This file is indexed.

/usr/include/boost/math/distributions/beta.hpp is in libboost1.54-dev 1.54.0-4ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
// boost\math\distributions\beta.hpp

// Copyright John Maddock 2006.
// Copyright Paul A. Bristow 2006.

// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)

// http://en.wikipedia.org/wiki/Beta_distribution
// http://www.itl.nist.gov/div898/handbook/eda/section3/eda366h.htm
// http://mathworld.wolfram.com/BetaDistribution.html

// The Beta Distribution is a continuous probability distribution.
// The beta distribution is used to model events which are constrained to take place
// within an interval defined by maxima and minima,
// so is used extensively in PERT and other project management systems
// to describe the time to completion.
// The cdf of the beta distribution is used as a convenient way
// of obtaining the sum over a set of binomial outcomes.
// The beta distribution is also used in Bayesian statistics.

#ifndef BOOST_MATH_DIST_BETA_HPP
#define BOOST_MATH_DIST_BETA_HPP

#include <boost/math/distributions/fwd.hpp>
#include <boost/math/special_functions/beta.hpp> // for beta.
#include <boost/math/distributions/complement.hpp> // complements.
#include <boost/math/distributions/detail/common_error_handling.hpp> // error checks
#include <boost/math/special_functions/fpclassify.hpp> // isnan.
#include <boost/math/tools/roots.hpp> // for root finding.

#if defined (BOOST_MSVC)
#  pragma warning(push)
#  pragma warning(disable: 4702) // unreachable code
// in domain_error_imp in error_handling
#endif

#include <utility>

namespace boost
{
  namespace math
  {
    namespace beta_detail
    {
      // Common error checking routines for beta distribution functions:
      template <class RealType, class Policy>
      inline bool check_alpha(const char* function, const RealType& alpha, RealType* result, const Policy& pol)
      {
        if(!(boost::math::isfinite)(alpha) || (alpha <= 0))
        {
          *result = policies::raise_domain_error<RealType>(
            function,
            "Alpha argument is %1%, but must be > 0 !", alpha, pol);
          return false;
        }
        return true;
      } // bool check_alpha

      template <class RealType, class Policy>
      inline bool check_beta(const char* function, const RealType& beta, RealType* result, const Policy& pol)
      {
        if(!(boost::math::isfinite)(beta) || (beta <= 0))
        {
          *result = policies::raise_domain_error<RealType>(
            function,
            "Beta argument is %1%, but must be > 0 !", beta, pol);
          return false;
        }
        return true;
      } // bool check_beta

      template <class RealType, class Policy>
      inline bool check_prob(const char* function, const RealType& p, RealType* result, const Policy& pol)
      {
        if((p < 0) || (p > 1) || !(boost::math::isfinite)(p))
        {
          *result = policies::raise_domain_error<RealType>(
            function,
            "Probability argument is %1%, but must be >= 0 and <= 1 !", p, pol);
          return false;
        }
        return true;
      } // bool check_prob

      template <class RealType, class Policy>
      inline bool check_x(const char* function, const RealType& x, RealType* result, const Policy& pol)
      {
        if(!(boost::math::isfinite)(x) || (x < 0) || (x > 1))
        {
          *result = policies::raise_domain_error<RealType>(
            function,
            "x argument is %1%, but must be >= 0 and <= 1 !", x, pol);
          return false;
        }
        return true;
      } // bool check_x

      template <class RealType, class Policy>
      inline bool check_dist(const char* function, const RealType& alpha, const RealType& beta, RealType* result, const Policy& pol)
      { // Check both alpha and beta.
        return check_alpha(function, alpha, result, pol)
          && check_beta(function, beta, result, pol);
      } // bool check_dist

      template <class RealType, class Policy>
      inline bool check_dist_and_x(const char* function, const RealType& alpha, const RealType& beta, RealType x, RealType* result, const Policy& pol)
      {
        return check_dist(function, alpha, beta, result, pol)
          && beta_detail::check_x(function, x, result, pol);
      } // bool check_dist_and_x

      template <class RealType, class Policy>
      inline bool check_dist_and_prob(const char* function, const RealType& alpha, const RealType& beta, RealType p, RealType* result, const Policy& pol)
      {
        return check_dist(function, alpha, beta, result, pol)
          && check_prob(function, p, result, pol);
      } // bool check_dist_and_prob

