This file is indexed.

/usr/include/boost/math/tools/remez.hpp is in libboost1.54-dev 1.54.0-4ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
//  (C) Copyright John Maddock 2006.
//  Use, modification and distribution are subject to the
//  Boost Software License, Version 1.0. (See accompanying file
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_MATH_TOOLS_REMEZ_HPP
#define BOOST_MATH_TOOLS_REMEZ_HPP

#ifdef _MSC_VER
#pragma once
#endif

#include <boost/math/tools/solve.hpp>
#include <boost/math/tools/minima.hpp>
#include <boost/math/tools/roots.hpp>
#include <boost/math/tools/polynomial.hpp>
#include <boost/function/function1.hpp>
#include <boost/scoped_array.hpp>
#include <boost/math/constants/constants.hpp>
#include <boost/math/policies/policy.hpp>

namespace boost{ namespace math{ namespace tools{

namespace detail{

//
// The error function: the difference between F(x) and
// the current approximation.  This is the function
// for which we must find the extema.
//
template <class T>
struct remez_error_function
{
   typedef boost::function1<T, T const &> function_type;
public:
   remez_error_function(
      function_type f_, 
      const polynomial<T>& n, 
      const polynomial<T>& d, 
      bool rel_err)
         : f(f_), numerator(n), denominator(d), rel_error(rel_err) {}

   T operator()(const T& z)const
   {
      T y = f(z);
      T abs = y - (numerator.evaluate(z) / denominator.evaluate(z));
      T err;
      if(rel_error)
      {
         if(y != 0)
            err = abs / fabs(y);
         else if(0 == abs)
         {
            // we must be at a root, or it's not recoverable:
            BOOST_ASSERT(0 == abs);
            err = 0;
         }
         else
         {
            // We have a divide by zero!
            // Lets assume that f(x) is zero as a result of
            // internal cancellation error that occurs as a result
            // of shifting a root at point z to the origin so that
            // the approximation can be "pinned" to pass through
            // the origin: in that case it really
            // won't matter what our approximation calculates here
            // as long as it's a small number, return the absolute error:
            err = abs;
         }
      }
      else
         err = abs;
      return err;
   }
private:
   function_type f;
   polynomial<T> numerator;
   polynomial<T> denominator;
   bool rel_error;
};
//
// This function adapts the error function so that it's minima
// are the extema of the error function.  We can find the minima
// with standard techniques.
//
template <class T>
struct remez_max_error_function
{
   remez_max_error_function(const remez_error_function<T>& f)
      : func(f) {}

   T operator()(const T& x)
   {
      BOOST_MATH_STD_USING
      return -fabs(func(x));
   }
private:
   remez_error_function<T> func;
};

} // detail

template <class T>
class remez_minimax
{
public:
   typedef boost::function1<T, T const &> function_type;
   typedef boost::numeric::ublas::vector<T> vector_type;
   typedef boost::numeric::ublas::matrix<T> matrix_type;

   remez_minimax(function_type f, unsigned oN, unsigned oD, T a, T b, bool pin = true, bool rel_err = false, int sk = 0, int bits = 0);
   remez_minimax(function_type f, unsigned oN, unsigned oD, T a, T b, bool pin, bool rel_err, int sk, int bits, const vector_type& points);

   void reset(unsigned oN, unsigned oD, T a, T b, bool pin = true, bool rel_err = false, int sk = 0, int bits = 0);
   void reset(unsigned oN, unsigned oD, T a, T b, bool pin, bool rel_err, int sk, int bits, const vector_type& points);

   void set_brake(int b)
   {
      BOOST_ASSERT(b < 100);
      BOOST_ASSERT(b >= 0);
      m_brake = b;
   }

