/usr/include/boost/math/tools/polynomial.hpp is in libboost1.54-dev 1.54.0-4ubuntu3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 | // (C) Copyright John Maddock 2006.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_TOOLS_POLYNOMIAL_HPP
#define BOOST_MATH_TOOLS_POLYNOMIAL_HPP
#ifdef _MSC_VER
#pragma once
#endif
#include <boost/assert.hpp>
#include <boost/math/tools/rational.hpp>
#include <boost/math/tools/real_cast.hpp>
#include <boost/math/special_functions/binomial.hpp>
#include <vector>
#include <ostream>
#include <algorithm>
namespace boost{ namespace math{ namespace tools{
template <class T>
T chebyshev_coefficient(unsigned n, unsigned m)
{
BOOST_MATH_STD_USING
if(m > n)
return 0;
if((n & 1) != (m & 1))
return 0;
if(n == 0)
return 1;
T result = T(n) / 2;
unsigned r = n - m;
r /= 2;
BOOST_ASSERT(n - 2 * r == m);
if(r & 1)
result = -result;
result /= n - r;
result *= boost::math::binomial_coefficient<T>(n - r, r);
result *= ldexp(1.0f, m);
return result;
}
template <class Seq>
Seq polynomial_to_chebyshev(const Seq& s)
{
// Converts a Polynomial into Chebyshev form:
typedef typename Seq::value_type value_type;
typedef typename Seq::difference_type difference_type;
Seq result(s);
difference_type order = s.size() - 1;
difference_type even_order = order & 1 ? order - 1 : order;
difference_type odd_order = order & 1 ? order : order - 1;
for(difference_type i = even_order; i >= 0; i -= 2)
{
value_type val = s[i];
for(difference_type k = even_order; k > i; k -= 2)
{
val -= result[k] * chebyshev_coefficient<value_type>(static_cast<unsigned>(k), static_cast<unsigned>(i));
}
val /= chebyshev_coefficient<value_type>(static_cast<unsigned>(i), static_cast<unsigned>(i));
result[i] = val;
}
result[0] *= 2;
for(difference_type i = odd_order; i >= 0; i -= 2)
{
value_type val = s[i];
for(difference_type k = odd_order; k > i; k -= 2)
{
val -= result[k] * chebyshev_coefficient<value_type>(static_cast<unsigned>(k), static_cast<unsigned>(i));
}
val /= chebyshev_coefficient<value_type>(static_cast<unsigned>(i), static_cast<unsigned>(i));
result[i] = val;
}
return result;
}
template <class Seq, class T>
T evaluate_chebyshev(const Seq& a, const T& x)
{
// Clenshaw's formula:
typedef typename Seq::difference_type difference_type;
T yk2 = 0;
T yk1 = 0;
T yk = 0;
for(difference_type i = a.size() - 1; i >= 1; --i)
{
yk2 = yk1;
yk1 = yk;
yk = 2 * x * yk1 - yk2 + a[i];
}
return a[0] / 2 + yk * x - yk1;
}
template <class T>
class polynomial
{
public:
// typedefs:
typedef typename std::vector<T>::value_type value_type;
typedef typename std::vector<T>::size_type size_type;
// construct:
polynomial(){}
template <class U>
polynomial(const U* data, unsigned order)
: m_data(data, data + order + 1)
{
}
template <class U>
polynomial(const U& point)
{
m_data.push_back(point);
}
// copy:
polynomial(const polynomial& p)
: m_data(p.m_data) { }
template <class U>
polynomial(const polynomial<U>& p)
{
for(unsigned i = 0; i < p.size(); ++i)
{
m_data.push_back(boost::math::tools::real_cast<T>(p[i]));
}
}
// access:
size_type size()const { return m_data.size(); }
size_type degree()const { return m_data.size() - 1; }
value_type& operator[](size_type i)
{
return m_data[i];
}
const value_type& operator[](size_type i)const
{
return m_data[i];
}
T evaluate(T z)const
{
return boost::math::tools::evaluate_polynomial(&m_data[0], z, m_data.size());;
