This file is indexed.

/usr/include/boost/math/tools/polynomial.hpp is in libboost1.54-dev 1.54.0-4ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
//  (C) Copyright John Maddock 2006.
//  Use, modification and distribution are subject to the
//  Boost Software License, Version 1.0. (See accompanying file
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_MATH_TOOLS_POLYNOMIAL_HPP
#define BOOST_MATH_TOOLS_POLYNOMIAL_HPP

#ifdef _MSC_VER
#pragma once
#endif

#include <boost/assert.hpp>
#include <boost/math/tools/rational.hpp>
#include <boost/math/tools/real_cast.hpp>
#include <boost/math/special_functions/binomial.hpp>

#include <vector>
#include <ostream>
#include <algorithm>

namespace boost{ namespace math{ namespace tools{

template <class T>
T chebyshev_coefficient(unsigned n, unsigned m)
{
   BOOST_MATH_STD_USING
   if(m > n)
      return 0;
   if((n & 1) != (m & 1))
      return 0;
   if(n == 0)
      return 1;
   T result = T(n) / 2;
   unsigned r = n - m;
   r /= 2;

   BOOST_ASSERT(n - 2 * r == m);

   if(r & 1)
      result = -result;
   result /= n - r;
   result *= boost::math::binomial_coefficient<T>(n - r, r);
   result *= ldexp(1.0f, m);
   return result;
}

template <class Seq>
Seq polynomial_to_chebyshev(const Seq& s)
{
   // Converts a Polynomial into Chebyshev form:
   typedef typename Seq::value_type value_type;
   typedef typename Seq::difference_type difference_type;
   Seq result(s);
   difference_type order = s.size() - 1;
   difference_type even_order = order & 1 ? order - 1 : order;
   difference_type odd_order = order & 1 ? order : order - 1;

   for(difference_type i = even_order; i >= 0; i -= 2)
   {
      value_type val = s[i];
      for(difference_type k = even_order; k > i; k -= 2)
      {
         val -= result[k] * chebyshev_coefficient<value_type>(static_cast<unsigned>(k), static_cast<unsigned>(i));
      }
      val /= chebyshev_coefficient<value_type>(static_cast<unsigned>(i), static_cast<unsigned>(i));
      result[i] = val;
   }
   result[0] *= 2;

   for(difference_type i = odd_order; i >= 0; i -= 2)
   {
      value_type val = s[i];
      for(difference_type k = odd_order; k > i; k -= 2)
      {
         val -= result[k] * chebyshev_coefficient<value_type>(static_cast<unsigned>(k), static_cast<unsigned>(i));
      }
      val /= chebyshev_coefficient<value_type>(static_cast<unsigned>(i), static_cast<unsigned>(i));
      result[i] = val;
   }
   return result;
}

template <class Seq, class T>
T evaluate_chebyshev(const Seq& a, const T& x)
{
   // Clenshaw's formula:
   typedef typename Seq::difference_type difference_type;
   T yk2 = 0;
   T yk1 = 0;
   T yk = 0;
   for(difference_type i = a.size() - 1; i >= 1; --i)
   {
      yk2 = yk1;
      yk1 = yk;
      yk = 2 * x * yk1 - yk2 + a[i];
   }
   return a[0] / 2 + yk * x - yk1;
}

template <class T>
class polynomial
{
public:
   // typedefs:
   typedef typename std::vector<T>::value_type value_type;
   typedef typename std::vector<T>::size_type size_type;

   // construct:
   polynomial(){}
   template <class U>
   polynomial(const U* data, unsigned order)
      : m_data(data, data + order + 1)
   {
   }
   template <class U>
   polynomial(const U& point)
   {
      m_data.push_back(point);
   }

   // copy:
   polynomial(const polynomial& p)
      : m_data(p.m_data) { }

   template <class U>
   polynomial(const polynomial<U>& p)
   {
      for(unsigned i = 0; i < p.size(); ++i)
      {
         m_data.push_back(boost::math::tools::real_cast<T>(p[i]));
      }
   }

   // access:
   size_type size()const { return m_data.size(); }
   size_type degree()const { return m_data.size() - 1; }
   value_type& operator[](size_type i)
   {
      return m_data[i];
   }
   const value_type& operator[](size_type i)const
   {
      return m_data[i];
   }
   T evaluate(T z)const
   {
      return boost::math::tools::evaluate_polynomial(&m_data[0], z, m_data.size());;
   }
   std::vector<T> chebyshev()const
   {
      return polynomial_to_chebyshev(m_data);
   }