   T iterate();

   polynomial<T> denominator()const;
   polynomial<T> numerator()const;

   vector_type const& chebyshev_points()const
   {
      return control_points;
   }

   vector_type const& zero_points()const
   {
      return zeros;
   }

   T error_term()const
   {
      return solution[solution.size() - 1];
   }
   T max_error()const
   {
      return m_max_error;
   }
   T max_change()const
   {
      return m_max_change;
   }
   void rotate()
   {
      --orderN;
      ++orderD;
   }
   void rescale(T a, T b)
   {
      T scale = (b - a) / (max - min);
      for(unsigned i = 0; i < control_points.size(); ++i)
      {
         control_points[i] = (control_points[i] - min) * scale + a;
      }
      min = a;
      max = b;
   }
private:

   void init_chebyshev();

   function_type func;            // The function to approximate.
   vector_type control_points;    // Current control points to be used for the next iteration.
   vector_type solution;          // Solution from the last iteration contains all unknowns including the error term.
   vector_type zeros;             // Location of points of zero error from last iteration, plus the two end points.
   vector_type maxima;            // Location of maxima of the error function, actually contains the control points used for the last iteration.
   T m_max_error;                 // Maximum error found in last approximation.
   T m_max_change;                // Maximum change in location of control points after last iteration.
   unsigned orderN;               // Order of the numerator polynomial.
   unsigned orderD;               // Order of the denominator polynomial.
   T min, max;                    // End points of the range to optimise over.
   bool rel_error;                // If true optimise for relative not absolute error.
   bool pinned;                   // If true the approximation is "pinned" to go through the origin.
   unsigned unknowns;             // Total number of unknowns.
   int m_precision;               // Number of bits precision to which the zeros and maxima are found.
   T m_max_change_history[2];     // Past history of changes to control points.
   int m_brake;                     // amount to break by in percentage points.
   int m_skew;                      // amount to skew starting points by in percentage points: -100-100
};

#ifndef BRAKE
#define BRAKE 0
#endif
#ifndef SKEW
#define SKEW 0
#endif

template <class T>
void remez_minimax<T>::init_chebyshev()
{
   BOOST_MATH_STD_USING
   //
   // Fill in the zeros:
   //
   unsigned terms = pinned ? orderD + orderN : orderD + orderN + 1;

   for(unsigned i = 0; i < terms; ++i)
   {
      T cheb = cos((2 * terms - 1 - 2 * i) * constants::pi<T>() / (2 * terms));
      cheb += 1;
      cheb /= 2;
      if(m_skew != 0)
      {
         T p = static_cast<T>(200 + m_skew) / 200;
         cheb = pow(cheb, p);
      }
      cheb *= (max - min);
      cheb += min;
      zeros[i+1] = cheb;
   }
   zeros[0] = min;
   zeros[unknowns] = max;
   // perform a regular interpolation fit:
   matrix_type A(terms, terms);
   vector_type b(terms);
   // fill in the y values:
   for(unsigned i = 0; i < b.size(); ++i)
   {
      b[i] = func(zeros[i+1]);
   }
   // fill in powers of x evaluated at each of the control points:
   unsigned offsetN = pinned ? 0 : 1;
   unsigned offsetD = offsetN + orderN;
   unsigned maxorder = (std::max)(orderN, orderD);
   for(unsigned i = 0; i < b.size(); ++i)
   {
      T x0 = zeros[i+1];
      T x = x0;
      if(!pinned)
         A(i, 0) = 1;
      for(unsigned j = 0; j < maxorder; ++j)
      {
         if(j < orderN)
            A(i, j + offsetN) = x;
         if(j < orderD)
         {
            A(i, j + offsetD) = -x * b[i];
         }
         x *= x0;
      }
   }
   //
   // Now go ahead and solve the expression to get our solution:
   //
   vector_type l_solution = boost::math::tools::solve(A, b);
   // need to add a "fake" error term:
   l_solution.resize(unknowns);
   l_solution[unknowns-1] = 0;
   solution = l_solution;
   //
   // Now find all the extrema of the error function:
   //
   detail::remez_error_function<T> Err(func, this->numerator(), this->denominator(), rel_error);
   detail::remez_max_error_function<T> Ex(Err);
   m_max_error = 0;
   int max_err_location = 0;
   for(unsigned i = 0; i < unknowns; ++i)
   {
      std::pair<T, T> r = brent_find_minima(Ex, zeros[i], zeros[i+1], m_precision);
      maxima[i] = r.first;
      T rel_err = fabs(r.second);
      if(rel_err > m_max_error)
      {
         m_max_error = fabs(r.second);
         max_err_location = i;
      }
   }
   control_points = maxima;
}

