This file is indexed.

/usr/include/boost/math/distributions/geometric.hpp is in libboost1.54-dev 1.54.0-4ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
// boost\math\distributions\geometric.hpp

// Copyright John Maddock 2010.
// Copyright Paul A. Bristow 2010.

// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)

// geometric distribution is a discrete probability distribution.
// It expresses the probability distribution of the number (k) of
// events, occurrences, failures or arrivals before the first success.
// supported on the set {0, 1, 2, 3...}

// Note that the set includes zero (unlike some definitions that start at one).

// The random variate k is the number of events, occurrences or arrivals.
// k argument may be integral, signed, or unsigned, or floating point.
// If necessary, it has already been promoted from an integral type.

// Note that the geometric distribution
// (like others including the binomial, geometric & Bernoulli)
// is strictly defined as a discrete function:
// only integral values of k are envisaged.
// However because the method of calculation uses a continuous gamma function,
// it is convenient to treat it as if a continous function,
// and permit non-integral values of k.
// To enforce the strict mathematical model, users should use floor or ceil functions
// on k outside this function to ensure that k is integral.

// See http://en.wikipedia.org/wiki/geometric_distribution
// http://documents.wolfram.com/v5/Add-onsLinks/StandardPackages/Statistics/DiscreteDistributions.html
// http://mathworld.wolfram.com/GeometricDistribution.html

#ifndef BOOST_MATH_SPECIAL_GEOMETRIC_HPP
#define BOOST_MATH_SPECIAL_GEOMETRIC_HPP

#include <boost/math/distributions/fwd.hpp>
#include <boost/math/special_functions/beta.hpp> // for ibeta(a, b, x) == Ix(a, b).
#include <boost/math/distributions/complement.hpp> // complement.
#include <boost/math/distributions/detail/common_error_handling.hpp> // error checks domain_error & logic_error.
#include <boost/math/special_functions/fpclassify.hpp> // isnan.
#include <boost/math/tools/roots.hpp> // for root finding.
#include <boost/math/distributions/detail/inv_discrete_quantile.hpp>

#include <boost/type_traits/is_floating_point.hpp>
#include <boost/type_traits/is_integral.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/mpl/if.hpp>

#include <limits> // using std::numeric_limits;
#include <utility>

#if defined (BOOST_MSVC)
#  pragma warning(push)
// This believed not now necessary, so commented out.
//#  pragma warning(disable: 4702) // unreachable code.
// in domain_error_imp in error_handling.
#endif

namespace boost
{
  namespace math
  {
    namespace geometric_detail
    {
      // Common error checking routines for geometric distribution function:
      template <class RealType, class Policy>
      inline bool check_success_fraction(const char* function, const RealType& p, RealType* result, const Policy& pol)
      {
        if( !(boost::math::isfinite)(p) || (p < 0) || (p > 1) )
        {
          *result = policies::raise_domain_error<RealType>(
            function,
            "Success fraction argument is %1%, but must be >= 0 and <= 1 !", p, pol);
          return false;
        }
        return true;
      }

      template <class RealType, class Policy>
      inline bool check_dist(const char* function, const RealType& p, RealType* result, const Policy& pol)
      {
        return check_success_fraction(function, p, result, pol);
      }

      template <class RealType, class Policy>
      inline bool check_dist_and_k(const char* function,  const RealType& p, RealType k, RealType* result, const Policy& pol)
      {
        if(check_dist(function, p, result, pol) == false)
        {
          return false;
        }
        if( !(boost::math::isfinite)(k) || (k < 0) )
        { // Check k failures.
          *result = policies::raise_domain_error<RealType>(
            function,
            "Number of failures argument is %1%, but must be >= 0 !", k, pol);
          return false;
        }
        return true;
      } // Check_dist_and_k

      template <class RealType, class Policy>
      inline bool check_dist_and_prob(const char* function, RealType p, RealType prob, RealType* result, const Policy& pol)
      {
        if(check_dist(function, p, result, pol) && detail::check_probability(function, prob, result, pol) == false)
        {
          return false;
        }
        return true;
      } // check_dist_and_prob
    } //  namespace geometric_detail

    template <class RealType = double, class Policy = policies::policy<> >
    class geometric_distribution
    {
    public:
      typedef RealType value_type;
      typedef Policy policy_type;

      geometric_distribution(RealType p) : m_p(p)
      { // Constructor stores success_fraction p.
        RealType result;
        geometric_detail::check_dist(
          "geometric_distribution<%1%>::geometric_distribution",
          m_p, // Check success_fraction 0 <= p <= 1.
          &result, Policy());
      } // geometric_distribution constructor.

