/usr/include/boost/math/distributions/binomial.hpp is in libboost1.54-dev 1.54.0-4ubuntu3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 | // boost\math\distributions\binomial.hpp
// Copyright John Maddock 2006.
// Copyright Paul A. Bristow 2007.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
// http://en.wikipedia.org/wiki/binomial_distribution
// Binomial distribution is the discrete probability distribution of
// the number (k) of successes, in a sequence of
// n independent (yes or no, success or failure) Bernoulli trials.
// It expresses the probability of a number of events occurring in a fixed time
// if these events occur with a known average rate (probability of success),
// and are independent of the time since the last event.
// The number of cars that pass through a certain point on a road during a given period of time.
// The number of spelling mistakes a secretary makes while typing a single page.
// The number of phone calls at a call center per minute.
// The number of times a web server is accessed per minute.
// The number of light bulbs that burn out in a certain amount of time.
// The number of roadkill found per unit length of road
// http://en.wikipedia.org/wiki/binomial_distribution
// Given a sample of N measured values k[i],
// we wish to estimate the value of the parameter x (mean)
// of the binomial population from which the sample was drawn.
// To calculate the maximum likelihood value = 1/N sum i = 1 to N of k[i]
// Also may want a function for EXACTLY k.
// And probability that there are EXACTLY k occurrences is
// exp(-x) * pow(x, k) / factorial(k)
// where x is expected occurrences (mean) during the given interval.
// For example, if events occur, on average, every 4 min,
// and we are interested in number of events occurring in 10 min,
// then x = 10/4 = 2.5
// http://www.itl.nist.gov/div898/handbook/eda/section3/eda366i.htm
// The binomial distribution is used when there are
// exactly two mutually exclusive outcomes of a trial.
// These outcomes are appropriately labeled "success" and "failure".
// The binomial distribution is used to obtain
// the probability of observing x successes in N trials,
// with the probability of success on a single trial denoted by p.
// The binomial distribution assumes that p is fixed for all trials.
// P(x, p, n) = n!/(x! * (n-x)!) * p^x * (1-p)^(n-x)
// http://mathworld.wolfram.com/BinomialCoefficient.html
// The binomial coefficient (n; k) is the number of ways of picking
// k unordered outcomes from n possibilities,
// also known as a combination or combinatorial number.
// The symbols _nC_k and (n; k) are used to denote a binomial coefficient,
// and are sometimes read as "n choose k."
// (n; k) therefore gives the number of k-subsets possible out of a set of n distinct items.
// For example:
// The 2-subsets of {1,2,3,4} are the six pairs {1,2}, {1,3}, {1,4}, {2,3}, {2,4}, and {3,4}, so (4; 2)==6.
// http://functions.wolfram.com/GammaBetaErf/Binomial/ for evaluation.
// But note that the binomial distribution
// (like others including the poisson, negative binomial & Bernoulli)
// is strictly defined as a discrete function: only integral values of k are envisaged.
// However because of the method of calculation using a continuous gamma function,
// it is convenient to treat it as if a continous function,
// and permit non-integral values of k.
// To enforce the strict mathematical model, users should use floor or ceil functions
// on k outside this function to ensure that k is integral.
#ifndef BOOST_MATH_SPECIAL_BINOMIAL_HPP
#define BOOST_MATH_SPECIAL_BINOMIAL_HPP
#include <boost/math/distributions/fwd.hpp>
#include <boost/math/special_functions/beta.hpp> // for incomplete beta.
#include <boost/math/distributions/complement.hpp> // complements
#include <boost/math/distributions/detail/common_error_handling.hpp> // error checks
#include <boost/math/distributions/detail/inv_discrete_quantile.hpp> // error checks
#include <boost/math/special_functions/fpclassify.hpp> // isnan.
#include <boost/math/tools/roots.hpp> // for root finding.