      template <class RealType, class Policy>
      inline bool check_mean(const char* function, const RealType& mean, RealType* result, const Policy& pol)
      {
        if(!(boost::math::isfinite)(mean) || (mean <= 0))
        {
          *result = policies::raise_domain_error<RealType>(
            function,
            "mean argument is %1%, but must be > 0 !", mean, pol);
          return false;
        }
        return true;
      } // bool check_mean
      template <class RealType, class Policy>
      inline bool check_variance(const char* function, const RealType& variance, RealType* result, const Policy& pol)
      {
        if(!(boost::math::isfinite)(variance) || (variance <= 0))
        {
          *result = policies::raise_domain_error<RealType>(
            function,
            "variance argument is %1%, but must be > 0 !", variance, pol);
          return false;
        }
        return true;
      } // bool check_variance
    } // namespace beta_detail

    // typedef beta_distribution<double> beta;
    // is deliberately NOT included to avoid a name clash with the beta function.
    // Use beta_distribution<> mybeta(...) to construct type double.

    template <class RealType = double, class Policy = policies::policy<> >
    class beta_distribution
    {
    public:
      typedef RealType value_type;
      typedef Policy policy_type;

      beta_distribution(RealType alpha = 1, RealType beta = 1) : m_alpha(alpha), m_beta(beta)
      {
        RealType result;
        beta_detail::check_dist(
           "boost::math::beta_distribution<%1%>::beta_distribution",
          m_alpha,
          m_beta,
          &result, Policy());
      } // beta_distribution constructor.
      // Accessor functions:
      RealType alpha() const
      {
        return m_alpha;
      }
      RealType beta() const
      { // .
        return m_beta;
      }

      // Estimation of the alpha & beta parameters.
      // http://en.wikipedia.org/wiki/Beta_distribution
      // gives formulae in section on parameter estimation.
      // Also NIST EDA page 3 & 4 give the same.
      // http://www.itl.nist.gov/div898/handbook/eda/section3/eda366h.htm
      // http://www.epi.ucdavis.edu/diagnostictests/betabuster.html

      static RealType find_alpha(
        RealType mean, // Expected value of mean.
        RealType variance) // Expected value of variance.
      {
        static const char* function = "boost::math::beta_distribution<%1%>::find_alpha";
        RealType result = 0; // of error checks.
        if(false ==
            (
              beta_detail::check_mean(function, mean, &result, Policy())
              && beta_detail::check_variance(function, variance, &result, Policy())
            )
          )
        {
          return result;
        }
        return mean * (( (mean * (1 - mean)) / variance)- 1);
      } // RealType find_alpha

      static RealType find_beta(
        RealType mean, // Expected value of mean.
        RealType variance) // Expected value of variance.
      {
        static const char* function = "boost::math::beta_distribution<%1%>::find_beta";
        RealType result = 0; // of error checks.
        if(false ==
            (
              beta_detail::check_mean(function, mean, &result, Policy())
              &&
              beta_detail::check_variance(function, variance, &result, Policy())
            )
          )
        {
          return result;
        }
        return (1 - mean) * (((mean * (1 - mean)) /variance)-1);
      } //  RealType find_beta

      // Estimate alpha & beta from either alpha or beta, and x and probability.
      // Uses for these parameter estimators are unclear.

      static RealType find_alpha(
        RealType beta, // from beta.
        RealType x, //  x.
        RealType probability) // cdf
      {
        static const char* function = "boost::math::beta_distribution<%1%>::find_alpha";
        RealType result = 0; // of error checks.
        if(false ==
            (
             beta_detail::check_prob(function, probability, &result, Policy())
             &&
             beta_detail::check_beta(function, beta, &result, Policy())
             &&
             beta_detail::check_x(function, x, &result, Policy())
            )
          )
        {
          return result;
        }
        return ibeta_inva(beta, x, probability, Policy());
      } // RealType find_alpha(beta, a, probability)

      static RealType find_beta(
        // ibeta_invb(T b, T x, T p); (alpha, x, cdf,)
        RealType alpha, // alpha.
        RealType x, // probability x.
        RealType probability) // probability cdf.
      {
        static const char* function = "boost::math::beta_distribution<%1%>::find_beta";
        RealType result = 0; // of error checks.
        if(false ==
            (
              beta_detail::check_prob(function, probability, &result, Policy())
              &&
              beta_detail::check_alpha(function, alpha, &result, Policy())
              &&
              beta_detail::check_x(function, x, &result, Policy())
            )
          )
        {
          return result;
        }
        return ibeta_invb(alpha, x, probability, Policy());
      } //  RealType find_beta(alpha, x, probability)

