
// data, so declare it as mutable.
mutable T item;
};
typedef auto_any_base const &auto_any_t;
template<typename T, typename C>
inline BOOST_DEDUCED_TYPENAME boost::mpl::if_<C, T const, T>::type &auto_any_cast(auto_any_t a)
{
return static_cast<auto_any<T> const &>(a).item;
}
typedef boost::mpl::true_ const_;
///////////////////////////////////////////////////////////////////////////////
// type2type
//
template<typename T, typename C = boost::mpl::false_>
struct type2type
: boost::mpl::if_<C, T const, T>
{
};
template<typename T>
struct wrap_cstr
{
typedef T type;
};
template<>
struct wrap_cstr<char *>
{
typedef wrap_cstr<char *> type;
typedef char *iterator;
typedef char *const_iterator;
};
template<>
struct wrap_cstr<char const *>
{
typedef wrap_cstr<char const *> type;
typedef char const *iterator;
typedef char const *const_iterator;
};
template<>
struct wrap_cstr<wchar_t *>
{
typedef wrap_cstr<wchar_t *> type;
typedef wchar_t *iterator;
typedef wchar_t *const_iterator;
};
template<>
struct wrap_cstr<wchar_t const *>
{
typedef wrap_cstr<wchar_t const *> type;
typedef wchar_t const *iterator;
typedef wchar_t const *const_iterator;
};
template<typename T>
struct is_char_array
: mpl::and_<
is_array<T>
, mpl::or_<
is_convertible<T, char const *>
, is_convertible<T, wchar_t const *>
>
>
{};
template<typename T, typename C = boost::mpl::false_>
struct foreach_iterator
{
// **** READ THIS IF YOUR COMPILE BREAKS HERE ****
//
// There is an ambiguity about how to iterate over arrays of char and wchar_t.
// Should the last array element be treated as a null terminator to be skipped, or
// is it just like any other element in the array? To fix the problem, you must
// say which behavior you want.
//
// To treat the container as a null-terminated string, merely cast it to a
// char const *, as in BOOST_FOREACH( char ch, (char const *)"hello" ) ...
//
// To treat the container as an array, use boost::as_array() in <boost/range/as_array.hpp>,
// as in BOOST_FOREACH( char ch, boost::as_array("hello") ) ...
#if !defined(BOOST_MSVC) || BOOST_MSVC > 1300
BOOST_MPL_ASSERT_MSG( (!is_char_array<T>::value), IS_THIS_AN_ARRAY_OR_A_NULL_TERMINATED_STRING, (T&) );
#endif
// If the type is a pointer to a null terminated string (as opposed
// to an array type), there is no ambiguity.
typedef BOOST_DEDUCED_TYPENAME wrap_cstr<T>::type container;
typedef BOOST_DEDUCED_TYPENAME boost::mpl::eval_if<
C
, range_const_iterator<container>
, range_mutable_iterator<container>
>::type type;
};
template<typename T, typename C = boost::mpl::false_>
struct foreach_reverse_iterator
{
// **** READ THIS IF YOUR COMPILE BREAKS HERE ****
//
// There is an ambiguity about how to iterate over arrays of char and wchar_t.
// Should the last array element be treated as a null terminator to be skipped, or
// is it just like any other element in the array? To fix the problem, you must
// say which behavior you want.
//
// To treat the container as a null-terminated string, merely cast it to a
// char const *, as in BOOST_FOREACH( char ch, (char const *)"hello" ) ...
//
// To treat the container as an array, use boost::as_array() in <boost/range/as_array.hpp>,
// as in BOOST_FOREACH( char ch, boost::as_array("hello") ) ...
#if !defined(BOOST_MSVC) || BOOST_MSVC > 1300
BOOST_MPL_ASSERT_MSG( (!is_char_array<T>::value), IS_THIS_AN_ARRAY_OR_A_NULL_TERMINATED_STRING, (T&) );
#endif
// If the type is a pointer to a null terminated string (as opposed
// to an array type), there is no ambiguity.