#include <utility>
namespace boost
{
namespace math
{
template <class RealType, class Policy>
class binomial_distribution;
namespace binomial_detail{
// common error checking routines for binomial distribution functions:
template <class RealType, class Policy>
inline bool check_N(const char* function, const RealType& N, RealType* result, const Policy& pol)
{
if((N < 0) || !(boost::math::isfinite)(N))
{
*result = policies::raise_domain_error<RealType>(
function,
"Number of Trials argument is %1%, but must be >= 0 !", N, pol);
return false;
}
return true;
}
template <class RealType, class Policy>
inline bool check_success_fraction(const char* function, const RealType& p, RealType* result, const Policy& pol)
{
if((p < 0) || (p > 1) || !(boost::math::isfinite)(p))
{
*result = policies::raise_domain_error<RealType>(
function,
"Success fraction argument is %1%, but must be >= 0 and <= 1 !", p, pol);
return false;
}
return true;
}
template <class RealType, class Policy>
inline bool check_dist(const char* function, const RealType& N, const RealType& p, RealType* result, const Policy& pol)
{
return check_success_fraction(
function, p, result, pol)
&& check_N(
function, N, result, pol);
}
template <class RealType, class Policy>
inline bool check_dist_and_k(const char* function, const RealType& N, const RealType& p, RealType k, RealType* result, const Policy& pol)
{
if(check_dist(function, N, p, result, pol) == false)
return false;
if((k < 0) || !(boost::math::isfinite)(k))
{
*result = policies::raise_domain_error<RealType>(
function,
"Number of Successes argument is %1%, but must be >= 0 !", k, pol);
return false;
}
if(k > N)
{
*result = policies::raise_domain_error<RealType>(
function,
"Number of Successes argument is %1%, but must be <= Number of Trials !", k, pol);
return false;
}
return true;
}
template <class RealType, class Policy>
inline bool check_dist_and_prob(const char* function, const RealType& N, RealType p, RealType prob, RealType* result, const Policy& pol)
{
if(check_dist(function, N, p, result, pol) && detail::check_probability(function, prob, result, pol) == false)
return false;
return true;
}
template <class T, class Policy>
T inverse_binomial_cornish_fisher(T n, T sf, T p, T q, const Policy& pol)
{
BOOST_MATH_STD_USING
// mean:
T m = n * sf;
// standard deviation:
T sigma = sqrt(n * sf * (1 - sf));
// skewness
T sk = (1 - 2 * sf) / sigma;
// kurtosis:
// T k = (1 - 6 * sf * (1 - sf) ) / (n * sf * (1 - sf));
// Get the inverse of a std normal distribution:
T x = boost::math::erfc_inv(p > q ? 2 * q : 2 * p, pol) * constants::root_two<T>();
// Set the sign:
if(p < 0.5)
x = -x;
T x2 = x * x;
// w is correction term due to skewness
T w = x + sk * (x2 - 1) / 6;
/*
// Add on correction due to kurtosis.
// Disabled for now, seems to make things worse?
//
if(n >= 10)
w += k * x * (x2 - 3) / 24 + sk * sk * x * (2 * x2 - 5) / -36;
*/
w = m + sigma * w;
if(w < tools::min_value<T>())
return sqrt(tools::min_value<T>());
if(w > n)
return n;
return w;
}
template <class RealType, class Policy>
RealType quantile_imp(const binomial_distribution<RealType, Policy>& dist, const RealType& p, const RealType& q)
{ // Quantile or Percent Point Binomial function.
// Return the number of expected successes k,
// for a given probability p.
//
// Error checks:
BOOST_MATH_STD_USING // ADL of std names
RealType result = 0;
RealType trials = dist.trials();
RealType success_fraction = dist.success_fraction();
if(false == binomial_detail::check_dist_and_prob(
"boost::math::quantile(binomial_distribution<%1%> const&, %1%)",
trials,
success_fraction,
p,
&result, Policy()))
{
return result;
}
// Special cases:
//
if(p == 0)
{ // There may actually be no answer to this question,
// since the probability of zero successes may be non-zero,
// but zero is the best we can do:
return 0;
}
if(p == 1)
{ // Probability of n or fewer successes is always one,
// so n is the most sensible answer here:
return trials;
}
if (p <= pow(1 - success_fraction, trials))
{ // p <= pdf(dist, 0) == cdf(dist, 0)
return 0; // So the only reasonable result is zero.
