/usr/include/boost/math/tools/minima.hpp is in libboost1.54-dev 1.54.0-4ubuntu3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 | // (C) Copyright John Maddock 2006.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_TOOLS_MINIMA_HPP
#define BOOST_MATH_TOOLS_MINIMA_HPP
#ifdef _MSC_VER
#pragma once
#endif
#include <utility>
#include <boost/config/no_tr1/cmath.hpp>
#include <boost/math/tools/precision.hpp>
#include <boost/math/policies/policy.hpp>
#include <boost/cstdint.hpp>
namespace boost{ namespace math{ namespace tools{
template <class F, class T>
std::pair<T, T> brent_find_minima(F f, T min, T max, int bits, boost::uintmax_t& max_iter)
{
BOOST_MATH_STD_USING
bits = (std::min)(policies::digits<T, policies::policy<> >() / 2, bits);
T tolerance = static_cast<T>(ldexp(1.0, 1-bits));
T x; // minima so far
T w; // second best point
T v; // previous value of w
T u; // most recent evaluation point
T delta; // The distance moved in the last step
T delta2; // The distance moved in the step before last
T fu, fv, fw, fx; // function evaluations at u, v, w, x
T mid; // midpoint of min and max
T fract1, fract2; // minimal relative movement in x
static const T golden = 0.3819660f; // golden ratio, don't need too much precision here!
x = w = v = max;
fw = fv = fx = f(x);
delta2 = delta = 0;
uintmax_t count = max_iter;
do{
// get midpoint
mid = (min + max) / 2;
// work out if we're done already:
fract1 = tolerance * fabs(x) + tolerance / 4;
fract2 = 2 * fract1;
if(fabs(x - mid) <= (fract2 - (max - min) / 2))
break;
if(fabs(delta2) > fract1)
{
// try and construct a parabolic fit:
T r = (x - w) * (fx - fv);
T q = (x - v) * (fx - fw);
T p = (x - v) * q - (x - w) * r;
q = 2 * (q - r);
if(q > 0)
p = -p;
q = fabs(q);
T td = delta2;
delta2 = delta;
// determine whether a parabolic step is acceptible or not:
if((fabs(p) >= fabs(q * td / 2)) || (p <= q * (min - x)) || (p >= q * (max - x)))
{
// nope, try golden section instead
delta2 = (x >= mid) ? min - x : max - x;
delta = golden * delta2;
}
else
{
// whew, parabolic fit:
delta = p / q;
u = x + delta;
if(((u - min) < fract2) || ((max- u) < fract2))
delta = (mid - x) < 0 ? (T)-fabs(fract1) : (T)fabs(fract1);
}
}
else
{
// golden section:
delta2 = (x >= mid) ? min - x : max - x;
delta = golden * delta2;
}
// update current position:
u = (fabs(delta) >= fract1) ? T(x + delta) : (delta > 0 ? T(x + fabs(fract1)) : T(x - fabs(fract1)));
fu = f(u);
if(fu <= fx)
{
// good new point is an improvement!
// update brackets:
if(u >= x)
min = x;
else
max = x;
// update control points:
v = w;
w = x;
x = u;
fv = fw;
fw = fx;
fx = fu;
}
else
{
// Oh dear, point u is worse than what we have already,
// even so it *must* be better than one of our endpoints:
if(u < x)
min = u;
else
max = u;
if((fu <= fw) || (w == x))
{
// however it is at least second best:
v = w;
w = u;
fv = fw;
fw = fu;
}
else if((fu <= fv) || (v == x) || (v == w))
{
// third best:
v = u;
fv = fu;
}
}
}while(--count);
max_iter -= count;
return std::make_pair(x, fx);
}
template <class F, class T>
inline std::pair<T, T> brent_find_minima(F f, T min, T max, int digits)
{
boost::uintmax_t m = (std::numeric_limits<boost::uintmax_t>::max)();
return brent_find_minima(f, min, max, digits, m);
}
}}} // namespaces
#endif
|