/usr/include/boost/math/distributions/bernoulli.hpp is in libboost1.54-dev 1.54.0-4ubuntu3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 | // boost\math\distributions\bernoulli.hpp
// Copyright John Maddock 2006.
// Copyright Paul A. Bristow 2007.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
// http://en.wikipedia.org/wiki/bernoulli_distribution
// http://mathworld.wolfram.com/BernoulliDistribution.html
// bernoulli distribution is the discrete probability distribution of
// the number (k) of successes, in a single Bernoulli trials.
// It is a version of the binomial distribution when n = 1.
// But note that the bernoulli distribution
// (like others including the poisson, binomial & negative binomial)
// is strictly defined as a discrete function: only integral values of k are envisaged.
// However because of the method of calculation using a continuous gamma function,
// it is convenient to treat it as if a continous function,
// and permit non-integral values of k.
// To enforce the strict mathematical model, users should use floor or ceil functions
// on k outside this function to ensure that k is integral.
#ifndef BOOST_MATH_SPECIAL_BERNOULLI_HPP
#define BOOST_MATH_SPECIAL_BERNOULLI_HPP
#include <boost/math/distributions/fwd.hpp>
#include <boost/math/tools/config.hpp>
#include <boost/math/distributions/complement.hpp> // complements
#include <boost/math/distributions/detail/common_error_handling.hpp> // error checks
#include <boost/math/special_functions/fpclassify.hpp> // isnan.
#include <utility>
namespace boost
{
namespace math
{
namespace bernoulli_detail
{
// Common error checking routines for bernoulli distribution functions:
template <class RealType, class Policy>
inline bool check_success_fraction(const char* function, const RealType& p, RealType* result, const Policy& /* pol */)
{
if(!(boost::math::isfinite)(p) || (p < 0) || (p > 1))
{
*result = policies::raise_domain_error<RealType>(
function,
"Success fraction argument is %1%, but must be >= 0 and <= 1 !", p, Policy());
return false;
}
return true;
}
template <class RealType, class Policy>
inline bool check_dist(const char* function, const RealType& p, RealType* result, const Policy& /* pol */, const mpl::true_&)
{
return check_success_fraction(function, p, result, Policy());
}
template <class RealType, class Policy>
inline bool check_dist(const char* , const RealType& , RealType* , const Policy& /* pol */, const mpl::false_&)
{
return true;
}
template <class RealType, class Policy>
inline bool check_dist(const char* function, const RealType& p, RealType* result, const Policy& /* pol */)
{
return check_dist(function, p, result, Policy(), typename policies::constructor_error_check<Policy>::type());
}
template <class RealType, class Policy>
inline bool check_dist_and_k(const char* function, const RealType& p, RealType k, RealType* result, const Policy& pol)
{
if(check_dist(function, p, result, Policy(), typename policies::method_error_check<Policy>::type()) == false)
{
return false;
}
if(!(boost::math::isfinite)(k) || !((k == 0) || (k == 1)))
{
*result = policies::raise_domain_error<RealType>(
function,
"Number of successes argument is %1%, but must be 0 or 1 !", k, pol);
return false;
}
return true;
}
template <class RealType, class Policy>
inline bool check_dist_and_prob(const char* function, RealType p, RealType prob, RealType* result, const Policy& /* pol */)
{
if(check_dist(function, p, result, Policy(), typename policies::method_error_check<Policy>::type()) && detail::check_probability(function, prob, result, Policy()) == false)
{
return false;
}
return true;
}
} // namespace bernoulli_detail
template <class RealType = double, class Policy = policies::policy<> >
class bernoulli_distribution
{
public:
typedef RealType value_type;
typedef Policy policy_type;
bernoulli_distribution(RealType p = 0.5) : m_p(p)
{ // Default probability = half suits 'fair' coin tossing
// where probability of heads == probability of tails.
RealType result; // of checks.
bernoulli_detail::check_dist(
"boost::math::bernoulli_distribution<%1%>::bernoulli_distribution",
m_p,
&result, Policy());
} // bernoulli_distribution constructor.
RealType success_fraction() const
{ // Probability.
return m_p;
}
private:
RealType m_p; // success_fraction
}; // template <class RealType> class bernoulli_distribution
typedef bernoulli_distribution<double> bernoulli;
template <class RealType, class Policy>
inline const std::pair<RealType, RealType> range(const bernoulli_distribution<RealType, Policy>& /* dist */)
{ // Range of permissible values for random variable k = {0, 1}.
using boost::math::tools::max_value;
return std::pair<RealType, RealType>(static_cast<RealType>(0), static_cast<RealType>(1));
}
template <class RealType, class Policy>
inline const std::pair<RealType, RealType> support(const bernoulli_distribution<RealType, Policy>& /* dist */)
{ // Range of supported values for random variable k = {0, 1}.
// This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
return std::pair<RealType, RealType>(static_cast<RealType>(0), static_cast<RealType>(1));
}
template <class RealType, class Policy>
inline RealType mean(const bernoulli_distribution<RealType, Policy>& dist)
{ // Mean of bernoulli distribution = p (n = 1).
return dist.success_fraction();
} // mean
// Rely on dereived_accessors quantile(half)
//template <class RealType>
//inline RealType median(const bernoulli_distribution<RealType, Policy>& dist)
//{ // Median of bernoulli distribution is not defined.