} // And root finder would fail otherwise.
if(success_fraction == 1)
{ // our formulae break down in this case:
return p > 0.5f ? trials : 0;
}
// Solve for quantile numerically:
//
RealType guess = binomial_detail::inverse_binomial_cornish_fisher(trials, success_fraction, p, q, Policy());
RealType factor = 8;
if(trials > 100)
factor = 1.01f; // guess is pretty accurate
else if((trials > 10) && (trials - 1 > guess) && (guess > 3))
factor = 1.15f; // less accurate but OK.
else if(trials < 10)
{
// pretty inaccurate guess in this area:
if(guess > trials / 64)
{
guess = trials / 4;
factor = 2;
}
else
guess = trials / 1024;
}
else
factor = 2; // trials largish, but in far tails.
typedef typename Policy::discrete_quantile_type discrete_quantile_type;
boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();
return detail::inverse_discrete_quantile(
dist,
p,
q,
guess,
factor,
RealType(1),
discrete_quantile_type(),
max_iter);
} // quantile
}
template <class RealType = double, class Policy = policies::policy<> >
class binomial_distribution
{
public:
typedef RealType value_type;
typedef Policy policy_type;
binomial_distribution(RealType n = 1, RealType p = 0.5) : m_n(n), m_p(p)
{ // Default n = 1 is the Bernoulli distribution
// with equal probability of 'heads' or 'tails.
RealType r;
binomial_detail::check_dist(
"boost::math::binomial_distribution<%1%>::binomial_distribution",
m_n,
m_p,
&r, Policy());
} // binomial_distribution constructor.
RealType success_fraction() const
{ // Probability.
return m_p;
}
RealType trials() const
{ // Total number of trials.
return m_n;
}
enum interval_type{
clopper_pearson_exact_interval,
jeffreys_prior_interval
};
//
// Estimation of the success fraction parameter.
// The best estimate is actually simply successes/trials,
// these functions are used
// to obtain confidence intervals for the success fraction.
//
static RealType find_lower_bound_on_p(
RealType trials,
RealType successes,
RealType probability,
interval_type t = clopper_pearson_exact_interval)
{
static const char* function = "boost::math::binomial_distribution<%1%>::find_lower_bound_on_p";
// Error checks:
RealType result = 0;
if(false == binomial_detail::check_dist_and_k(
function, trials, RealType(0), successes, &result, Policy())
&&
binomial_detail::check_dist_and_prob(
function, trials, RealType(0), probability, &result, Policy()))
{ return result; }
if(successes == 0)
return 0;
// NOTE!!! The Clopper Pearson formula uses "successes" not
// "successes+1" as usual to get the lower bound,
// see http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm
return (t == clopper_pearson_exact_interval) ? ibeta_inv(successes, trials - successes + 1, probability, static_cast<RealType*>(0), Policy())
: ibeta_inv(successes + 0.5f, trials - successes + 0.5f, probability, static_cast<RealType*>(0), Policy());
}
static RealType find_upper_bound_on_p(
RealType trials,
RealType successes,
RealType probability,
interval_type t = clopper_pearson_exact_interval)
{
static const char* function = "boost::math::binomial_distribution<%1%>::find_upper_bound_on_p";
// Error checks:
RealType result = 0;
if(false == binomial_detail::check_dist_and_k(
function, trials, RealType(0), successes, &result, Policy())
&&
binomial_detail::check_dist_and_prob(
function, trials, RealType(0), probability, &result, Policy()))
{ return result; }
if(trials == successes)
return 1;
return (t == clopper_pearson_exact_interval) ? ibetac_inv(successes + 1, trials - successes, probability, static_cast<RealType*>(0), Policy())
: ibetac_inv(successes + 0.5f, trials - successes + 0.5f, probability, static_cast<RealType*>(0), Policy());
}
// Estimate number of trials parameter:
//
// "How many trials do I need to be P% sure of seeing k events?"
// or
// "How many trials can I have to be P% sure of seeing fewer than k events?"
