This file is indexed.

/usr/include/boost/math/tools/precision.hpp is in libboost1.54-dev 1.54.0-4ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
//  Copyright John Maddock 2005-2006.
//  Use, modification and distribution are subject to the
//  Boost Software License, Version 1.0. (See accompanying file
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_MATH_TOOLS_PRECISION_INCLUDED
#define BOOST_MATH_TOOLS_PRECISION_INCLUDED

#ifdef _MSC_VER
#pragma once
#endif

#include <boost/limits.hpp>
#include <boost/assert.hpp>
#include <boost/static_assert.hpp>
#include <boost/mpl/int.hpp>
#include <boost/mpl/bool.hpp>
#include <boost/mpl/if.hpp>
#include <boost/math/policies/policy.hpp>

// These two are for LDBL_MAN_DIG:
#include <limits.h>
#include <math.h>

namespace boost{ namespace math
{
namespace tools
{
// If T is not specialized, the functions digits, max_value and min_value,
// all get synthesised automatically from std::numeric_limits.
// However, if numeric_limits is not specialised for type RealType,
// for example with NTL::RR type, then you will get a compiler error
// when code tries to use these functions, unless you explicitly specialise them.

// For example if the precision of RealType varies at runtime,
// then numeric_limits support may not be appropriate,
// see boost/math/tools/ntl.hpp  for examples like
// template <> NTL::RR max_value<NTL::RR> ...
// See  Conceptual Requirements for Real Number Types.

template <class T>
inline int digits(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(T))
{
#ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
   BOOST_STATIC_ASSERT( ::std::numeric_limits<T>::is_specialized);
   BOOST_STATIC_ASSERT( ::std::numeric_limits<T>::radix == 2 || ::std::numeric_limits<T>::radix == 10);
#else
   BOOST_ASSERT(::std::numeric_limits<T>::is_specialized);
   BOOST_ASSERT(::std::numeric_limits<T>::radix == 2 || ::std::numeric_limits<T>::radix == 10);
#endif
   return std::numeric_limits<T>::radix == 2 
      ? std::numeric_limits<T>::digits
      : ((std::numeric_limits<T>::digits + 1) * 1000L) / 301L;
}

template <class T>
inline T max_value(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE(T))
{
#ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
   BOOST_STATIC_ASSERT( ::std::numeric_limits<T>::is_specialized);
#else
   BOOST_ASSERT(::std::numeric_limits<T>::is_specialized);
#endif
   return (std::numeric_limits<T>::max)();
} // Also used as a finite 'infinite' value for - and +infinity, for example:
// -max_value<double> = -1.79769e+308, max_value<double> = 1.79769e+308.

template <class T>
inline T min_value(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE(T))
{
#ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
   BOOST_STATIC_ASSERT( ::std::numeric_limits<T>::is_specialized);
#else
   BOOST_ASSERT(::std::numeric_limits<T>::is_specialized);
#endif
   return (std::numeric_limits<T>::min)();
}

namespace detail{
//
// Logarithmic limits come next, note that although
// we can compute these from the log of the max value
// that is not in general thread safe (if we cache the value)
// so it's better to specialise these:
//
// For type float first:
//
template <class T>
inline T log_max_value(const mpl::int_<128>& BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE(T))
{
   return 88.0f;
}

template <class T>
inline T log_min_value(const mpl::int_<128>& BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE(T))
{
   return -87.0f;
}
//
// Now double:
//
template <class T>
inline T log_max_value(const mpl::int_<1024>& BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE(T))
{
   return 709.0;
}

template <class T>
inline T log_min_value(const mpl::int_<1024>& BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE(T))
{
   return -708.0;
}
//
// 80 and 128-bit long doubles:
//
template <class T>
inline T log_max_value(const mpl::int_<16384>& BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE(T))
{
   return 11356.0L;
}

template <class T>
inline T log_min_value(const mpl::int_<16384>& BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE(T))
{
   return -11355.0L;
}

template <class T>
inline T log_max_value(const mpl::int_<0>& BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE(T))
{
#ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
   BOOST_STATIC_ASSERT( ::std::numeric_limits<T>::is_specialized);
#else
   BOOST_ASSERT(::std::numeric_limits<T>::is_specialized);
#endif
   BOOST_MATH_STD_USING
   static const T val = log((std::numeric_limits<T>::max)());
   return val;
}

template <class T>
inline T log_min_value(const mpl::int_<0>& BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE(T))
{
#ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
   BOOST_STATIC_ASSERT( ::std::numeric_limits<T>::is_specialized);
#else
   BOOST_ASSERT(::std::numeric_limits<T>::is_specialized);
#endif
   BOOST_MATH_STD_USING
   static const T val = log((std::numeric_limits<T>::min)());
   return val;
}

template <class T>
inline T epsilon(const mpl::true_& BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE(T))
{
   return std::numeric_limits<T>::epsilon();
}

#if (defined(macintosh) || defined(__APPLE__) || defined(__APPLE_CC__)) && ((LDBL_MANT_DIG == 106) || (__LDBL_MANT_DIG__ == 106))
template <>
inline long double epsilon<long double>(const mpl::true_& BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE(long double))
{
   // numeric_limits on Darwin tells lies here.
   // This static assert fails for some unknown reason, so
   // disabled for now...
   // BOOST_STATIC_ASSERT(std::numeric_limits<long double>::digits == 106);
   return 2.4651903288156618919116517665087e-32L;
}
#endif

template <class T>
inline T epsilon(const mpl::false_& BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE(T))
{
   BOOST_MATH_STD_USING  // for ADL of std names
   static const T eps = ldexp(static_cast<T>(1), 1-policies::digits<T, policies::policy<> >());
   return eps;
}

