This file is indexed.

/usr/include/boost/math/distributions/rayleigh.hpp is in libboost1.54-dev 1.54.0-4ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
//  Copyright Paul A. Bristow 2007.
//  Use, modification and distribution are subject to the
//  Boost Software License, Version 1.0. (See accompanying file
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_STATS_rayleigh_HPP
#define BOOST_STATS_rayleigh_HPP

#include <boost/math/distributions/fwd.hpp>
#include <boost/math/constants/constants.hpp>
#include <boost/math/special_functions/log1p.hpp>
#include <boost/math/special_functions/expm1.hpp>
#include <boost/math/distributions/complement.hpp>
#include <boost/math/distributions/detail/common_error_handling.hpp>
#include <boost/config/no_tr1/cmath.hpp>

#ifdef BOOST_MSVC
# pragma warning(push)
# pragma warning(disable: 4702) // unreachable code (return after domain_error throw).
#endif

#include <utility>

namespace boost{ namespace math{

namespace detail
{ // Error checks:
  template <class RealType, class Policy>
  inline bool verify_sigma(const char* function, RealType sigma, RealType* presult, const Policy& pol)
  {
     if((sigma <= 0) || (!(boost::math::isfinite)(sigma)))
     {
        *presult = policies::raise_domain_error<RealType>(
           function,
           "The scale parameter \"sigma\" must be > 0 and finite, but was: %1%.", sigma, pol);
        return false;
     }
     return true;
  } // bool verify_sigma

  template <class RealType, class Policy>
  inline bool verify_rayleigh_x(const char* function, RealType x, RealType* presult, const Policy& pol)
  {
     if((x < 0) || (boost::math::isnan)(x))
     {
        *presult = policies::raise_domain_error<RealType>(
           function,
           "The random variable must be >= 0, but was: %1%.", x, pol);
        return false;
     }
     return true;
  } // bool verify_rayleigh_x
} // namespace detail

template <class RealType = double, class Policy = policies::policy<> >
class rayleigh_distribution
{
public:
   typedef RealType value_type;
   typedef Policy policy_type;

   rayleigh_distribution(RealType sigma = 1)
      : m_sigma(sigma)
   {
      RealType err;
      detail::verify_sigma("boost::math::rayleigh_distribution<%1%>::rayleigh_distribution", sigma, &err, Policy());
   } // rayleigh_distribution

   RealType sigma()const
   { // Accessor.
     return m_sigma;
   }

private:
   RealType m_sigma;
}; // class rayleigh_distribution

typedef rayleigh_distribution<double> rayleigh;

template <class RealType, class Policy>
inline const std::pair<RealType, RealType> range(const rayleigh_distribution<RealType, Policy>& /*dist*/)
{ // Range of permissible values for random variable x.
   using boost::math::tools::max_value;
   return std::pair<RealType, RealType>(static_cast<RealType>(0), std::numeric_limits<RealType>::has_infinity ? std::numeric_limits<RealType>::infinity() : max_value<RealType>());
}

template <class RealType, class Policy>
inline const std::pair<RealType, RealType> support(const rayleigh_distribution<RealType, Policy>& /*dist*/)
{ // Range of supported values for random variable x.
   // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
   using boost::math::tools::max_value;
   return std::pair<RealType, RealType>(static_cast<RealType>(0),  max_value<RealType>());
}

template <class RealType, class Policy>
inline RealType pdf(const rayleigh_distribution<RealType, Policy>& dist, const RealType& x)
{
   BOOST_MATH_STD_USING // for ADL of std function exp.

   RealType sigma = dist.sigma();
   RealType result = 0;
   static const char* function = "boost::math::pdf(const rayleigh_distribution<%1%>&, %1%)";
   if(false == detail::verify_sigma(function, sigma, &result, Policy()))
   {
      return result;
   }
   if(false == detail::verify_rayleigh_x(function, x, &result, Policy()))
   {
      return result;
   }
   if((boost::math::isinf)(x))
   {
      return 0;
   }
   RealType sigmasqr = sigma * sigma;
   result = x * (exp(-(x * x) / ( 2 * sigmasqr))) / sigmasqr;
   return result;
} // pdf

template <class RealType, class Policy>
inline RealType cdf(const rayleigh_distribution<RealType, Policy>& dist, const RealType& x)
{
   BOOST_MATH_STD_USING // for ADL of std functions

   RealType result = 0;
   RealType sigma = dist.sigma();
   static const char* function = "boost::math::cdf(const rayleigh_distribution<%1%>&, %1%)";
   if(false == detail::verify_sigma(function, sigma, &result, Policy()))
   {
      return result;
   }
   if(false == detail::verify_rayleigh_x(function, x, &result, Policy()))
   {
      return result;
   }
   result = -boost::math::expm1(-x * x / ( 2 * sigma * sigma), Policy());
   return result;
} // cdf

template <class RealType, class Policy>
inline RealType quantile(const rayleigh_distribution<RealType, Policy>& dist, const RealType& p)
{
   BOOST_MATH_STD_USING // for ADL of std functions