//
static RealType find_minimum_number_of_trials(
RealType k, // number of events
RealType p, // success fraction
RealType alpha) // risk level
{
static const char* function = "boost::math::binomial_distribution<%1%>::find_minimum_number_of_trials";
// Error checks:
RealType result = 0;
if(false == binomial_detail::check_dist_and_k(
function, k, p, k, &result, Policy())
&&
binomial_detail::check_dist_and_prob(
function, k, p, alpha, &result, Policy()))
{ return result; }
result = ibetac_invb(k + 1, p, alpha, Policy()); // returns n - k
return result + k;
}
static RealType find_maximum_number_of_trials(
RealType k, // number of events
RealType p, // success fraction
RealType alpha) // risk level
{
static const char* function = "boost::math::binomial_distribution<%1%>::find_maximum_number_of_trials";
// Error checks:
RealType result = 0;
if(false == binomial_detail::check_dist_and_k(
function, k, p, k, &result, Policy())
&&
binomial_detail::check_dist_and_prob(
function, k, p, alpha, &result, Policy()))
{ return result; }
result = ibeta_invb(k + 1, p, alpha, Policy()); // returns n - k
return result + k;
}
private:
RealType m_n; // Not sure if this shouldn't be an int?
RealType m_p; // success_fraction
}; // template <class RealType, class Policy> class binomial_distribution
typedef binomial_distribution<> binomial;
// typedef binomial_distribution<double> binomial;
// IS now included since no longer a name clash with function binomial.
//typedef binomial_distribution<double> binomial; // Reserved name of type double.
template <class RealType, class Policy>
const std::pair<RealType, RealType> range(const binomial_distribution<RealType, Policy>& dist)
{ // Range of permissible values for random variable k.
using boost::math::tools::max_value;
return std::pair<RealType, RealType>(static_cast<RealType>(0), dist.trials());
}
template <class RealType, class Policy>
const std::pair<RealType, RealType> support(const binomial_distribution<RealType, Policy>& dist)
{ // Range of supported values for random variable k.
// This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
return std::pair<RealType, RealType>(static_cast<RealType>(0), dist.trials());
}
template <class RealType, class Policy>
inline RealType mean(const binomial_distribution<RealType, Policy>& dist)
{ // Mean of Binomial distribution = np.
return dist.trials() * dist.success_fraction();
} // mean
template <class RealType, class Policy>
inline RealType variance(const binomial_distribution<RealType, Policy>& dist)
{ // Variance of Binomial distribution = np(1-p).
return dist.trials() * dist.success_fraction() * (1 - dist.success_fraction());
} // variance
template <class RealType, class Policy>
RealType pdf(const binomial_distribution<RealType, Policy>& dist, const RealType& k)
{ // Probability Density/Mass Function.
BOOST_FPU_EXCEPTION_GUARD
BOOST_MATH_STD_USING // for ADL of std functions
RealType n = dist.trials();
// Error check:
RealType result = 0; // initialization silences some compiler warnings
if(false == binomial_detail::check_dist_and_k(
"boost::math::pdf(binomial_distribution<%1%> const&, %1%)",
n,
dist.success_fraction(),
k,
&result, Policy()))
{
return result;
}
// Special cases of success_fraction, regardless of k successes and regardless of n trials.
if (dist.success_fraction() == 0)
{ // probability of zero successes is 1:
return static_cast<RealType>(k == 0 ? 1 : 0);
}
if (dist.success_fraction() == 1)
{ // probability of n successes is 1:
return static_cast<RealType>(k == n ? 1 : 0);
}
// k argument may be integral, signed, or unsigned, or floating point.
// If necessary, it has already been promoted from an integral type.
if (n == 0)
{
return 1; // Probability = 1 = certainty.