    private:
      RealType m_alpha; // Two parameters of the beta distribution.
      RealType m_beta;
    }; // template <class RealType, class Policy> class beta_distribution

    template <class RealType, class Policy>
    inline const std::pair<RealType, RealType> range(const beta_distribution<RealType, Policy>& /* dist */)
    { // Range of permissible values for random variable x.
      using boost::math::tools::max_value;
      return std::pair<RealType, RealType>(static_cast<RealType>(0), static_cast<RealType>(1));
    }

    template <class RealType, class Policy>
    inline const std::pair<RealType, RealType> support(const beta_distribution<RealType, Policy>&  /* dist */)
    { // Range of supported values for random variable x.
      // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
      return std::pair<RealType, RealType>(static_cast<RealType>(0), static_cast<RealType>(1));
    }

    template <class RealType, class Policy>
    inline RealType mean(const beta_distribution<RealType, Policy>& dist)
    { // Mean of beta distribution = np.
      return  dist.alpha() / (dist.alpha() + dist.beta());
    } // mean

    template <class RealType, class Policy>
    inline RealType variance(const beta_distribution<RealType, Policy>& dist)
    { // Variance of beta distribution = np(1-p).
      RealType a = dist.alpha();
      RealType b = dist.beta();
      return  (a * b) / ((a + b ) * (a + b) * (a + b + 1));
    } // variance

    template <class RealType, class Policy>
    inline RealType mode(const beta_distribution<RealType, Policy>& dist)
    {
      static const char* function = "boost::math::mode(beta_distribution<%1%> const&)";

      RealType result;
      if ((dist.alpha() <= 1))
      {
        result = policies::raise_domain_error<RealType>(
          function,
          "mode undefined for alpha = %1%, must be > 1!", dist.alpha(), Policy());
        return result;
      }

      if ((dist.beta() <= 1))
      {
        result = policies::raise_domain_error<RealType>(
          function,
          "mode undefined for beta = %1%, must be > 1!", dist.beta(), Policy());
        return result;
      }
      RealType a = dist.alpha();
      RealType b = dist.beta();
      return (a-1) / (a + b - 2);
    } // mode

    //template <class RealType, class Policy>
    //inline RealType median(const beta_distribution<RealType, Policy>& dist)
    //{ // Median of beta distribution is not defined.
    //  return tools::domain_error<RealType>(function, "Median is not implemented, result is %1%!", std::numeric_limits<RealType>::quiet_NaN());
    //} // median

    //But WILL be provided by the derived accessor as quantile(0.5).

    template <class RealType, class Policy>
    inline RealType skewness(const beta_distribution<RealType, Policy>& dist)
    {
      BOOST_MATH_STD_USING // ADL of std functions.
      RealType a = dist.alpha();
      RealType b = dist.beta();
      return (2 * (b-a) * sqrt(a + b + 1)) / ((a + b + 2) * sqrt(a * b));
    } // skewness

    template <class RealType, class Policy>
    inline RealType kurtosis_excess(const beta_distribution<RealType, Policy>& dist)
    {
      RealType a = dist.alpha();
      RealType b = dist.beta();
      RealType a_2 = a * a;
      RealType n = 6 * (a_2 * a - a_2 * (2 * b - 1) + b * b * (b + 1) - 2 * a * b * (b + 2));
      RealType d = a * b * (a + b + 2) * (a + b + 3);
      return  n / d;
    } // kurtosis_excess

    template <class RealType, class Policy>
    inline RealType kurtosis(const beta_distribution<RealType, Policy>& dist)
    {
      return 3 + kurtosis_excess(dist);
    } // kurtosis

    template <class RealType, class Policy>
    inline RealType pdf(const beta_distribution<RealType, Policy>& dist, const RealType& x)
    { // Probability Density/Mass Function.
      BOOST_FPU_EXCEPTION_GUARD

      static const char* function = "boost::math::pdf(beta_distribution<%1%> const&, %1%)";

      BOOST_MATH_STD_USING // for ADL of std functions

      RealType a = dist.alpha();
      RealType b = dist.beta();