template <class T>
void remez_minimax<T>::reset(
         unsigned oN, 
         unsigned oD, 
         T a, 
         T b, 
         bool pin, 
         bool rel_err, 
         int sk,
         int bits)
{
   control_points = vector_type(oN + oD + (pin ? 1 : 2));
   solution = control_points;
   zeros = vector_type(oN + oD + (pin ? 2 : 3));
   maxima = control_points;
   orderN = oN;
   orderD = oD;
   rel_error = rel_err;
   pinned = pin;
   m_skew = sk;
   min = a;
   max = b;
   m_max_error = 0;
   unknowns = orderN + orderD + (pinned ? 1 : 2);
   // guess our initial control points:
   control_points[0] = min;
   control_points[unknowns - 1] = max;
   T interval = (max - min) / (unknowns - 1);
   T spot = min + interval;
   for(unsigned i = 1; i < control_points.size(); ++i)
   {
      control_points[i] = spot;
      spot += interval;
   }
   solution[unknowns - 1] = 0;
   m_max_error = 0;
   if(bits == 0)
   {
      // don't bother about more than float precision:
      m_precision = (std::min)(24, (boost::math::policies::digits<T, boost::math::policies::policy<> >() / 2) - 2);
   }
   else
   {
      // can't be more accurate than half the bits of T:
      m_precision = (std::min)(bits, (boost::math::policies::digits<T, boost::math::policies::policy<> >() / 2) - 2);
   }
   m_max_change_history[0] = m_max_change_history[1] = 1;
   init_chebyshev();
   // do one iteration whatever:
   //iterate();
}

template <class T>
inline remez_minimax<T>::remez_minimax(
         typename remez_minimax<T>::function_type f, 
         unsigned oN, 
         unsigned oD, 
         T a, 
         T b, 
         bool pin, 
         bool rel_err, 
         int sk,
         int bits)
   : func(f) 
{
   m_brake = 0;
   reset(oN, oD, a, b, pin, rel_err, sk, bits);
}

template <class T>
void remez_minimax<T>::reset(
         unsigned oN, 
         unsigned oD, 
         T a, 
         T b, 
         bool pin, 
         bool rel_err, 
         int sk,
         int bits,
         const vector_type& points)
{
   control_points = vector_type(oN + oD + (pin ? 1 : 2));
   solution = control_points;
   zeros = vector_type(oN + oD + (pin ? 2 : 3));
   maxima = control_points;
   orderN = oN;
   orderD = oD;
   rel_error = rel_err;
   pinned = pin;
   m_skew = sk;
   min = a;
   max = b;
   m_max_error = 0;
   unknowns = orderN + orderD + (pinned ? 1 : 2);
   control_points = points;
   solution[unknowns - 1] = 0;
   m_max_error = 0;
   if(bits == 0)
   {
      // don't bother about more than float precision:
      m_precision = (std::min)(24, (boost::math::policies::digits<T, boost::math::policies::policy<> >() / 2) - 2);
   }
   else
   {
      // can't be more accurate than half the bits of T:
      m_precision = (std::min)(bits, (boost::math::policies::digits<T, boost::math::policies::policy<> >() / 2) - 2);
   }
   m_max_change_history[0] = m_max_change_history[1] = 1;
   // do one iteration whatever:
   //iterate();
}

template <class T>
inline remez_minimax<T>::remez_minimax(
         typename remez_minimax<T>::function_type f, 
         unsigned oN, 
         unsigned oD, 
         T a, 
         T b, 
         bool pin, 
         bool rel_err, 
         int sk,
         int bits,
         const vector_type& points)
   : func(f)
{
   m_brake = 0;
   reset(oN, oD, a, b, pin, rel_err, sk, bits, points);
}

template <class T>
T remez_minimax<T>::iterate()
{
   BOOST_MATH_STD_USING
   matrix_type A(unknowns, unknowns);
   vector_type b(unknowns);