typedef BOOST_DEDUCED_TYPENAME wrap_cstr<T>::type container;
typedef BOOST_DEDUCED_TYPENAME boost::mpl::eval_if<
C
, range_reverse_iterator<container const>
, range_reverse_iterator<container>
>::type type;
};
template<typename T, typename C = boost::mpl::false_>
struct foreach_reference
: iterator_reference<BOOST_DEDUCED_TYPENAME foreach_iterator<T, C>::type>
{
};
///////////////////////////////////////////////////////////////////////////////
// encode_type
//
template<typename T>
inline type2type<T> *encode_type(T &, boost::mpl::false_ *) { return 0; }
template<typename T>
inline type2type<T, const_> *encode_type(T const &, boost::mpl::true_ *) { return 0; }
///////////////////////////////////////////////////////////////////////////////
// set_false
//
inline bool set_false(bool &b)
{
b = false;
return false;
}
///////////////////////////////////////////////////////////////////////////////
// to_ptr
//
template<typename T>
inline T *&to_ptr(T const &)
{
static T *t = 0;
return t;
}
// Borland needs a little extra help with arrays
#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x564))
template<typename T,std::size_t N>
inline T (*&to_ptr(T (&)[N]))[N]
{
static T (*t)[N] = 0;
return t;
}
///////////////////////////////////////////////////////////////////////////////
// derefof
//
template<typename T>
inline T &derefof(T *t)
{
// This is a work-around for a compiler bug in Borland. If T* is a pointer to array type U(*)[N],
// then dereferencing it results in a U* instead of U(&)[N]. The cast forces the issue.
return reinterpret_cast<T &>(
*const_cast<char *>(
reinterpret_cast<char const volatile *>(t)
)
);
}
# define BOOST_FOREACH_DEREFOF(T) boost::foreach_detail_::derefof(*T)
#else
# define BOOST_FOREACH_DEREFOF(T) (*T)
#endif
#if defined(BOOST_FOREACH_COMPILE_TIME_CONST_RVALUE_DETECTION) \
&& !defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
///////////////////////////////////////////////////////////////////////////////
// Rvalue references makes it drop-dead simple to detect at compile time
// whether an expression is an rvalue.
///////////////////////////////////////////////////////////////////////////////
# define BOOST_FOREACH_IS_RVALUE(COL) \
boost::foreach_detail_::is_rvalue_((COL), 0)
#elif defined(BOOST_FOREACH_COMPILE_TIME_CONST_RVALUE_DETECTION) \
&& defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
///////////////////////////////////////////////////////////////////////////////
// Detect at compile-time whether an expression yields an rvalue or
// an lvalue. This is rather non-standard, but some popular compilers
// accept it.
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// rvalue_probe
//
template<typename T>
struct rvalue_probe
{
struct private_type_ {};
// can't ever return an array by value
typedef BOOST_DEDUCED_TYPENAME boost::mpl::if_<
boost::mpl::or_<boost::is_abstract<T>, boost::is_array<T> >, private_type_, T
>::type value_type;
operator value_type() { return *reinterpret_cast<value_type *>(this); } // never called
operator T &() const { return *reinterpret_cast<T *>(const_cast<rvalue_probe *>(this)); } // never called
};
template<typename T>
rvalue_probe<T> const make_probe(T const &)
{
return rvalue_probe<T>();
}
# define BOOST_FOREACH_IS_RVALUE(COL) \
boost::foreach_detail_::and_( \
boost::foreach_detail_::not_(boost::foreach_detail_::is_array_(COL)) \
, (true ? 0 : boost::foreach_detail_::is_rvalue_( \
(true ? boost::foreach_detail_::make_probe(COL) : (COL)), 0)))
#elif defined(BOOST_FOREACH_RUN_TIME_CONST_RVALUE_DETECTION)
///////////////////////////////////////////////////////////////////////////////
// Detect at run-time whether an expression yields an rvalue
// or an lvalue. This is 100% standard C++, but not all compilers
// accept it. Also, it causes FOREACH to break when used with non-
// copyable collection types.
