/usr/include/boost/math/distributions/rayleigh.hpp is in libboost1.54-dev 1.54.0-4ubuntu3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 | // Copyright Paul A. Bristow 2007.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_STATS_rayleigh_HPP
#define BOOST_STATS_rayleigh_HPP
#include <boost/math/distributions/fwd.hpp>
#include <boost/math/constants/constants.hpp>
#include <boost/math/special_functions/log1p.hpp>
#include <boost/math/special_functions/expm1.hpp>
#include <boost/math/distributions/complement.hpp>
#include <boost/math/distributions/detail/common_error_handling.hpp>
#include <boost/config/no_tr1/cmath.hpp>
#ifdef BOOST_MSVC
# pragma warning(push)
# pragma warning(disable: 4702) // unreachable code (return after domain_error throw).
#endif
#include <utility>
namespace boost{ namespace math{
namespace detail
{ // Error checks:
template <class RealType, class Policy>
inline bool verify_sigma(const char* function, RealType sigma, RealType* presult, const Policy& pol)
{
if((sigma <= 0) || (!(boost::math::isfinite)(sigma)))
{
*presult = policies::raise_domain_error<RealType>(
function,
"The scale parameter \"sigma\" must be > 0 and finite, but was: %1%.", sigma, pol);
return false;
}
return true;
} // bool verify_sigma
template <class RealType, class Policy>
inline bool verify_rayleigh_x(const char* function, RealType x, RealType* presult, const Policy& pol)
{
if((x < 0) || (boost::math::isnan)(x))
{
*presult = policies::raise_domain_error<RealType>(
function,
"The random variable must be >= 0, but was: %1%.", x, pol);
return false;
}
return true;
} // bool verify_rayleigh_x
} // namespace detail
template <class RealType = double, class Policy = policies::policy<> >
class rayleigh_distribution
{
public:
typedef RealType value_type;
typedef Policy policy_type;
rayleigh_distribution(RealType sigma = 1)
: m_sigma(sigma)
{
RealType err;
detail::verify_sigma("boost::math::rayleigh_distribution<%1%>::rayleigh_distribution", sigma, &err, Policy());
} // rayleigh_distribution
RealType sigma()const
{ // Accessor.
return m_sigma;
}
private:
RealType m_sigma;
}; // class rayleigh_distribution
typedef rayleigh_distribution<double> rayleigh;
template <class RealType, class Policy>
inline const std::pair<RealType, RealType> range(const rayleigh_distribution<RealType, Policy>& /*dist*/)
{ // Range of permissible values for random variable x.
using boost::math::tools::max_value;
return std::pair<RealType, RealType>(static_cast<RealType>(0), std::numeric_limits<RealType>::has_infinity ? std::numeric_limits<RealType>::infinity() : max_value<RealType>());
}
template <class RealType, class Policy>
inline const std::pair<RealType, RealType> support(const rayleigh_distribution<RealType, Policy>& /*dist*/)
{ // Range of supported values for random variable x.
// This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
using boost::math::tools::max_value;
return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>());
}
template <class RealType, class Policy>
inline RealType pdf(const rayleigh_distribution<RealType, Policy>& dist, const RealType& x)
{
BOOST_MATH_STD_USING // for ADL of std function exp.
RealType sigma = dist.sigma();
RealType result = 0;
static const char* function = "boost::math::pdf(const rayleigh_distribution<%1%>&, %1%)";
if(false == detail::verify_sigma(function, sigma, &result, Policy()))
{
return result;
}
if(false == detail::verify_rayleigh_x(function, x, &result, Policy()))
{
return result;
}
if((boost::math::isinf)(x))
{
return 0;
}
RealType sigmasqr = sigma * sigma;
result = x * (exp(-(x * x) / ( 2 * sigmasqr))) / sigmasqr;
return result;
} // pdf
template <class RealType, class Policy>
inline RealType cdf(const rayleigh_distribution<RealType, Policy>& dist, const RealType& x)
{
BOOST_MATH_STD_USING // for ADL of std functions
RealType result = 0;
RealType sigma = dist.sigma();
static const char* function = "boost::math::cdf(const rayleigh_distribution<%1%>&, %1%)";
if(false == detail::verify_sigma(function, sigma, &result, Policy()))
{
return result;
}
if(false == detail::verify_rayleigh_x(function, x, &result, Policy()))
{
return result;
}
result = -boost::math::expm1(-x * x / ( 2 * sigma * sigma), Policy());
return result;
} // cdf
template <class RealType, class Policy>
inline RealType quantile(const rayleigh_distribution<RealType, Policy>& dist, const RealType& p)
{
BOOST_MATH_STD_USING // for ADL of std functions
RealType result = 0;
RealType sigma = dist.sigma();
static const char* function = "boost::math::quantile(const rayleigh_distribution<%1%>&, %1%)";
if(false == detail::verify_sigma(function, sigma, &result, Policy()))
return result;
if(false == detail::check_probability(function, p, &result, Policy()))
return result;
if(p == 0)
{
return 0;
}
if(p == 1)
{
return policies::raise_overflow_error<RealType>(function, 0, Policy());
}
result = sqrt(-2 * sigma * sigma * boost::math::log1p(-p, Policy()));
return result;
} // quantile
template <class RealType, class Policy>
inline RealType cdf(const complemented2_type<rayleigh_distribution<RealType, Policy>, RealType>& c)
{
BOOST_MATH_STD_USING // for ADL of std functions
RealType result = 0;
RealType sigma = c.dist.sigma();
static const char* function = "boost::math::cdf(const rayleigh_distribution<%1%>&, %1%)";
if(false == detail::verify_sigma(function, sigma, &result, Policy()))
{
return result;
}
RealType x = c.param;
if(false == detail::verify_rayleigh_x(function, x, &result, Policy()))
{
return result;
}
result = exp(-x * x / ( 2 * sigma * sigma));
return result;
} // cdf complement
template <class RealType, class Policy>
inline RealType quantile(const complemented2_type<rayleigh_distribution<RealType, Policy>, RealType>& c)
{
BOOST_MATH_STD_USING // for ADL of std functions, log & sqrt.