      // Private data getter class member functions.
      RealType success_fraction() const
      { // Probability of success as fraction in range 0 to 1.
        return m_p;
      }
      RealType successes() const
      { // Total number of successes r = 1 (for compatibility with negative binomial?).
        return 1;
      }

      // Parameter estimation.
      // (These are copies of negative_binomial distribution with successes = 1).
      static RealType find_lower_bound_on_p(
        RealType trials,
        RealType alpha) // alpha 0.05 equivalent to 95% for one-sided test.
      {
        static const char* function = "boost::math::geometric<%1%>::find_lower_bound_on_p";
        RealType result = 0;  // of error checks.
        RealType successes = 1;
        RealType failures = trials - successes;
        if(false == detail::check_probability(function, alpha, &result, Policy())
          && geometric_detail::check_dist_and_k(
          function, RealType(0), failures, &result, Policy()))
        {
          return result;
        }
        // Use complement ibeta_inv function for lower bound.
        // This is adapted from the corresponding binomial formula
        // here: http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm
        // This is a Clopper-Pearson interval, and may be overly conservative,
        // see also "A Simple Improved Inferential Method for Some
        // Discrete Distributions" Yong CAI and K. KRISHNAMOORTHY
        // http://www.ucs.louisiana.edu/~kxk4695/Discrete_new.pdf
        //
        return ibeta_inv(successes, failures + 1, alpha, static_cast<RealType*>(0), Policy());
      } // find_lower_bound_on_p

      static RealType find_upper_bound_on_p(
        RealType trials,
        RealType alpha) // alpha 0.05 equivalent to 95% for one-sided test.
      {
        static const char* function = "boost::math::geometric<%1%>::find_upper_bound_on_p";
        RealType result = 0;  // of error checks.
        RealType successes = 1;
        RealType failures = trials - successes;
        if(false == geometric_detail::check_dist_and_k(
          function, RealType(0), failures, &result, Policy())
          && detail::check_probability(function, alpha, &result, Policy()))
        {
          return result;
        }
        if(failures == 0)
        {
           return 1;
        }// Use complement ibetac_inv function for upper bound.
        // Note adjusted failures value: *not* failures+1 as usual.
        // This is adapted from the corresponding binomial formula
        // here: http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm
        // This is a Clopper-Pearson interval, and may be overly conservative,
        // see also "A Simple Improved Inferential Method for Some
        // Discrete Distributions" Yong CAI and K. Krishnamoorthy
        // http://www.ucs.louisiana.edu/~kxk4695/Discrete_new.pdf
        //
        return ibetac_inv(successes, failures, alpha, static_cast<RealType*>(0), Policy());
      } // find_upper_bound_on_p

      // Estimate number of trials :
      // "How many trials do I need to be P% sure of seeing k or fewer failures?"

      static RealType find_minimum_number_of_trials(
        RealType k,     // number of failures (k >= 0).
        RealType p,     // success fraction 0 <= p <= 1.
        RealType alpha) // risk level threshold 0 <= alpha <= 1.
      {
        static const char* function = "boost::math::geometric<%1%>::find_minimum_number_of_trials";
        // Error checks:
        RealType result = 0;
        if(false == geometric_detail::check_dist_and_k(
          function, p, k, &result, Policy())
          && detail::check_probability(function, alpha, &result, Policy()))
        {
          return result;
        }
        result = ibeta_inva(k + 1, p, alpha, Policy());  // returns n - k
        return result + k;
      } // RealType find_number_of_failures

      static RealType find_maximum_number_of_trials(
        RealType k,     // number of failures (k >= 0).
        RealType p,     // success fraction 0 <= p <= 1.
        RealType alpha) // risk level threshold 0 <= alpha <= 1.
      {
        static const char* function = "boost::math::geometric<%1%>::find_maximum_number_of_trials";
        // Error checks:
        RealType result = 0;
        if(false == geometric_detail::check_dist_and_k(
          function, p, k, &result, Policy())
          &&  detail::check_probability(function, alpha, &result, Policy()))
        { 
          return result;
        }
        result = ibetac_inva(k + 1, p, alpha, Policy());  // returns n - k
        return result + k;
      } // RealType find_number_of_trials complemented

    private:
      //RealType m_r; // successes fixed at unity.
      RealType m_p; // success_fraction
    }; // template <class RealType, class Policy> class geometric_distribution

    typedef geometric_distribution<double> geometric; // Reserved name of type double.

    template <class RealType, class Policy>
    inline const std::pair<RealType, RealType> range(const geometric_distribution<RealType, Policy>& /* dist */)
    { // Range of permissible values for random variable k.
       using boost::math::tools::max_value;
       return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); // max_integer?
    }

    template <class RealType, class Policy>
    inline const std::pair<RealType, RealType> support(const geometric_distribution<RealType, Policy>& /* dist */)
    { // Range of supported values for random variable k.
       // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
       using boost::math::tools::max_value;
       return std::pair<RealType, RealType>(static_cast<RealType>(0),  max_value<RealType>()); // max_integer?
    }

    template <class RealType, class Policy>
    inline RealType mean(const geometric_distribution<RealType, Policy>& dist)
    { // Mean of geometric distribution = (1-p)/p.
      return (1 - dist.success_fraction() ) / dist.success_fraction();
    } // mean