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// rvalue_probe
//
template<typename T>
struct rvalue_probe
{
rvalue_probe(T &t, bool &b)
: value(t)
, is_rvalue(b)
{
}
struct private_type_ {};
// can't ever return an array or an abstract type by value
#ifdef BOOST_NO_IS_ABSTRACT
typedef BOOST_DEDUCED_TYPENAME boost::mpl::if_<
boost::is_array<T>, private_type_, T
>::type value_type;
#else
typedef BOOST_DEDUCED_TYPENAME boost::mpl::if_<
boost::mpl::or_<boost::is_abstract<T>, boost::is_array<T> >, private_type_, T
>::type value_type;
#endif
operator value_type()
{
this->is_rvalue = true;
return this->value;
}
operator T &() const
{
return this->value;
}
private:
T &value;
bool &is_rvalue;
};
template<typename T>
rvalue_probe<T> make_probe(T &t, bool &b) { return rvalue_probe<T>(t, b); }
template<typename T>
rvalue_probe<T const> make_probe(T const &t, bool &b) { return rvalue_probe<T const>(t, b); }
///////////////////////////////////////////////////////////////////////////////
// simple_variant
// holds either a T or a T const*
template<typename T>
struct simple_variant
{
simple_variant(T const *t)
: is_rvalue(false)
{
*static_cast<T const **>(this->data.address()) = t;
}
simple_variant(T const &t)
: is_rvalue(true)
{
::new(this->data.address()) T(t);
}
simple_variant(simple_variant const &that)
: is_rvalue(that.is_rvalue)
{
if(this->is_rvalue)
::new(this->data.address()) T(*that.get());
else
*static_cast<T const **>(this->data.address()) = that.get();
}
~simple_variant()
{
if(this->is_rvalue)
this->get()->~T();
}
T const *get() const
{
if(this->is_rvalue)
return static_cast<T const *>(this->data.address());
else
return *static_cast<T const * const *>(this->data.address());
}
private:
enum size_type { size = sizeof(T) > sizeof(T*) ? sizeof(T) : sizeof(T*) };
simple_variant &operator =(simple_variant const &);
bool const is_rvalue;
aligned_storage<size> data;
};
// If the collection is an array or is noncopyable, it must be an lvalue.
// If the collection is a lightweight proxy, treat it as an rvalue
// BUGBUG what about a noncopyable proxy?
template<typename LValue, typename IsProxy>
inline BOOST_DEDUCED_TYPENAME boost::enable_if<boost::mpl::or_<LValue, IsProxy>, IsProxy>::type *
should_copy_impl(LValue *, IsProxy *, bool *)
{
return 0;
}
// Otherwise, we must determine at runtime whether it's an lvalue or rvalue
inline bool *
should_copy_impl(boost::mpl::false_ *, boost::mpl::false_ *, bool *is_rvalue)
{
return is_rvalue;
}
#endif
///////////////////////////////////////////////////////////////////////////////
// contain
//
template<typename T>
inline auto_any<T> contain(T const &t, boost::mpl::true_ *) // rvalue
{
return auto_any<T>(t);
}
template<typename T>
inline auto_any<T *> contain(T &t, boost::mpl::false_ *) // lvalue
{
// Cannot seem to get sunpro to handle addressof() with array types.
#if BOOST_WORKAROUND(__SUNPRO_CC, BOOST_TESTED_AT(0x570))
return auto_any<T *>(&t);
#else
return auto_any<T *>(boost::addressof(t));
#endif
}
#ifdef BOOST_FOREACH_RUN_TIME_CONST_RVALUE_DETECTION
template<typename T>
inline auto_any<simple_variant<T> >
contain(T const &t, bool *rvalue)
{
return auto_any<simple_variant<T> >(*rvalue ? simple_variant<T>(t) : simple_variant<T>(&t));
}
#endif
/////////////////////////////////////////////////////////////////////////////
// begin
//
template<typename T, typename C>
inline auto_any<BOOST_DEDUCED_TYPENAME foreach_iterator<T, C>::type>
begin(auto_any_t col, type2type<T, C> *, boost::mpl::true_ *) // rvalue
{
return auto_any<BOOST_DEDUCED_TYPENAME foreach_iterator<T, C>::type>(
boost::begin(auto_any_cast<T, C>(col)));
}
template<typename T, typename C>
inline auto_any<BOOST_DEDUCED_TYPENAME foreach_iterator<T, C>::type>