   // operators:
   template <class U>
   polynomial& operator +=(const U& value)
   {
      if(m_data.size() == 0)
         m_data.push_back(value);
      else
      {
         m_data[0] += value;
      }
      return *this;
   }
   template <class U>
   polynomial& operator -=(const U& value)
   {
      if(m_data.size() == 0)
         m_data.push_back(-value);
      else
      {
         m_data[0] -= value;
      }
      return *this;
   }
   template <class U>
   polynomial& operator *=(const U& value)
   {
      for(size_type i = 0; i < m_data.size(); ++i)
         m_data[i] *= value;
      return *this;
   }
   template <class U>
   polynomial& operator +=(const polynomial<U>& value)
   {
      size_type s1 = (std::min)(m_data.size(), value.size());
      for(size_type i = 0; i < s1; ++i)
         m_data[i] += value[i];
      for(size_type i = s1; i < value.size(); ++i)
         m_data.push_back(value[i]);
      return *this;
   }
   template <class U>
   polynomial& operator -=(const polynomial<U>& value)
   {
      size_type s1 = (std::min)(m_data.size(), value.size());
      for(size_type i = 0; i < s1; ++i)
         m_data[i] -= value[i];
      for(size_type i = s1; i < value.size(); ++i)
         m_data.push_back(-value[i]);
      return *this;
   }
   template <class U>
   polynomial& operator *=(const polynomial<U>& value)
   {
      // TODO: FIXME: use O(N log(N)) algorithm!!!
      BOOST_ASSERT(value.size());
      polynomial base(*this);
      *this *= value[0];
      for(size_type i = 1; i < value.size(); ++i)
      {
         polynomial t(base);
         t *= value[i];
         size_type s = size() - i;
         for(size_type j = 0; j < s; ++j)
         {
            m_data[i+j] += t[j];
         }
         for(size_type j = s; j < t.size(); ++j)
            m_data.push_back(t[j]);
      }
      return *this;
   }

private:
   std::vector<T> m_data;
};

template <class T>
inline polynomial<T> operator + (const polynomial<T>& a, const polynomial<T>& b)
{
   polynomial<T> result(a);
   result += b;
   return result;
}

template <class T>
inline polynomial<T> operator - (const polynomial<T>& a, const polynomial<T>& b)
{
   polynomial<T> result(a);
   result -= b;
   return result;
}

template <class T>
inline polynomial<T> operator * (const polynomial<T>& a, const polynomial<T>& b)
{
   polynomial<T> result(a);
   result *= b;
   return result;
}

template <class T, class U>
inline polynomial<T> operator + (const polynomial<T>& a, const U& b)
{
   polynomial<T> result(a);
   result += b;
   return result;
}

template <class T, class U>
inline polynomial<T> operator - (const polynomial<T>& a, const U& b)
{
   polynomial<T> result(a);
   result -= b;
   return result;
}

template <class T, class U>
inline polynomial<T> operator * (const polynomial<T>& a, const U& b)
{
   polynomial<T> result(a);
   result *= b;
   return result;
}

template <class U, class T>
inline polynomial<T> operator + (const U& a, const polynomial<T>& b)
{
   polynomial<T> result(b);
   result += a;
   return result;
}

template <class U, class T>
inline polynomial<T> operator - (const U& a, const polynomial<T>& b)
{
   polynomial<T> result(a);
   result -= b;
   return result;
}

template <class U, class T>
inline polynomial<T> operator * (const U& a, const polynomial<T>& b)
{
   polynomial<T> result(b);
   result *= a;
   return result;
}

template <class charT, class traits, class T>
inline std::basic_ostream<charT, traits>& operator << (std::basic_ostream<charT, traits>& os, const polynomial<T>& poly)
{
   os << "{ ";
   for(unsigned i = 0; i < poly.size(); ++i)
   {
      if(i) os << ", ";
      os << poly[i];
   }
   os << " }";
   return os;
}

} // namespace tools
} // namespace math
} // namespace boost

#endif // BOOST_MATH_TOOLS_POLYNOMIAL_HPP