}
std::vector<T> chebyshev()const
{
return polynomial_to_chebyshev(m_data);
}
// operators:
template <class U>
polynomial& operator +=(const U& value)
{
if(m_data.size() == 0)
m_data.push_back(value);
else
{
m_data[0] += value;
}
return *this;
}
template <class U>
polynomial& operator -=(const U& value)
{
if(m_data.size() == 0)
m_data.push_back(-value);
else
{
m_data[0] -= value;
}
return *this;
}
template <class U>
polynomial& operator *=(const U& value)
{
for(size_type i = 0; i < m_data.size(); ++i)
m_data[i] *= value;
return *this;
}
template <class U>
polynomial& operator +=(const polynomial<U>& value)
{
size_type s1 = (std::min)(m_data.size(), value.size());
for(size_type i = 0; i < s1; ++i)
m_data[i] += value[i];
for(size_type i = s1; i < value.size(); ++i)
m_data.push_back(value[i]);
return *this;
}
template <class U>
polynomial& operator -=(const polynomial<U>& value)
{
size_type s1 = (std::min)(m_data.size(), value.size());
for(size_type i = 0; i < s1; ++i)
m_data[i] -= value[i];
for(size_type i = s1; i < value.size(); ++i)
m_data.push_back(-value[i]);
return *this;
}
template <class U>
polynomial& operator *=(const polynomial<U>& value)
{
// TODO: FIXME: use O(N log(N)) algorithm!!!
BOOST_ASSERT(value.size());
polynomial base(*this);
*this *= value[0];
for(size_type i = 1; i < value.size(); ++i)
{
polynomial t(base);
t *= value[i];
size_type s = size() - i;
for(size_type j = 0; j < s; ++j)
{
m_data[i+j] += t[j];
}
for(size_type j = s; j < t.size(); ++j)
m_data.push_back(t[j]);
}
return *this;
}
private:
std::vector<T> m_data;
};
template <class T>
inline polynomial<T> operator + (const polynomial<T>& a, const polynomial<T>& b)
{
polynomial<T> result(a);
result += b;
return result;
}
template <class T>
inline polynomial<T> operator - (const polynomial<T>& a, const polynomial<T>& b)
{
polynomial<T> result(a);
result -= b;
return result;
}
template <class T>
inline polynomial<T> operator * (const polynomial<T>& a, const polynomial<T>& b)
{
polynomial<T> result(a);
result *= b;
return result;
}
template <class T, class U>
inline polynomial<T> operator + (const polynomial<T>& a, const U& b)
{
polynomial<T> result(a);
result += b;
return result;
}
template <class T, class U>
inline polynomial<T> operator - (const polynomial<T>& a, const U& b)
{
polynomial<T> result(a);
result -= b;
return result;
}
template <class T, class U>
inline polynomial<T> operator * (const polynomial<T>& a, const U& b)
{
polynomial<T> result(a);
result *= b;
return result;
}
template <class U, class T>
inline polynomial<T> operator + (const U& a, const polynomial<T>& b)
{
polynomial<T> result(b);
result += a;
return result;
}
template <class U, class T>
inline polynomial<T> operator - (const U& a, const polynomial<T>& b)
{
polynomial<T> result(a);
result -= b;
return result;
}
template <class U, class T>
inline polynomial<T> operator * (const U& a, const polynomial<T>& b)
{
polynomial<T> result(b);
result *= a;
return result;
}
template <class charT, class traits, class T>
inline std::basic_ostream<charT, traits>& operator << (std::basic_ostream<charT, traits>& os, const polynomial<T>& poly)
{
os << "{ ";
for(unsigned i = 0; i < poly.size(); ++i)
{
if(i) os << ", ";
os << poly[i];
}
os << " }";
return os;
}
} // namespace tools
} // namespace math
} // namespace boost
#endif // BOOST_MATH_TOOLS_POLYNOMIAL_HPP
|