   // fill in evaluation of f(x) at each of the control points:
   for(unsigned i = 0; i < b.size(); ++i)
   {
      // take care that none of our control points are at the origin:
      if(pinned && (control_points[i] == 0))
      {
         if(i)
            control_points[i] = control_points[i-1] / 3;
         else
            control_points[i] = control_points[i+1] / 3;
      }
      b[i] = func(control_points[i]);
   }

   T err_err;
   unsigned convergence_count = 0;
   do{
      // fill in powers of x evaluated at each of the control points:
      int sign = 1;
      unsigned offsetN = pinned ? 0 : 1;
      unsigned offsetD = offsetN + orderN;
      unsigned maxorder = (std::max)(orderN, orderD);
      T Elast = solution[unknowns - 1];

      for(unsigned i = 0; i < b.size(); ++i)
      {
         T x0 = control_points[i];
         T x = x0;
         if(!pinned)
            A(i, 0) = 1;
         for(unsigned j = 0; j < maxorder; ++j)
         {
            if(j < orderN)
               A(i, j + offsetN) = x;
            if(j < orderD)
            {
               T mult = rel_error ? T(b[i] - sign * fabs(b[i]) * Elast): T(b[i] - sign * Elast);
               A(i, j + offsetD) = -x * mult;
            }
            x *= x0;
         }
         // The last variable to be solved for is the error term, 
         // sign changes with each control point:
         T E = rel_error ? T(sign * fabs(b[i])) : T(sign);
         A(i, unknowns - 1) = E;
         sign = -sign;
      }

   #ifdef BOOST_MATH_INSTRUMENT
      for(unsigned i = 0; i < b.size(); ++i)
         std::cout << b[i] << " ";
      std::cout << "\n\n";
      for(unsigned i = 0; i < b.size(); ++i)
      {
         for(unsigned j = 0; j < b.size(); ++ j)
            std::cout << A(i, j) << " ";
         std::cout << "\n";
      }
      std::cout << std::endl;
   #endif
      //
      // Now go ahead and solve the expression to get our solution:
      //
      solution = boost::math::tools::solve(A, b);

      err_err = (Elast != 0) ? T(fabs((fabs(solution[unknowns-1]) - fabs(Elast)) / fabs(Elast))) : T(1);
   }while(orderD && (convergence_count++ < 80) && (err_err > 0.001));

   //
   // Perform a sanity check to verify that the solution to the equations
   // is not so much in error as to be useless.  The matrix inversion can
   // be very close to singular, so this can be a real problem.
   //
   vector_type sanity = prod(A, solution);
   for(unsigned i = 0; i < b.size(); ++i)
   {
      T err = fabs((b[i] - sanity[i]) / fabs(b[i]));
      if(err > sqrt(epsilon<T>()))
      {
         std::cerr << "Sanity check failed: more than half the digits in the found solution are in error." << std::endl;
      }
   }

   //
   // Next comes another sanity check, we want to verify that all the control
   // points do actually alternate in sign, in practice we may have 
   // additional roots in the error function that cause this to fail.
   // Failure here is always fatal: even though this code attempts to correct
   // the problem it usually only postpones the inevitable.
   //
   polynomial<T> num, denom;
   num = this->numerator();
   denom = this->denominator();
   T e1 = b[0] - num.evaluate(control_points[0]) / denom.evaluate(control_points[0]);
#ifdef BOOST_MATH_INSTRUMENT
   std::cout << e1;
#endif
   for(unsigned i = 1; i < b.size(); ++i)
   {
      T e2 = b[i] - num.evaluate(control_points[i]) / denom.evaluate(control_points[i]);
#ifdef BOOST_MATH_INSTRUMENT
      std::cout << " " << e2;
#endif
      if(e2 * e1 > 0)
      {
         std::cerr << std::flush << "Basic sanity check failed: Error term does not alternate in sign, non-recoverable error may follow..." << std::endl;
         T perturbation = 0.05;
         do{
            T point = control_points[i] * (1 - perturbation) + control_points[i-1] * perturbation;
            e2 = func(point) - num.evaluate(point) / denom.evaluate(point);
            if(e2 * e1 < 0)
            {
               control_points[i] = point;
               break;
            }
            perturbation += 0.05;
         }while(perturbation < 0.8);

         if((e2 * e1 > 0) && (i + 1 < b.size()))
         {
            perturbation = 0.05;
            do{
               T point = control_points[i] * (1 - perturbation) + control_points[i+1] * perturbation;
               e2 = func(point) - num.evaluate(point) / denom.evaluate(point);
               if(e2 * e1 < 0)
               {
                  control_points[i] = point;
                  break;
               }
               perturbation += 0.05;
            }while(perturbation < 0.8);
         }