      // Argument checks:
      RealType result = 0;
      if(false == beta_detail::check_dist_and_x(
        function,
        a, b, x,
        &result, Policy()))
      {
        return result;
      }
      using boost::math::beta;
      return ibeta_derivative(a, b, x, Policy());
    } // pdf

    template <class RealType, class Policy>
    inline RealType cdf(const beta_distribution<RealType, Policy>& dist, const RealType& x)
    { // Cumulative Distribution Function beta.
      BOOST_MATH_STD_USING // for ADL of std functions

      static const char* function = "boost::math::cdf(beta_distribution<%1%> const&, %1%)";

      RealType a = dist.alpha();
      RealType b = dist.beta();

      // Argument checks:
      RealType result = 0;
      if(false == beta_detail::check_dist_and_x(
        function,
        a, b, x,
        &result, Policy()))
      {
        return result;
      }
      // Special cases:
      if (x == 0)
      {
        return 0;
      }
      else if (x == 1)
      {
        return 1;
      }
      return ibeta(a, b, x, Policy());
    } // beta cdf

    template <class RealType, class Policy>
    inline RealType cdf(const complemented2_type<beta_distribution<RealType, Policy>, RealType>& c)
    { // Complemented Cumulative Distribution Function beta.

      BOOST_MATH_STD_USING // for ADL of std functions

      static const char* function = "boost::math::cdf(beta_distribution<%1%> const&, %1%)";

      RealType const& x = c.param;
      beta_distribution<RealType, Policy> const& dist = c.dist;
      RealType a = dist.alpha();
      RealType b = dist.beta();

      // Argument checks:
      RealType result = 0;
      if(false == beta_detail::check_dist_and_x(
        function,
        a, b, x,
        &result, Policy()))
      {
        return result;
      }
      if (x == 0)
      {
        return 1;
      }
      else if (x == 1)
      {
        return 0;
      }
      // Calculate cdf beta using the incomplete beta function.
      // Use of ibeta here prevents cancellation errors in calculating
      // 1 - x if x is very small, perhaps smaller than machine epsilon.
      return ibetac(a, b, x, Policy());
    } // beta cdf

    template <class RealType, class Policy>
    inline RealType quantile(const beta_distribution<RealType, Policy>& dist, const RealType& p)
    { // Quantile or Percent Point beta function or
      // Inverse Cumulative probability distribution function CDF.
      // Return x (0 <= x <= 1),
      // for a given probability p (0 <= p <= 1).
      // These functions take a probability as an argument
      // and return a value such that the probability that a random variable x
      // will be less than or equal to that value
      // is whatever probability you supplied as an argument.

      static const char* function = "boost::math::quantile(beta_distribution<%1%> const&, %1%)";

      RealType result = 0; // of argument checks:
      RealType a = dist.alpha();
      RealType b = dist.beta();
      if(false == beta_detail::check_dist_and_prob(
        function,
        a, b, p,
        &result, Policy()))
      {
        return result;
      }
      // Special cases:
      if (p == 0)
      {
        return 0;
      }
      if (p == 1)
      {
        return 1;
      }
      return ibeta_inv(a, b, p, static_cast<RealType*>(0), Policy());
    } // quantile

    template <class RealType, class Policy>
    inline RealType quantile(const complemented2_type<beta_distribution<RealType, Policy>, RealType>& c)
    { // Complement Quantile or Percent Point beta function .
      // Return the number of expected x for a given
      // complement of the probability q.

      static const char* function = "boost::math::quantile(beta_distribution<%1%> const&, %1%)";

      //
      // Error checks:
      RealType q = c.param;
      const beta_distribution<RealType, Policy>& dist = c.dist;
      RealType result = 0;
      RealType a = dist.alpha();
      RealType b = dist.beta();
      if(false == beta_detail::check_dist_and_prob(
        function,
        a,
        b,
        q,
        &result, Policy()))
      {
        return result;
      }
      // Special cases:
      if(q == 1)
      {
        return 0;
      }
      if(q == 0)
      {
        return 1;
      }

      return ibetac_inv(a, b, q, static_cast<RealType*>(0), Policy());
    } // Quantile Complement

  } // namespace math
} // namespace boost

// This include must be at the end, *after* the accessors
// for this distribution have been defined, in order to
// keep compilers that support two-phase lookup happy.
#include <boost/math/distributions/detail/derived_accessors.hpp>

#if defined (BOOST_MSVC)
# pragma warning(pop)
#endif

#endif // BOOST_MATH_DIST_BETA_HPP