}
if (k == 0)
{ // binomial coeffic (n 0) = 1,
// n ^ 0 = 1
return pow(1 - dist.success_fraction(), n);
}
if (k == n)
{ // binomial coeffic (n n) = 1,
// n ^ 0 = 1
return pow(dist.success_fraction(), k); // * pow((1 - dist.success_fraction()), (n - k)) = 1
}
// Probability of getting exactly k successes
// if C(n, k) is the binomial coefficient then:
//
// f(k; n,p) = C(n, k) * p^k * (1-p)^(n-k)
// = (n!/(k!(n-k)!)) * p^k * (1-p)^(n-k)
// = (tgamma(n+1) / (tgamma(k+1)*tgamma(n-k+1))) * p^k * (1-p)^(n-k)
// = p^k (1-p)^(n-k) / (beta(k+1, n-k+1) * (n+1))
// = ibeta_derivative(k+1, n-k+1, p) / (n+1)
//
using boost::math::ibeta_derivative; // a, b, x
return ibeta_derivative(k+1, n-k+1, dist.success_fraction(), Policy()) / (n+1);
} // pdf
template <class RealType, class Policy>
inline RealType cdf(const binomial_distribution<RealType, Policy>& dist, const RealType& k)
{ // Cumulative Distribution Function Binomial.
// The random variate k is the number of successes in n trials.
// k argument may be integral, signed, or unsigned, or floating point.
// If necessary, it has already been promoted from an integral type.
// Returns the sum of the terms 0 through k of the Binomial Probability Density/Mass:
//
// i=k
// -- ( n ) i n-i
// > | | p (1-p)
// -- ( i )
// i=0
// The terms are not summed directly instead
// the incomplete beta integral is employed,
// according to the formula:
// P = I[1-p]( n-k, k+1).
// = 1 - I[p](k + 1, n - k)
BOOST_MATH_STD_USING // for ADL of std functions
RealType n = dist.trials();
RealType p = dist.success_fraction();
// Error check:
RealType result = 0;
if(false == binomial_detail::check_dist_and_k(
"boost::math::cdf(binomial_distribution<%1%> const&, %1%)",
n,
p,
k,
&result, Policy()))
{
return result;
}
if (k == n)
{
return 1;
}
// Special cases, regardless of k.
if (p == 0)
{ // This need explanation:
// the pdf is zero for all cases except when k == 0.
// For zero p the probability of zero successes is one.
// Therefore the cdf is always 1:
// the probability of k or *fewer* successes is always 1
// if there are never any successes!
return 1;
}
if (p == 1)
{ // This is correct but needs explanation:
// when k = 1
// all the cdf and pdf values are zero *except* when k == n,
// and that case has been handled above already.
return 0;
}
//
// P = I[1-p](n - k, k + 1)
// = 1 - I[p](k + 1, n - k)
// Use of ibetac here prevents cancellation errors in calculating
// 1-p if p is very small, perhaps smaller than machine epsilon.
//
// Note that we do not use a finite sum here, since the incomplete
// beta uses a finite sum internally for integer arguments, so
// we'll just let it take care of the necessary logic.
//
return ibetac(k + 1, n - k, p, Policy());
} // binomial cdf
template <class RealType, class Policy>
inline RealType cdf(const complemented2_type<binomial_distribution<RealType, Policy>, RealType>& c)
{ // Complemented Cumulative Distribution Function Binomial.
// The random variate k is the number of successes in n trials.
// k argument may be integral, signed, or unsigned, or floating point.
// If necessary, it has already been promoted from an integral type.
// Returns the sum of the terms k+1 through n of the Binomial Probability Density/Mass:
//
// i=n
// -- ( n ) i n-i
// > | | p (1-p)
// -- ( i )
// i=k+1
// The terms are not summed directly instead
// the incomplete beta integral is employed,
// according to the formula:
// Q = 1 -I[1-p]( n-k, k+1).