    // median implemented via quantile(half) in derived accessors.

    template <class RealType, class Policy>
    inline RealType mode(const geometric_distribution<RealType, Policy>&)
    { // Mode of geometric distribution = zero.
      BOOST_MATH_STD_USING // ADL of std functions.
      return 0;
    } // mode
    
    template <class RealType, class Policy>
    inline RealType variance(const geometric_distribution<RealType, Policy>& dist)
    { // Variance of Binomial distribution = (1-p) / p^2.
      return  (1 - dist.success_fraction())
        / (dist.success_fraction() * dist.success_fraction());
    } // variance

    template <class RealType, class Policy>
    inline RealType skewness(const geometric_distribution<RealType, Policy>& dist)
    { // skewness of geometric distribution = 2-p / (sqrt(r(1-p))
      BOOST_MATH_STD_USING // ADL of std functions.
      RealType p = dist.success_fraction();
      return (2 - p) / sqrt(1 - p);
    } // skewness

    template <class RealType, class Policy>
    inline RealType kurtosis(const geometric_distribution<RealType, Policy>& dist)
    { // kurtosis of geometric distribution
      // http://en.wikipedia.org/wiki/geometric is kurtosis_excess so add 3
      RealType p = dist.success_fraction();
      return 3 + (p*p - 6*p + 6) / (1 - p);
    } // kurtosis

     template <class RealType, class Policy>
    inline RealType kurtosis_excess(const geometric_distribution<RealType, Policy>& dist)
    { // kurtosis excess of geometric distribution
      // http://mathworld.wolfram.com/Kurtosis.html table of kurtosis_excess
      RealType p = dist.success_fraction();
      return (p*p - 6*p + 6) / (1 - p);
    } // kurtosis_excess

    // RealType standard_deviation(const geometric_distribution<RealType, Policy>& dist)
    // standard_deviation provided by derived accessors.
    // RealType hazard(const geometric_distribution<RealType, Policy>& dist)
    // hazard of geometric distribution provided by derived accessors.
    // RealType chf(const geometric_distribution<RealType, Policy>& dist)
    // chf of geometric distribution provided by derived accessors.

    template <class RealType, class Policy>
    inline RealType pdf(const geometric_distribution<RealType, Policy>& dist, const RealType& k)
    { // Probability Density/Mass Function.
      BOOST_FPU_EXCEPTION_GUARD
      BOOST_MATH_STD_USING  // For ADL of math functions.
      static const char* function = "boost::math::pdf(const geometric_distribution<%1%>&, %1%)";

      RealType p = dist.success_fraction();
      RealType result = 0;
      if(false == geometric_detail::check_dist_and_k(
        function,
        p,
        k,
        &result, Policy()))
      {
        return result;
      }
      if (k == 0)
      {
        return p; // success_fraction
      }
      RealType q = 1 - p;  // Inaccurate for small p?
      // So try to avoid inaccuracy for large or small p.
      // but has little effect > last significant bit.
      //cout << "p *  pow(q, k) " << result << endl; // seems best whatever p
      //cout << "exp(p * k * log1p(-p)) " << p * exp(k * log1p(-p)) << endl;
      //if (p < 0.5)
      //{
      //  result = p *  pow(q, k);
      //}
      //else
      //{
      //  result = p * exp(k * log1p(-p));
      //}
      result = p * pow(q, k);
      return result;
    } // geometric_pdf

    template <class RealType, class Policy>
    inline RealType cdf(const geometric_distribution<RealType, Policy>& dist, const RealType& k)
    { // Cumulative Distribution Function of geometric.
      static const char* function = "boost::math::cdf(const geometric_distribution<%1%>&, %1%)";

      // k argument may be integral, signed, or unsigned, or floating point.
      // If necessary, it has already been promoted from an integral type.
      RealType p = dist.success_fraction();
      // Error check:
      RealType result = 0;
      if(false == geometric_detail::check_dist_and_k(
        function,
        p,
        k,
        &result, Policy()))
      {
        return result;
      }
      if(k == 0)
      {
        return p; // success_fraction
      }
      //RealType q = 1 - p;  // Bad for small p
      //RealType probability = 1 - std::pow(q, k+1);

      RealType z = boost::math::log1p(-p) * (k+1);
      RealType probability = -boost::math::expm1(z);

      return probability;
    } // cdf Cumulative Distribution Function geometric.