begin(auto_any_t col, type2type<T, C> *, boost::mpl::false_ *) // lvalue
{
typedef BOOST_DEDUCED_TYPENAME type2type<T, C>::type type;
typedef BOOST_DEDUCED_TYPENAME foreach_iterator<T, C>::type iterator;
return auto_any<BOOST_DEDUCED_TYPENAME foreach_iterator<T, C>::type>(
iterator(boost::begin(BOOST_FOREACH_DEREFOF((auto_any_cast<type *, boost::mpl::false_>(col))))));
}
#ifdef BOOST_FOREACH_RUN_TIME_CONST_RVALUE_DETECTION
template<typename T>
inline auto_any<BOOST_DEDUCED_TYPENAME foreach_iterator<T, const_>::type>
begin(auto_any_t col, type2type<T, const_> *, bool *)
{
return auto_any<BOOST_DEDUCED_TYPENAME foreach_iterator<T, const_>::type>(
boost::begin(*auto_any_cast<simple_variant<T>, boost::mpl::false_>(col).get()));
}
#endif
#ifndef BOOST_NO_FUNCTION_TEMPLATE_ORDERING
template<typename T, typename C>
inline auto_any<T *>
begin(auto_any_t col, type2type<T *, C> *, boost::mpl::true_ *) // null-terminated C-style strings
{
return auto_any<T *>(auto_any_cast<T *, boost::mpl::false_>(col));
}
#endif
///////////////////////////////////////////////////////////////////////////////
// end
//
template<typename T, typename C>
inline auto_any<BOOST_DEDUCED_TYPENAME foreach_iterator<T, C>::type>
end(auto_any_t col, type2type<T, C> *, boost::mpl::true_ *) // rvalue
{
return auto_any<BOOST_DEDUCED_TYPENAME foreach_iterator<T, C>::type>(
boost::end(auto_any_cast<T, C>(col)));
}
template<typename T, typename C>
inline auto_any<BOOST_DEDUCED_TYPENAME foreach_iterator<T, C>::type>
end(auto_any_t col, type2type<T, C> *, boost::mpl::false_ *) // lvalue
{
typedef BOOST_DEDUCED_TYPENAME type2type<T, C>::type type;
typedef BOOST_DEDUCED_TYPENAME foreach_iterator<T, C>::type iterator;
return auto_any<BOOST_DEDUCED_TYPENAME foreach_iterator<T, C>::type>(
iterator(boost::end(BOOST_FOREACH_DEREFOF((auto_any_cast<type *, boost::mpl::false_>(col))))));
}
#ifdef BOOST_FOREACH_RUN_TIME_CONST_RVALUE_DETECTION
template<typename T>
inline auto_any<BOOST_DEDUCED_TYPENAME foreach_iterator<T, const_>::type>
end(auto_any_t col, type2type<T, const_> *, bool *)
{
return auto_any<BOOST_DEDUCED_TYPENAME foreach_iterator<T, const_>::type>(
boost::end(*auto_any_cast<simple_variant<T>, boost::mpl::false_>(col).get()));
}
#endif
#ifndef BOOST_NO_FUNCTION_TEMPLATE_ORDERING
template<typename T, typename C>
inline auto_any<int>
end(auto_any_t, type2type<T *, C> *, boost::mpl::true_ *) // null-terminated C-style strings
{
return auto_any<int>(0); // not used
}
#endif
///////////////////////////////////////////////////////////////////////////////
// done
//
template<typename T, typename C>
inline bool done(auto_any_t cur, auto_any_t end, type2type<T, C> *)
{
typedef BOOST_DEDUCED_TYPENAME foreach_iterator<T, C>::type iter_t;
return auto_any_cast<iter_t, boost::mpl::false_>(cur) == auto_any_cast<iter_t, boost::mpl::false_>(end);
}
#ifndef BOOST_NO_FUNCTION_TEMPLATE_ORDERING
template<typename T, typename C>
inline bool done(auto_any_t cur, auto_any_t, type2type<T *, C> *) // null-terminated C-style strings
{
return ! *auto_any_cast<T *, boost::mpl::false_>(cur);
}
#endif
///////////////////////////////////////////////////////////////////////////////
// next
//
template<typename T, typename C>
inline void next(auto_any_t cur, type2type<T, C> *)
{
typedef BOOST_DEDUCED_TYPENAME foreach_iterator<T, C>::type iter_t;
++auto_any_cast<iter_t, boost::mpl::false_>(cur);
}
///////////////////////////////////////////////////////////////////////////////
// deref
//
template<typename T, typename C>
inline BOOST_DEDUCED_TYPENAME foreach_reference<T, C>::type
deref(auto_any_t cur, type2type<T, C> *)
{
typedef BOOST_DEDUCED_TYPENAME foreach_iterator<T, C>::type iter_t;
return *auto_any_cast<iter_t, boost::mpl::false_>(cur);
