This file is indexed.

/usr/include/boost/math/tools/minima.hpp is in libboost1.54-dev 1.54.0-4ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
//  (C) Copyright John Maddock 2006.
//  Use, modification and distribution are subject to the
//  Boost Software License, Version 1.0. (See accompanying file
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)


#ifndef BOOST_MATH_TOOLS_MINIMA_HPP
#define BOOST_MATH_TOOLS_MINIMA_HPP

#ifdef _MSC_VER
#pragma once
#endif

#include <utility>
#include <boost/config/no_tr1/cmath.hpp>
#include <boost/math/tools/precision.hpp>
#include <boost/math/policies/policy.hpp>
#include <boost/cstdint.hpp>

namespace boost{ namespace math{ namespace tools{

template <class F, class T>
std::pair<T, T> brent_find_minima(F f, T min, T max, int bits, boost::uintmax_t& max_iter)
{
   BOOST_MATH_STD_USING
   bits = (std::min)(policies::digits<T, policies::policy<> >() / 2, bits);
   T tolerance = static_cast<T>(ldexp(1.0, 1-bits));
   T x;  // minima so far
   T w;  // second best point
   T v;  // previous value of w
   T u;  // most recent evaluation point
   T delta;  // The distance moved in the last step
   T delta2; // The distance moved in the step before last
   T fu, fv, fw, fx;  // function evaluations at u, v, w, x
   T mid; // midpoint of min and max
   T fract1, fract2;  // minimal relative movement in x

   static const T golden = 0.3819660f;  // golden ratio, don't need too much precision here!

   x = w = v = max;
   fw = fv = fx = f(x);
   delta2 = delta = 0;

   uintmax_t count = max_iter;

   do{
      // get midpoint
      mid = (min + max) / 2;
      // work out if we're done already:
      fract1 = tolerance * fabs(x) + tolerance / 4;
      fract2 = 2 * fract1;
      if(fabs(x - mid) <= (fract2 - (max - min) / 2))
         break;

      if(fabs(delta2) > fract1)
      {
         // try and construct a parabolic fit:
         T r = (x - w) * (fx - fv);
         T q = (x - v) * (fx - fw);
         T p = (x - v) * q - (x - w) * r;
         q = 2 * (q - r);
         if(q > 0)
            p = -p;
         q = fabs(q);
         T td = delta2;
         delta2 = delta;
         // determine whether a parabolic step is acceptible or not:
         if((fabs(p) >= fabs(q * td / 2)) || (p <= q * (min - x)) || (p >= q * (max - x)))
         {
            // nope, try golden section instead
            delta2 = (x >= mid) ? min - x : max - x;
            delta = golden * delta2;
         }
         else
         {
            // whew, parabolic fit:
            delta = p / q;
            u = x + delta;
            if(((u - min) < fract2) || ((max- u) < fract2))
               delta = (mid - x) < 0 ? (T)-fabs(fract1) : (T)fabs(fract1);
         }
      }
      else
      {
         // golden section:
         delta2 = (x >= mid) ? min - x : max - x;
         delta = golden * delta2;
      }
      // update current position:
      u = (fabs(delta) >= fract1) ? T(x + delta) : (delta > 0 ? T(x + fabs(fract1)) : T(x - fabs(fract1)));
      fu = f(u);
      if(fu <= fx)
      {
         // good new point is an improvement!
         // update brackets:
         if(u >= x)
            min = x;
         else
            max = x;
         // update control points:
         v = w;
         w = x;
         x = u;
         fv = fw;
         fw = fx;
         fx = fu;
      }
      else
      {
         // Oh dear, point u is worse than what we have already,
         // even so it *must* be better than one of our endpoints:
         if(u < x)
            min = u;
         else
            max = u;
         if((fu <= fw) || (w == x))
         {
            // however it is at least second best:
            v = w;
            w = u;
            fv = fw;
            fw = fu;
         }
         else if((fu <= fv) || (v == x) || (v == w))
         {
            // third best:
            v = u;
            fv = fu;
         }
      }

   }while(--count);

   max_iter -= count;

   return std::make_pair(x, fx);
}

template <class F, class T>
inline std::pair<T, T> brent_find_minima(F f, T min, T max, int digits)
{
   boost::uintmax_t m = (std::numeric_limits<boost::uintmax_t>::max)();
   return brent_find_minima(f, min, max, digits, m);
}

}}} // namespaces

#endif