   RealType result = 0;
   RealType sigma = dist.sigma();
   static const char* function = "boost::math::quantile(const rayleigh_distribution<%1%>&, %1%)";
   if(false == detail::verify_sigma(function, sigma, &result, Policy()))
      return result;
   if(false == detail::check_probability(function, p, &result, Policy()))
      return result;

   if(p == 0)
   {
      return 0;
   }
   if(p == 1)
   {
     return policies::raise_overflow_error<RealType>(function, 0, Policy());
   }
   result = sqrt(-2 * sigma * sigma * boost::math::log1p(-p, Policy()));
   return result;
} // quantile

template <class RealType, class Policy>
inline RealType cdf(const complemented2_type<rayleigh_distribution<RealType, Policy>, RealType>& c)
{
   BOOST_MATH_STD_USING // for ADL of std functions

   RealType result = 0;
   RealType sigma = c.dist.sigma();
   static const char* function = "boost::math::cdf(const rayleigh_distribution<%1%>&, %1%)";
   if(false == detail::verify_sigma(function, sigma, &result, Policy()))
   {
      return result;
   }
   RealType x = c.param;
   if(false == detail::verify_rayleigh_x(function, x, &result, Policy()))
   {
      return result;
   }
   result =  exp(-x * x / ( 2 * sigma * sigma));
   return result;
} // cdf complement

template <class RealType, class Policy>
inline RealType quantile(const complemented2_type<rayleigh_distribution<RealType, Policy>, RealType>& c)
{
   BOOST_MATH_STD_USING // for ADL of std functions, log & sqrt.

   RealType result = 0;
   RealType sigma = c.dist.sigma();
   static const char* function = "boost::math::quantile(const rayleigh_distribution<%1%>&, %1%)";
   if(false == detail::verify_sigma(function, sigma, &result, Policy()))
   {
      return result;
   }
   RealType q = c.param;
   if(false == detail::check_probability(function, q, &result, Policy()))
   {
      return result;
   }
   if(q == 1)
   {
      return 0;
   }
   if(q == 0)
   {
     return policies::raise_overflow_error<RealType>(function, 0, Policy());
   }
   result = sqrt(-2 * sigma * sigma * log(q));
   return result;
} // quantile complement

template <class RealType, class Policy>
inline RealType mean(const rayleigh_distribution<RealType, Policy>& dist)
{
   RealType result = 0;
   RealType sigma = dist.sigma();
   static const char* function = "boost::math::mean(const rayleigh_distribution<%1%>&, %1%)";
   if(false == detail::verify_sigma(function, sigma, &result, Policy()))
   {
      return result;
   }
   using boost::math::constants::root_half_pi;
   return sigma * root_half_pi<RealType>();
} // mean

template <class RealType, class Policy>
inline RealType variance(const rayleigh_distribution<RealType, Policy>& dist)
{
   RealType result = 0;
   RealType sigma = dist.sigma();
   static const char* function = "boost::math::variance(const rayleigh_distribution<%1%>&, %1%)";
   if(false == detail::verify_sigma(function, sigma, &result, Policy()))
   {
      return result;
   }
   using boost::math::constants::four_minus_pi;
   return four_minus_pi<RealType>() * sigma * sigma / 2;
} // variance

template <class RealType, class Policy>
inline RealType mode(const rayleigh_distribution<RealType, Policy>& dist)
{
   return dist.sigma();
}

template <class RealType, class Policy>
inline RealType median(const rayleigh_distribution<RealType, Policy>& dist)
{
   using boost::math::constants::root_ln_four;
   return root_ln_four<RealType>() * dist.sigma();
}

template <class RealType, class Policy>
inline RealType skewness(const rayleigh_distribution<RealType, Policy>& /*dist*/)
{
  // using namespace boost::math::constants;
  return static_cast<RealType>(0.63111065781893713819189935154422777984404221106391L);
  // Computed using NTL at 150 bit, about 50 decimal digits.
  // return 2 * root_pi<RealType>() * pi_minus_three<RealType>() / pow23_four_minus_pi<RealType>();
}

template <class RealType, class Policy>
inline RealType kurtosis(const rayleigh_distribution<RealType, Policy>& /*dist*/)
{
  // using namespace boost::math::constants;
  return static_cast<RealType>(3.2450893006876380628486604106197544154170667057995L);
  // Computed using NTL at 150 bit, about 50 decimal digits.
  // return 3 - (6 * pi<RealType>() * pi<RealType>() - 24 * pi<RealType>() + 16) /
  // (four_minus_pi<RealType>() * four_minus_pi<RealType>());
}

template <class RealType, class Policy>
inline RealType kurtosis_excess(const rayleigh_distribution<RealType, Policy>& /*dist*/)
{
  //using namespace boost::math::constants;
  // Computed using NTL at 150 bit, about 50 decimal digits.
  return static_cast<RealType>(0.2450893006876380628486604106197544154170667057995L);
  // return -(6 * pi<RealType>() * pi<RealType>() - 24 * pi<RealType>() + 16) /
  //   (four_minus_pi<RealType>() * four_minus_pi<RealType>());
} // kurtosis

} // namespace math
} // namespace boost

#ifdef BOOST_MSVC
# pragma warning(pop)
#endif

// This include must be at the end, *after* the accessors
// for this distribution have been defined, in order to
// keep compilers that support two-phase lookup happy.
#include <boost/math/distributions/detail/derived_accessors.hpp>

#endif // BOOST_STATS_rayleigh_HPP