      }
      e1 = e2;
   }

#ifdef BOOST_MATH_INSTRUMENT
   for(unsigned i = 0; i < solution.size(); ++i)
      std::cout << solution[i] << " ";
   std::cout << std::endl << this->numerator() << std::endl;
   std::cout << this->denominator() << std::endl;
   std::cout << std::endl;
#endif

   //
   // The next step is to find all the intervals in which our maxima
   // lie:
   //
   detail::remez_error_function<T> Err(func, this->numerator(), this->denominator(), rel_error);
   zeros[0] = min;
   zeros[unknowns] = max;
   for(unsigned i = 1; i < control_points.size(); ++i)
   {
      eps_tolerance<T> tol(m_precision);
      boost::uintmax_t max_iter = 1000;
      std::pair<T, T> p = toms748_solve(
         Err, 
         control_points[i-1], 
         control_points[i], 
         tol, 
         max_iter);
      zeros[i] = (p.first + p.second) / 2;
      //zeros[i] = bisect(Err, control_points[i-1], control_points[i], m_precision);
   }
   //
   // Now find all the extrema of the error function:
   //
   detail::remez_max_error_function<T> Ex(Err);
   m_max_error = 0;
   int max_err_location = 0;
   for(unsigned i = 0; i < unknowns; ++i)
   {
      std::pair<T, T> r = brent_find_minima(Ex, zeros[i], zeros[i+1], m_precision);
      maxima[i] = r.first;
      T rel_err = fabs(r.second);
      if(rel_err > m_max_error)
      {
         m_max_error = fabs(r.second);
         max_err_location = i;
      }
   }
   //
   // Almost done now! we just need to set our control points
   // to the extrema, and calculate how much each point has changed
   // (this will be our termination condition):
   //
   swap(control_points, maxima);
   m_max_change = 0;
   int max_change_location = 0;
   for(unsigned i = 0; i < unknowns; ++i)
   {
      control_points[i] = (control_points[i] * (100 - m_brake) + maxima[i] * m_brake) / 100;
      T change = fabs((control_points[i] - maxima[i]) / control_points[i]);
#if 0
      if(change > m_max_change_history[1])
      {
         // divergence!!! try capping the change:
         std::cerr << "Possible divergent step, change will be capped!!" << std::endl;
         change = m_max_change_history[1];
         if(control_points[i] < maxima[i])
            control_points[i] = maxima[i] - change * maxima[i];
         else
            control_points[i] = maxima[i] + change * maxima[i];
      }
#endif
      if(change > m_max_change)
      {
         m_max_change = change;
         max_change_location = i;
      }
   }
   //
   // store max change information:
   //
   m_max_change_history[0] = m_max_change_history[1];
   m_max_change_history[1] = fabs(m_max_change);

   return m_max_change;
}

template <class T>
polynomial<T> remez_minimax<T>::numerator()const
{
   boost::scoped_array<T> a(new T[orderN + 1]);
   if(pinned)
      a[0] = 0;
   unsigned terms = pinned ? orderN : orderN + 1;
   for(unsigned i = 0; i < terms; ++i)
      a[pinned ? i+1 : i] = solution[i];
   return boost::math::tools::polynomial<T>(&a[0], orderN);
}

template <class T>
polynomial<T> remez_minimax<T>::denominator()const
{
   unsigned terms = orderD + 1;
   unsigned offsetD = pinned ? orderN : (orderN + 1);
   boost::scoped_array<T> a(new T[terms]);
   a[0] = 1;
   for(unsigned i = 0; i < orderD; ++i)
      a[i+1] = solution[i + offsetD];
   return boost::math::tools::polynomial<T>(&a[0], orderD);
}


}}} // namespaces

#endif // BOOST_MATH_TOOLS_REMEZ_HPP