} // namespace detail

#ifdef BOOST_MSVC
#pragma warning(push)
#pragma warning(disable:4309)
#endif

template <class T>
inline T log_max_value(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE(T))
{
#ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
   typedef typename mpl::if_c<
      (std::numeric_limits<T>::radix == 2) &&
      (std::numeric_limits<T>::max_exponent == 128
      || std::numeric_limits<T>::max_exponent == 1024
      || std::numeric_limits<T>::max_exponent == 16384),
      mpl::int_<(std::numeric_limits<T>::max_exponent > INT_MAX ? INT_MAX : static_cast<int>(std::numeric_limits<T>::max_exponent))>,
      mpl::int_<0>
   >::type tag_type;
   BOOST_STATIC_ASSERT( ::std::numeric_limits<T>::is_specialized);
   return detail::log_max_value<T>(tag_type());
#else
   BOOST_ASSERT(::std::numeric_limits<T>::is_specialized);
   BOOST_MATH_STD_USING
   static const T val = log((std::numeric_limits<T>::max)());
   return val;
#endif
}

template <class T>
inline T log_min_value(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE(T))
{
#ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
   typedef typename mpl::if_c<
      (std::numeric_limits<T>::radix == 2) &&
      (std::numeric_limits<T>::max_exponent == 128
      || std::numeric_limits<T>::max_exponent == 1024
      || std::numeric_limits<T>::max_exponent == 16384),
      mpl::int_<(std::numeric_limits<T>::max_exponent > INT_MAX ? INT_MAX : static_cast<int>(std::numeric_limits<T>::max_exponent))>,
      mpl::int_<0>
   >::type tag_type;

   BOOST_STATIC_ASSERT( ::std::numeric_limits<T>::is_specialized);
   return detail::log_min_value<T>(tag_type());
#else
   BOOST_ASSERT(::std::numeric_limits<T>::is_specialized);
   BOOST_MATH_STD_USING
   static const T val = log((std::numeric_limits<T>::min)());
   return val;
#endif
}

#ifdef BOOST_MSVC
#pragma warning(pop)
#endif

template <class T>
inline T epsilon(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(T))
{
#ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
   return detail::epsilon<T>(mpl::bool_< ::std::numeric_limits<T>::is_specialized>());
#else
   return ::std::numeric_limits<T>::is_specialized ?
      detail::epsilon<T>(mpl::true_()) :
      detail::epsilon<T>(mpl::false_());
#endif
}

namespace detail{

template <class T>
inline T root_epsilon_imp(const mpl::int_<24>&)
{
   return static_cast<T>(0.00034526698300124390839884978618400831996329879769945L);
}

template <class T>
inline T root_epsilon_imp(const T*, const mpl::int_<53>&)
{
   return static_cast<T>(0.1490116119384765625e-7L);
}

template <class T>
inline T root_epsilon_imp(const T*, const mpl::int_<64>&)
{
   return static_cast<T>(0.32927225399135962333569506281281311031656150598474e-9L);
}

template <class T>
inline T root_epsilon_imp(const T*, const mpl::int_<113>&)
{
   return static_cast<T>(0.1387778780781445675529539585113525390625e-16L);
}

template <class T, class Tag>
inline T root_epsilon_imp(const T*, const Tag&)
{
   BOOST_MATH_STD_USING
   static const T r_eps = sqrt(tools::epsilon<T>());
   return r_eps;
}

template <class T>
inline T forth_root_epsilon_imp(const T*, const mpl::int_<24>&)
{
   return static_cast<T>(0.018581361171917516667460937040007436176452688944747L);
}

template <class T>
inline T forth_root_epsilon_imp(const T*, const mpl::int_<53>&)
{
   return static_cast<T>(0.0001220703125L);
}

template <class T>
inline T forth_root_epsilon_imp(const T*, const mpl::int_<64>&)
{
   return static_cast<T>(0.18145860519450699870567321328132261891067079047605e-4L);
}

template <class T>
inline T forth_root_epsilon_imp(const T*, const mpl::int_<113>&)
{
   return static_cast<T>(0.37252902984619140625e-8L);
}

template <class T, class Tag>
inline T forth_root_epsilon_imp(const T*, const Tag&)
{
   BOOST_MATH_STD_USING
   static const T r_eps = sqrt(sqrt(tools::epsilon<T>()));
   return r_eps;
}

}

template <class T>
inline T root_epsilon()
{
   typedef mpl::int_< (::std::numeric_limits<T>::radix == 2) ? std::numeric_limits<T>::digits : 0> tag_type;
   return detail::root_epsilon_imp(static_cast<T const*>(0), tag_type());
}

template <class T>
inline T forth_root_epsilon()
{
   typedef mpl::int_< (::std::numeric_limits<T>::radix == 2) ? std::numeric_limits<T>::digits : 0> tag_type;
   return detail::forth_root_epsilon_imp(static_cast<T const*>(0), tag_type());
}

} // namespace tools
} // namespace math
} // namespace boost

#endif // BOOST_MATH_TOOLS_PRECISION_INCLUDED