      template <class RealType, class Policy>
      inline RealType cdf(const complemented2_type<geometric_distribution<RealType, Policy>, RealType>& c)
      { // Complemented Cumulative Distribution Function geometric.
      BOOST_MATH_STD_USING
      static const char* function = "boost::math::cdf(const geometric_distribution<%1%>&, %1%)";
      // k argument may be integral, signed, or unsigned, or floating point.
      // If necessary, it has already been promoted from an integral type.
      RealType const& k = c.param;
      geometric_distribution<RealType, Policy> const& dist = c.dist;
      RealType p = dist.success_fraction();
      // Error check:
      RealType result = 0;
      if(false == geometric_detail::check_dist_and_k(
        function,
        p,
        k,
        &result, Policy()))
      {
        return result;
      }
      RealType z = boost::math::log1p(-p) * (k+1);
      RealType probability = exp(z);
      return probability;
    } // cdf Complemented Cumulative Distribution Function geometric.

    template <class RealType, class Policy>
    inline RealType quantile(const geometric_distribution<RealType, Policy>& dist, const RealType& x)
    { // Quantile, percentile/100 or Percent Point geometric function.
      // Return the number of expected failures k for a given probability p.

      // Inverse cumulative Distribution Function or Quantile (percentile / 100) of geometric Probability.
      // k argument may be integral, signed, or unsigned, or floating point.

      static const char* function = "boost::math::quantile(const geometric_distribution<%1%>&, %1%)";
      BOOST_MATH_STD_USING // ADL of std functions.

      RealType success_fraction = dist.success_fraction();
      // Check dist and x.
      RealType result = 0;
      if(false == geometric_detail::check_dist_and_prob
        (function, success_fraction, x, &result, Policy()))
      {
        return result;
      }

      // Special cases.
      if (x == 1)
      {  // Would need +infinity failures for total confidence.
        result = policies::raise_overflow_error<RealType>(
            function,
            "Probability argument is 1, which implies infinite failures !", Policy());
        return result;
       // usually means return +std::numeric_limits<RealType>::infinity();
       // unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR
      }
      if (x == 0)
      { // No failures are expected if P = 0.
        return 0; // Total trials will be just dist.successes.
      }
      // if (P <= pow(dist.success_fraction(), 1))
      if (x <= success_fraction)
      { // p <= pdf(dist, 0) == cdf(dist, 0)
        return 0;
      }
      if (x == 1)
      {
        return 0;
      }
   
      // log(1-x) /log(1-success_fraction) -1; but use log1p in case success_fraction is small
      result = boost::math::log1p(-x) / boost::math::log1p(-success_fraction) -1;
      // Subtract a few epsilons here too?
      // to make sure it doesn't slip over, so ceil would be one too many.
      return result;
    } // RealType quantile(const geometric_distribution dist, p)

    template <class RealType, class Policy>
    inline RealType quantile(const complemented2_type<geometric_distribution<RealType, Policy>, RealType>& c)
    {  // Quantile or Percent Point Binomial function.
       // Return the number of expected failures k for a given
       // complement of the probability Q = 1 - P.
       static const char* function = "boost::math::quantile(const geometric_distribution<%1%>&, %1%)";
       BOOST_MATH_STD_USING
       // Error checks:
       RealType x = c.param;
       const geometric_distribution<RealType, Policy>& dist = c.dist;
       RealType success_fraction = dist.success_fraction();
       RealType result = 0;
       if(false == geometric_detail::check_dist_and_prob(
          function,
          success_fraction,
          x,
          &result, Policy()))
       {
          return result;
       }

       // Special cases:
       if(x == 1)
       {  // There may actually be no answer to this question,
          // since the probability of zero failures may be non-zero,
          return 0; // but zero is the best we can do:
       }
       if (-x <= boost::math::powm1(dist.success_fraction(), dist.successes(), Policy()))
       {  // q <= cdf(complement(dist, 0)) == pdf(dist, 0)
          return 0; //
       }
       if(x == 0)
       {  // Probability 1 - Q  == 1 so infinite failures to achieve certainty.
          // Would need +infinity failures for total confidence.
          result = policies::raise_overflow_error<RealType>(
             function,
             "Probability argument complement is 0, which implies infinite failures !", Policy());
          return result;
          // usually means return +std::numeric_limits<RealType>::infinity();
          // unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR
       }
       // log(x) /log(1-success_fraction) -1; but use log1p in case success_fraction is small
       result = log(x) / boost::math::log1p(-success_fraction) -1;
      return result;

    } // quantile complement

 } // namespace math
} // namespace boost

// This include must be at the end, *after* the accessors
// for this distribution have been defined, in order to
// keep compilers that support two-phase lookup happy.
#include <boost/math/distributions/detail/derived_accessors.hpp>

#if defined (BOOST_MSVC)
# pragma warning(pop)
#endif

#endif // BOOST_MATH_SPECIAL_GEOMETRIC_HPP