}
/////////////////////////////////////////////////////////////////////////////
// rbegin
//
template<typename T, typename C>
inline auto_any<BOOST_DEDUCED_TYPENAME foreach_reverse_iterator<T, C>::type>
rbegin(auto_any_t col, type2type<T, C> *, boost::mpl::true_ *) // rvalue
{
return auto_any<BOOST_DEDUCED_TYPENAME foreach_reverse_iterator<T, C>::type>(
boost::rbegin(auto_any_cast<T, C>(col)));
}
template<typename T, typename C>
inline auto_any<BOOST_DEDUCED_TYPENAME foreach_reverse_iterator<T, C>::type>
rbegin(auto_any_t col, type2type<T, C> *, boost::mpl::false_ *) // lvalue
{
typedef BOOST_DEDUCED_TYPENAME type2type<T, C>::type type;
typedef BOOST_DEDUCED_TYPENAME foreach_reverse_iterator<T, C>::type iterator;
return auto_any<BOOST_DEDUCED_TYPENAME foreach_reverse_iterator<T, C>::type>(
iterator(boost::rbegin(BOOST_FOREACH_DEREFOF((auto_any_cast<type *, boost::mpl::false_>(col))))));
}
#ifdef BOOST_FOREACH_RUN_TIME_CONST_RVALUE_DETECTION
template<typename T>
inline auto_any<BOOST_DEDUCED_TYPENAME foreach_reverse_iterator<T, const_>::type>
rbegin(auto_any_t col, type2type<T, const_> *, bool *)
{
return auto_any<BOOST_DEDUCED_TYPENAME foreach_reverse_iterator<T, const_>::type>(
boost::rbegin(*auto_any_cast<simple_variant<T>, boost::mpl::false_>(col).get()));
}
#endif
#ifndef BOOST_NO_FUNCTION_TEMPLATE_ORDERING
template<typename T, typename C>
inline auto_any<reverse_iterator<T *> >
rbegin(auto_any_t col, type2type<T *, C> *, boost::mpl::true_ *) // null-terminated C-style strings
{
T *p = auto_any_cast<T *, boost::mpl::false_>(col);
while(0 != *p)
++p;
return auto_any<reverse_iterator<T *> >(reverse_iterator<T *>(p));
}
#endif
///////////////////////////////////////////////////////////////////////////////
// rend
//
template<typename T, typename C>
inline auto_any<BOOST_DEDUCED_TYPENAME foreach_reverse_iterator<T, C>::type>
rend(auto_any_t col, type2type<T, C> *, boost::mpl::true_ *) // rvalue
{
return auto_any<BOOST_DEDUCED_TYPENAME foreach_reverse_iterator<T, C>::type>(
boost::rend(auto_any_cast<T, C>(col)));
}
template<typename T, typename C>
inline auto_any<BOOST_DEDUCED_TYPENAME foreach_reverse_iterator<T, C>::type>
rend(auto_any_t col, type2type<T, C> *, boost::mpl::false_ *) // lvalue
{
typedef BOOST_DEDUCED_TYPENAME type2type<T, C>::type type;
typedef BOOST_DEDUCED_TYPENAME foreach_reverse_iterator<T, C>::type iterator;
return auto_any<BOOST_DEDUCED_TYPENAME foreach_reverse_iterator<T, C>::type>(
iterator(boost::rend(BOOST_FOREACH_DEREFOF((auto_any_cast<type *, boost::mpl::false_>(col))))));
}
#ifdef BOOST_FOREACH_RUN_TIME_CONST_RVALUE_DETECTION
template<typename T>
inline auto_any<BOOST_DEDUCED_TYPENAME foreach_reverse_iterator<T, const_>::type>
rend(auto_any_t col, type2type<T, const_> *, bool *)
{
return auto_any<BOOST_DEDUCED_TYPENAME foreach_reverse_iterator<T, const_>::type>(
boost::rend(*auto_any_cast<simple_variant<T>, boost::mpl::false_>(col).get()));
}
#endif
#ifndef BOOST_NO_FUNCTION_TEMPLATE_ORDERING
template<typename T, typename C>
inline auto_any<reverse_iterator<T *> >
rend(auto_any_t col, type2type<T *, C> *, boost::mpl::true_ *) // null-terminated C-style strings
{
return auto_any<reverse_iterator<T *> >(
reverse_iterator<T *>(auto_any_cast<T *, boost::mpl::false_>(col)));
}
#endif
///////////////////////////////////////////////////////////////////////////////
// rdone
//
template<typename T, typename C>
inline bool rdone(auto_any_t cur, auto_any_t end, type2type<T, C> *)
{
typedef BOOST_DEDUCED_TYPENAME foreach_reverse_iterator<T, C>::type iter_t;
return auto_any_cast<iter_t, boost::mpl::false_>(cur) == auto_any_cast<iter_t, boost::mpl::false_>(end);
}
///////////////////////////////////////////////////////////////////////////////