// = I[p](k + 1, n - k)
BOOST_MATH_STD_USING // for ADL of std functions
RealType const& k = c.param;
binomial_distribution<RealType, Policy> const& dist = c.dist;
RealType n = dist.trials();
RealType p = dist.success_fraction();
// Error checks:
RealType result = 0;
if(false == binomial_detail::check_dist_and_k(
"boost::math::cdf(binomial_distribution<%1%> const&, %1%)",
n,
p,
k,
&result, Policy()))
{
return result;
}
if (k == n)
{ // Probability of greater than n successes is necessarily zero:
return 0;
}
// Special cases, regardless of k.
if (p == 0)
{
// This need explanation: the pdf is zero for all
// cases except when k == 0. For zero p the probability
// of zero successes is one. Therefore the cdf is always
// 1: the probability of *more than* k successes is always 0
// if there are never any successes!
return 0;
}
if (p == 1)
{
// This needs explanation, when p = 1
// we always have n successes, so the probability
// of more than k successes is 1 as long as k < n.
// The k == n case has already been handled above.
return 1;
}
//
// Calculate cdf binomial using the incomplete beta function.
// Q = 1 -I[1-p](n - k, k + 1)
// = I[p](k + 1, n - k)
// Use of ibeta here prevents cancellation errors in calculating
// 1-p if p is very small, perhaps smaller than machine epsilon.
//
// Note that we do not use a finite sum here, since the incomplete
// beta uses a finite sum internally for integer arguments, so
// we'll just let it take care of the necessary logic.
//
return ibeta(k + 1, n - k, p, Policy());
} // binomial cdf
template <class RealType, class Policy>
inline RealType quantile(const binomial_distribution<RealType, Policy>& dist, const RealType& p)
{
return binomial_detail::quantile_imp(dist, p, RealType(1-p));
} // quantile
template <class RealType, class Policy>
RealType quantile(const complemented2_type<binomial_distribution<RealType, Policy>, RealType>& c)
{
return binomial_detail::quantile_imp(c.dist, RealType(1-c.param), c.param);
} // quantile
template <class RealType, class Policy>
inline RealType mode(const binomial_distribution<RealType, Policy>& dist)
{
BOOST_MATH_STD_USING // ADL of std functions.
RealType p = dist.success_fraction();
RealType n = dist.trials();
return floor(p * (n + 1));
}
template <class RealType, class Policy>
inline RealType median(const binomial_distribution<RealType, Policy>& dist)
{ // Bounds for the median of the negative binomial distribution
// VAN DE VEN R. ; WEBER N. C. ;
// Univ. Sydney, school mathematics statistics, Sydney N.S.W. 2006, AUSTRALIE
// Metrika (Metrika) ISSN 0026-1335 CODEN MTRKA8
// 1993, vol. 40, no3-4, pp. 185-189 (4 ref.)
// Bounds for median and 50 percetage point of binomial and negative binomial distribution
// Metrika, ISSN 0026-1335 (Print) 1435-926X (Online)
// Volume 41, Number 1 / December, 1994, DOI 10.1007/BF01895303
BOOST_MATH_STD_USING // ADL of std functions.
RealType p = dist.success_fraction();
RealType n = dist.trials();
// Wikipedia says one of floor(np) -1, floor (np), floor(np) +1
return floor(p * n); // Chose the middle value.
}
template <class RealType, class Policy>
inline RealType skewness(const binomial_distribution<RealType, Policy>& dist)
{
BOOST_MATH_STD_USING // ADL of std functions.
RealType p = dist.success_fraction();
RealType n = dist.trials();
return (1 - 2 * p) / sqrt(n * p * (1 - p));
}
template <class RealType, class Policy>
inline RealType kurtosis(const binomial_distribution<RealType, Policy>& dist)
{
RealType p = dist.success_fraction();
RealType n = dist.trials();
return 3 - 6 / n + 1 / (n * p * (1 - p));
}
template <class RealType, class Policy>
inline RealType kurtosis_excess(const binomial_distribution<RealType, Policy>& dist)
{
RealType p = dist.success_fraction();
RealType q = 1 - p;
RealType n = dist.trials();
return (1 - 6 * p * q) / (n * p * q);
}
} // namespace math
} // namespace boost
// This include must be at the end, *after* the accessors
// for this distribution have been defined, in order to
// keep compilers that support two-phase lookup happy.
#include <boost/math/distributions/detail/derived_accessors.hpp>
#endif // BOOST_MATH_SPECIAL_BINOMIAL_HPP
|