RealType result = 0;
RealType sigma = c.dist.sigma();
static const char* function = "boost::math::quantile(const rayleigh_distribution<%1%>&, %1%)";
if(false == detail::verify_sigma(function, sigma, &result, Policy()))
{
return result;
}
RealType q = c.param;
if(false == detail::check_probability(function, q, &result, Policy()))
{
return result;
}
if(q == 1)
{
return 0;
}
if(q == 0)
{
return policies::raise_overflow_error<RealType>(function, 0, Policy());
}
result = sqrt(-2 * sigma * sigma * log(q));
return result;
} // quantile complement
template <class RealType, class Policy>
inline RealType mean(const rayleigh_distribution<RealType, Policy>& dist)
{
RealType result = 0;
RealType sigma = dist.sigma();
static const char* function = "boost::math::mean(const rayleigh_distribution<%1%>&, %1%)";
if(false == detail::verify_sigma(function, sigma, &result, Policy()))
{
return result;
}
using boost::math::constants::root_half_pi;
return sigma * root_half_pi<RealType>();
} // mean
template <class RealType, class Policy>
inline RealType variance(const rayleigh_distribution<RealType, Policy>& dist)
{
RealType result = 0;
RealType sigma = dist.sigma();
static const char* function = "boost::math::variance(const rayleigh_distribution<%1%>&, %1%)";
if(false == detail::verify_sigma(function, sigma, &result, Policy()))
{
return result;
}
using boost::math::constants::four_minus_pi;
return four_minus_pi<RealType>() * sigma * sigma / 2;
} // variance
template <class RealType, class Policy>
inline RealType mode(const rayleigh_distribution<RealType, Policy>& dist)
{
return dist.sigma();
}
template <class RealType, class Policy>
inline RealType median(const rayleigh_distribution<RealType, Policy>& dist)
{
using boost::math::constants::root_ln_four;
return root_ln_four<RealType>() * dist.sigma();
}
template <class RealType, class Policy>
inline RealType skewness(const rayleigh_distribution<RealType, Policy>& /*dist*/)
{
// using namespace boost::math::constants;
return static_cast<RealType>(0.63111065781893713819189935154422777984404221106391L);
// Computed using NTL at 150 bit, about 50 decimal digits.
// return 2 * root_pi<RealType>() * pi_minus_three<RealType>() / pow23_four_minus_pi<RealType>();
}
template <class RealType, class Policy>
inline RealType kurtosis(const rayleigh_distribution<RealType, Policy>& /*dist*/)
{
// using namespace boost::math::constants;
return static_cast<RealType>(3.2450893006876380628486604106197544154170667057995L);
// Computed using NTL at 150 bit, about 50 decimal digits.
// return 3 - (6 * pi<RealType>() * pi<RealType>() - 24 * pi<RealType>() + 16) /
// (four_minus_pi<RealType>() * four_minus_pi<RealType>());
}
template <class RealType, class Policy>
inline RealType kurtosis_excess(const rayleigh_distribution<RealType, Policy>& /*dist*/)
{
//using namespace boost::math::constants;
// Computed using NTL at 150 bit, about 50 decimal digits.
return static_cast<RealType>(0.2450893006876380628486604106197544154170667057995L);
// return -(6 * pi<RealType>() * pi<RealType>() - 24 * pi<RealType>() + 16) /
// (four_minus_pi<RealType>() * four_minus_pi<RealType>());
} // kurtosis
} // namespace math
} // namespace boost
#ifdef BOOST_MSVC
# pragma warning(pop)
#endif
// This include must be at the end, *after* the accessors
// for this distribution have been defined, in order to
// keep compilers that support two-phase lookup happy.
#include <boost/math/distributions/detail/derived_accessors.hpp>
#endif // BOOST_STATS_rayleigh_HPP
|