// rnext
//
template<typename T, typename C>
inline void rnext(auto_any_t cur, type2type<T, C> *)
{
typedef BOOST_DEDUCED_TYPENAME foreach_reverse_iterator<T, C>::type iter_t;
++auto_any_cast<iter_t, boost::mpl::false_>(cur);
}
///////////////////////////////////////////////////////////////////////////////
// rderef
//
template<typename T, typename C>
inline BOOST_DEDUCED_TYPENAME foreach_reference<T, C>::type
rderef(auto_any_t cur, type2type<T, C> *)
{
typedef BOOST_DEDUCED_TYPENAME foreach_reverse_iterator<T, C>::type iter_t;
return *auto_any_cast<iter_t, boost::mpl::false_>(cur);
}
} // namespace foreach_detail_
} // namespace boost
// Suppress a bogus code analysis warning on vc8+
#if BOOST_WORKAROUND(BOOST_MSVC, >= 1400)
# define BOOST_FOREACH_SUPPRESS_WARNINGS() __pragma(warning(suppress:6001))
#else
# define BOOST_FOREACH_SUPPRESS_WARNINGS()
#endif
///////////////////////////////////////////////////////////////////////////////
// Define a macro for giving hidden variables a unique name. Not strictly
// needed, but eliminates some warnings on some compilers.
#if BOOST_WORKAROUND(BOOST_MSVC, BOOST_TESTED_AT(1500))
// With some versions of MSVC, use of __LINE__ to create unique identifiers
// can fail when the Edit-and-Continue debug flag is used.
# define BOOST_FOREACH_ID(x) x
#else
# define BOOST_FOREACH_ID(x) BOOST_PP_CAT(x, __LINE__)
#endif
// A sneaky way to get the type of the collection without evaluating the expression
#define BOOST_FOREACH_TYPEOF(COL) \
(true ? 0 : boost::foreach_detail_::encode_type(COL, boost::foreach_detail_::is_const_(COL)))
// returns true_* if the type is noncopyable
#define BOOST_FOREACH_IS_NONCOPYABLE(COL) \
boost_foreach_is_noncopyable( \
boost::foreach_detail_::to_ptr(COL) \
, boost_foreach_argument_dependent_lookup_hack_value)
// returns true_* if the type is a lightweight proxy (and is not noncopyable)
#define BOOST_FOREACH_IS_LIGHTWEIGHT_PROXY(COL) \
boost::foreach_detail_::and_( \
boost::foreach_detail_::not_(BOOST_FOREACH_IS_NONCOPYABLE(COL)) \
, boost_foreach_is_lightweight_proxy( \
boost::foreach_detail_::to_ptr(COL) \
, boost_foreach_argument_dependent_lookup_hack_value))
#if defined(BOOST_FOREACH_COMPILE_TIME_CONST_RVALUE_DETECTION)
///////////////////////////////////////////////////////////////////////////////
// R-values and const R-values supported here with zero runtime overhead
///////////////////////////////////////////////////////////////////////////////
// No variable is needed to track the rvalue-ness of the collection expression
# define BOOST_FOREACH_PREAMBLE() \
BOOST_FOREACH_SUPPRESS_WARNINGS()
// Evaluate the collection expression
# define BOOST_FOREACH_EVALUATE(COL) \
(COL)
# define BOOST_FOREACH_SHOULD_COPY(COL) \
(true ? 0 : boost::foreach_detail_::or_( \
BOOST_FOREACH_IS_RVALUE(COL) \
, BOOST_FOREACH_IS_LIGHTWEIGHT_PROXY(COL)))
#elif defined(BOOST_FOREACH_RUN_TIME_CONST_RVALUE_DETECTION)
///////////////////////////////////////////////////////////////////////////////
// R-values and const R-values supported here
///////////////////////////////////////////////////////////////////////////////
// Declare a variable to track the rvalue-ness of the collection expression
# define BOOST_FOREACH_PREAMBLE() \
BOOST_FOREACH_SUPPRESS_WARNINGS() \
if (bool BOOST_FOREACH_ID(_foreach_is_rvalue) = false) {} else
// Evaluate the collection expression, and detect if it is an lvalue or and rvalue
# define BOOST_FOREACH_EVALUATE(COL) \
(true ? boost::foreach_detail_::make_probe((COL), BOOST_FOREACH_ID(_foreach_is_rvalue)) : (COL))
// The rvalue/lvalue-ness of the collection expression is determined dynamically, unless
// the type is an array or is noncopyable or is non-const, in which case we know it's an lvalue.