// return tools::domain_error<RealType>(BOOST_CURRENT_FUNCTION, "Median is not implemented, result is %1%!", std::numeric_limits<RealType>::quiet_NaN());
//} // median
template <class RealType, class Policy>
inline RealType variance(const bernoulli_distribution<RealType, Policy>& dist)
{ // Variance of bernoulli distribution =p * q.
return dist.success_fraction() * (1 - dist.success_fraction());
} // variance
template <class RealType, class Policy>
RealType pdf(const bernoulli_distribution<RealType, Policy>& dist, const RealType& k)
{ // Probability Density/Mass Function.
BOOST_FPU_EXCEPTION_GUARD
// Error check:
RealType result = 0; // of checks.
if(false == bernoulli_detail::check_dist_and_k(
"boost::math::pdf(bernoulli_distribution<%1%>, %1%)",
dist.success_fraction(), // 0 to 1
k, // 0 or 1
&result, Policy()))
{
return result;
}
// Assume k is integral.
if (k == 0)
{
return 1 - dist.success_fraction(); // 1 - p
}
else // k == 1
{
return dist.success_fraction(); // p
}
} // pdf
template <class RealType, class Policy>
inline RealType cdf(const bernoulli_distribution<RealType, Policy>& dist, const RealType& k)
{ // Cumulative Distribution Function Bernoulli.
RealType p = dist.success_fraction();
// Error check:
RealType result = 0;
if(false == bernoulli_detail::check_dist_and_k(
"boost::math::cdf(bernoulli_distribution<%1%>, %1%)",
p,
k,
&result, Policy()))
{
return result;
}
if (k == 0)
{
return 1 - p;
}
else
{ // k == 1
return 1;
}
} // bernoulli cdf
template <class RealType, class Policy>
inline RealType cdf(const complemented2_type<bernoulli_distribution<RealType, Policy>, RealType>& c)
{ // Complemented Cumulative Distribution Function bernoulli.
RealType const& k = c.param;
bernoulli_distribution<RealType, Policy> const& dist = c.dist;
RealType p = dist.success_fraction();
// Error checks:
RealType result = 0;
if(false == bernoulli_detail::check_dist_and_k(
"boost::math::cdf(bernoulli_distribution<%1%>, %1%)",
p,
k,
&result, Policy()))
{
return result;
}
if (k == 0)
{
return p;
}
else
{ // k == 1
return 0;
}
} // bernoulli cdf complement
template <class RealType, class Policy>
inline RealType quantile(const bernoulli_distribution<RealType, Policy>& dist, const RealType& p)
{ // Quantile or Percent Point Bernoulli function.
// Return the number of expected successes k either 0 or 1.
// for a given probability p.
RealType result = 0; // of error checks:
if(false == bernoulli_detail::check_dist_and_prob(
"boost::math::quantile(bernoulli_distribution<%1%>, %1%)",
dist.success_fraction(),
p,
&result, Policy()))
{
return result;
}
if (p <= (1 - dist.success_fraction()))
{ // p <= pdf(dist, 0) == cdf(dist, 0)
return 0;
}
else
{
return 1;
}
} // quantile
template <class RealType, class Policy>
inline RealType quantile(const complemented2_type<bernoulli_distribution<RealType, Policy>, RealType>& c)
{ // Quantile or Percent Point bernoulli function.
// Return the number of expected successes k for a given
// complement of the probability q.
//
// Error checks:
RealType q = c.param;
const bernoulli_distribution<RealType, Policy>& dist = c.dist;
RealType result = 0;
if(false == bernoulli_detail::check_dist_and_prob(
"boost::math::quantile(bernoulli_distribution<%1%>, %1%)",
dist.success_fraction(),
q,
&result, Policy()))
{
return result;
}
if (q <= 1 - dist.success_fraction())
{ // // q <= cdf(complement(dist, 0)) == pdf(dist, 0)
return 1;
}
else
{
return 0;
}
} // quantile complemented.
template <class RealType, class Policy>
inline RealType mode(const bernoulli_distribution<RealType, Policy>& dist)
{
return static_cast<RealType>((dist.success_fraction() <= 0.5) ? 0 : 1); // p = 0.5 can be 0 or 1
}
template <class RealType, class Policy>
inline RealType skewness(const bernoulli_distribution<RealType, Policy>& dist)
{
BOOST_MATH_STD_USING; // Aid ADL for sqrt.
RealType p = dist.success_fraction();
return (1 - 2 * p) / sqrt(p * (1 - p));
}
template <class RealType, class Policy>
inline RealType kurtosis_excess(const bernoulli_distribution<RealType, Policy>& dist)
{
RealType p = dist.success_fraction();
// Note Wolfram says this is kurtosis in text, but gamma2 is the kurtosis excess,
// and Wikipedia also says this is the kurtosis excess formula.
// return (6 * p * p - 6 * p + 1) / (p * (1 - p));
// But Wolfram kurtosis article gives this simpler formula for kurtosis excess:
return 1 / (1 - p) + 1/p -6;
}
template <class RealType, class Policy>
inline RealType kurtosis(const bernoulli_distribution<RealType, Policy>& dist)
{
RealType p = dist.success_fraction();
return 1 / (1 - p) + 1/p -6 + 3;
// Simpler than:
// return (6 * p * p - 6 * p + 1) / (p * (1 - p)) + 3;
}
} // namespace math
} // namespace boost
// This include must be at the end, *after* the accessors
// for this distribution have been defined, in order to
// keep compilers that support two-phase lookup happy.
#include <boost/math/distributions/detail/derived_accessors.hpp>
#endif // BOOST_MATH_SPECIAL_BERNOULLI_HPP
|