// If the type happens to be a lightweight proxy, always make a copy.
# define BOOST_FOREACH_SHOULD_COPY(COL) \
(boost::foreach_detail_::should_copy_impl( \
true ? 0 : boost::foreach_detail_::or_( \
boost::foreach_detail_::is_array_(COL) \
, BOOST_FOREACH_IS_NONCOPYABLE(COL) \
, boost::foreach_detail_::not_(boost::foreach_detail_::is_const_(COL))) \
, true ? 0 : BOOST_FOREACH_IS_LIGHTWEIGHT_PROXY(COL) \
, &BOOST_FOREACH_ID(_foreach_is_rvalue)))
#elif !defined(BOOST_FOREACH_NO_RVALUE_DETECTION)
///////////////////////////////////////////////////////////////////////////////
// R-values supported here, const R-values NOT supported here
///////////////////////////////////////////////////////////////////////////////
// No variable is needed to track the rvalue-ness of the collection expression
# define BOOST_FOREACH_PREAMBLE() \
BOOST_FOREACH_SUPPRESS_WARNINGS()
// Evaluate the collection expression
# define BOOST_FOREACH_EVALUATE(COL) \
(COL)
// Determine whether the collection expression is an lvalue or an rvalue.
// NOTE: this gets the answer wrong for const rvalues.
# define BOOST_FOREACH_SHOULD_COPY(COL) \
(true ? 0 : boost::foreach_detail_::or_( \
boost::foreach_detail_::is_rvalue_((COL), 0) \
, BOOST_FOREACH_IS_LIGHTWEIGHT_PROXY(COL)))
#else
///////////////////////////////////////////////////////////////////////////////
// R-values NOT supported here
///////////////////////////////////////////////////////////////////////////////
// No variable is needed to track the rvalue-ness of the collection expression
# define BOOST_FOREACH_PREAMBLE() \
BOOST_FOREACH_SUPPRESS_WARNINGS()
// Evaluate the collection expression
# define BOOST_FOREACH_EVALUATE(COL) \
(COL)
// Can't use rvalues with BOOST_FOREACH (unless they are lightweight proxies)
# define BOOST_FOREACH_SHOULD_COPY(COL) \
(true ? 0 : BOOST_FOREACH_IS_LIGHTWEIGHT_PROXY(COL))
#endif
#define BOOST_FOREACH_CONTAIN(COL) \
boost::foreach_detail_::contain( \
BOOST_FOREACH_EVALUATE(COL) \
, BOOST_FOREACH_SHOULD_COPY(COL))
#define BOOST_FOREACH_BEGIN(COL) \
boost::foreach_detail_::begin( \
BOOST_FOREACH_ID(_foreach_col) \
, BOOST_FOREACH_TYPEOF(COL) \
, BOOST_FOREACH_SHOULD_COPY(COL))
#define BOOST_FOREACH_END(COL) \
boost::foreach_detail_::end( \
BOOST_FOREACH_ID(_foreach_col) \
, BOOST_FOREACH_TYPEOF(COL) \
, BOOST_FOREACH_SHOULD_COPY(COL))
#define BOOST_FOREACH_DONE(COL) \
boost::foreach_detail_::done( \
BOOST_FOREACH_ID(_foreach_cur) \
, BOOST_FOREACH_ID(_foreach_end) \
, BOOST_FOREACH_TYPEOF(COL))
#define BOOST_FOREACH_NEXT(COL) \
boost::foreach_detail_::next( \
BOOST_FOREACH_ID(_foreach_cur) \
, BOOST_FOREACH_TYPEOF(COL))
#define BOOST_FOREACH_DEREF(COL) \
boost::foreach_detail_::deref( \
BOOST_FOREACH_ID(_foreach_cur) \
, BOOST_FOREACH_TYPEOF(COL))
#define BOOST_FOREACH_RBEGIN(COL) \
boost::foreach_detail_::rbegin( \
BOOST_FOREACH_ID(_foreach_col) \
, BOOST_FOREACH_TYPEOF(COL) \
, BOOST_FOREACH_SHOULD_COPY(COL))
#define BOOST_FOREACH_REND(COL) \
boost::foreach_detail_::rend( \
BOOST_FOREACH_ID(_foreach_col) \
, BOOST_FOREACH_TYPEOF(COL) \
, BOOST_FOREACH_SHOULD_COPY(COL))
#define BOOST_FOREACH_RDONE(COL) \
boost::foreach_detail_::rdone( \
BOOST_FOREACH_ID(_foreach_cur) \
, BOOST_FOREACH_ID(_foreach_end) \
, BOOST_FOREACH_TYPEOF(COL))
#define BOOST_FOREACH_RNEXT(COL) \
boost::foreach_detail_::rnext( \
BOOST_FOREACH_ID(_foreach_cur) \
, BOOST_FOREACH_TYPEOF(COL))
#define BOOST_FOREACH_RDEREF(COL) \
boost::foreach_detail_::rderef( \
BOOST_FOREACH_ID(_foreach_cur) \
, BOOST_FOREACH_TYPEOF(COL))
///////////////////////////////////////////////////////////////////////////////
// BOOST_FOREACH
//
// For iterating over collections. Collections can be
// arrays, null-terminated strings, or STL containers.
// The loop variable can be a value or reference. For
// example:
//
// std::list<int> int_list(/*stuff*/);
// BOOST_FOREACH(int &i, int_list)
// {
// /*
// * loop body goes here.
// * i is a reference to the int in int_list.
// */
// }
//
// Alternately, you can declare the loop variable first,
// so you can access it after the loop finishes. Obviously,
// if you do it this way, then the loop variable cannot be
// a reference.
//
// int i;
// BOOST_FOREACH(i, int_list)
// { ... }
//
#define BOOST_FOREACH(VAR, COL) \
BOOST_FOREACH_PREAMBLE() \
if (boost::foreach_detail_::auto_any_t BOOST_FOREACH_ID(_foreach_col) = BOOST_FOREACH_CONTAIN(COL)) {} else \
if (boost::foreach_detail_::auto_any_t BOOST_FOREACH_ID(_foreach_cur) = BOOST_FOREACH_BEGIN(COL)) {} else \
if (boost::foreach_detail_::auto_any_t BOOST_FOREACH_ID(_foreach_end) = BOOST_FOREACH_END(COL)) {} else \
for (bool BOOST_FOREACH_ID(_foreach_continue) = true; \
BOOST_FOREACH_ID(_foreach_continue) && !BOOST_FOREACH_DONE(COL); \
BOOST_FOREACH_ID(_foreach_continue) ? BOOST_FOREACH_NEXT(COL) : (void)0) \
if (boost::foreach_detail_::set_false(BOOST_FOREACH_ID(_foreach_continue))) {} else \
for (VAR = BOOST_FOREACH_DEREF(COL); !BOOST_FOREACH_ID(_foreach_continue); BOOST_FOREACH_ID(_foreach_continue) = true)
///////////////////////////////////////////////////////////////////////////////
// BOOST_REVERSE_FOREACH
//
// For iterating over collections in reverse order. In
// all other respects, BOOST_REVERSE_FOREACH is like
// BOOST_FOREACH.
//
#define BOOST_REVERSE_FOREACH(VAR, COL) \
BOOST_FOREACH_PREAMBLE() \
if (boost::foreach_detail_::auto_any_t BOOST_FOREACH_ID(_foreach_col) = BOOST_FOREACH_CONTAIN(COL)) {} else \
if (boost::foreach_detail_::auto_any_t BOOST_FOREACH_ID(_foreach_cur) = BOOST_FOREACH_RBEGIN(COL)) {} else \
if (boost::foreach_detail_::auto_any_t BOOST_FOREACH_ID(_foreach_end) = BOOST_FOREACH_REND(COL)) {} else \
for (bool BOOST_FOREACH_ID(_foreach_continue) = true; \
BOOST_FOREACH_ID(_foreach_continue) && !BOOST_FOREACH_RDONE(COL); \
BOOST_FOREACH_ID(_foreach_continue) ? BOOST_FOREACH_RNEXT(COL) : (void)0) \
if (boost::foreach_detail_::set_false(BOOST_FOREACH_ID(_foreach_continue))) {} else \
for (VAR = BOOST_FOREACH_RDEREF(COL); !BOOST_FOREACH_ID(_foreach_continue); BOOST_FOREACH_ID(_foreach_continue) = true)
#endif
|