/usr/include/boost/math/tools/test.hpp is in libboost1.54-dev 1.54.0-4ubuntu3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 | // (C) Copyright John Maddock 2006.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_TOOLS_TEST_HPP
#define BOOST_MATH_TOOLS_TEST_HPP
#ifdef _MSC_VER
#pragma once
#endif
#include <boost/math/tools/config.hpp>
#include <boost/math/tools/stats.hpp>
#include <boost/math/special_functions/fpclassify.hpp>
#include <boost/test/test_tools.hpp>
#include <stdexcept>
#include <iostream>
#include <iomanip>
namespace boost{ namespace math{ namespace tools{
template <class T>
struct test_result
{
private:
boost::math::tools::stats<T> stat; // Statistics for the test.
unsigned worst_case; // Index of the worst case test.
public:
test_result() { worst_case = 0; }
void set_worst(int i){ worst_case = i; }
void add(const T& point){ stat.add(point); }
// accessors:
unsigned worst()const{ return worst_case; }
T min BOOST_PREVENT_MACRO_SUBSTITUTION()const{ return (stat.min)(); }
T max BOOST_PREVENT_MACRO_SUBSTITUTION()const{ return (stat.max)(); }
T total()const{ return stat.total(); }
T mean()const{ return stat.mean(); }
boost::uintmax_t count()const{ return stat.count(); }
T variance()const{ return stat.variance(); }
T variance1()const{ return stat.variance1(); }
T rms()const{ return stat.rms(); }
test_result& operator+=(const test_result& t)
{
if((t.stat.max)() > (stat.max)())
worst_case = t.worst_case;
stat += t.stat;
return *this;
}
};
template <class T>
struct calculate_result_type
{
typedef typename T::value_type row_type;
typedef typename row_type::value_type value_type;
};
template <class T>
T relative_error(T a, T b)
{
BOOST_MATH_STD_USING
#ifdef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
//
// If math.h has no long double support we can't rely
// on the math functions generating exponents outside
// the range of a double:
//
T min_val = (std::max)(
tools::min_value<T>(),
static_cast<T>((std::numeric_limits<double>::min)()));
T max_val = (std::min)(
tools::max_value<T>(),
static_cast<T>((std::numeric_limits<double>::max)()));
#else
T min_val = tools::min_value<T>();
T max_val = tools::max_value<T>();
#endif
if((a != 0) && (b != 0))
{
// TODO: use isfinite:
if(fabs(b) >= max_val)
{
if(fabs(a) >= max_val)
return 0; // one infinity is as good as another!
}
// If the result is denormalised, treat all denorms as equivalent:
if((a < min_val) && (a > 0))
a = min_val;
else if((a > -min_val) && (a < 0))
a = -min_val;
if((b < min_val) && (b > 0))
b = min_val;
else if((b > -min_val) && (b < 0))
b = -min_val;
return (std::max)(fabs((a-b)/a), fabs((a-b)/b));
}
// Handle special case where one or both are zero:
if(min_val == 0)
return fabs(a-b);
if(fabs(a) < min_val)
a = min_val;
if(fabs(b) < min_val)
b = min_val;
return (std::max)(fabs((a-b)/a), fabs((a-b)/b));
}
#if defined(macintosh) || defined(__APPLE__) || defined(__APPLE_CC__)
template <>
inline double relative_error<double>(double a, double b)
{
BOOST_MATH_STD_USING
//
// On Mac OS X we evaluate "double" functions at "long double" precision,
// but "long double" actually has a very slightly narrower range than "double"!
// Therefore use the range of "long double" as our limits since results outside
// that range may have been truncated to 0 or INF:
//
double min_val = (std::max)((double)tools::min_value<long double>(), tools::min_value<double>());
double max_val = (std::min)((double)tools::max_value<long double>(), tools::max_value<double>());
if((a != 0) && (b != 0))
{
// TODO: use isfinite:
if(b > max_val)
{
if(a > max_val)
return 0; // one infinity is as good as another!
}
// If the result is denormalised, treat all denorms as equivalent:
if((a < min_val) && (a > 0))
a = min_val;
else if((a > -min_val) && (a < 0))
a = -min_val;
if((b < min_val) && (b > 0))
b = min_val;
else if((b > -min_val) && (b < 0))
b = -min_val;
return (std::max)(fabs((a-b)/a), fabs((a-b)/b));
}
// Handle special case where one or both are zero:
if(min_val == 0)
return fabs(a-b);
if(fabs(a) < min_val)
a = min_val;
if(fabs(b) < min_val)
b = min_val;
return (std::max)(fabs((a-b)/a), fabs((a-b)/b));
}
#endif
template <class T>
void set_output_precision(T)
{
#ifdef BOOST_MSVC
#pragma warning(push)
#pragma warning(disable:4127)
#endif
if(std::numeric_limits<T>::digits10)
{
std::cout << std::setprecision(std::numeric_limits<T>::digits10 + 2);
}
#ifdef BOOST_MSVC
#pragma warning(pop)
#endif
}
template <class Seq>
void print_row(const Seq& row)
{
set_output_precision(row[0]);
for(unsigned i = 0; i < row.size(); ++i)
{
if(i)
std::cout << ", ";
std::cout << row[i];
}
std::cout << std::endl;
}
//
// Function test accepts an matrix of input values (probably a 2D boost::array)
// and calls two functors for each row in the array - one calculates a value
// to test, and one extracts the expected value from the array (or possibly
// calculates it at high precision). The two functors are usually simple lambda
// expressions.
//
template <class A, class F1, class F2>
test_result<typename calculate_result_type<A>::value_type> test(const A& a, F1 test_func, F2 expect_func)
{
typedef typename A::value_type row_type;
typedef typename row_type::value_type value_type;
test_result<value_type> result;
for(unsigned i = 0; i < a.size(); ++i)
{
const row_type& row = a[i];
value_type point;
try
{
point = test_func(row);
}
catch(const std::underflow_error&)
{
point = 0;
}
catch(const std::overflow_error&)
{
point = std::numeric_limits<value_type>::has_infinity ?
std::numeric_limits<value_type>::infinity()
: tools::max_value<value_type>();
}
catch(const std::exception& e)
{
std::cerr << e.what() << std::endl;
print_row(row);
BOOST_ERROR("Unexpected exception.");
// so we don't get further errors:
point = expect_func(row);
}
value_type expected = expect_func(row);
value_type err = relative_error(point, expected);
#ifdef BOOST_INSTRUMENT
if(err != 0)
{
std::cout << row[0] << " " << err;
if(std::numeric_limits<value_type>::is_specialized)
{
std::cout << " (" << err / std::numeric_limits<value_type>::epsilon() << "eps)";
}
std::cout << std::endl;
}
#endif
if(!(boost::math::isfinite)(point) && (boost::math::isfinite)(expected))
{
std::cout << "CAUTION: Found non-finite result, when a finite value was expected at entry " << i << "\n";
std::cout << "Found: " << point << " Expected " << expected << " Error: " << err << std::endl;
print_row(row);
BOOST_ERROR("Unexpected non-finite result");
}
if(err > 0.5)
{
std::cout << "CAUTION: Gross error found at entry " << i << ".\n";
std::cout << "Found: " << point << " Expected " << expected << " Error: " << err << std::endl;
print_row(row);
BOOST_ERROR("Gross error");
}
result.add(err);
if((result.max)() == err)
result.set_worst(i);
}
return result;
}
template <class Real, class A, class F1, class F2>
test_result<Real> test_hetero(const A& a, F1 test_func, F2 expect_func)
{
typedef typename A::value_type row_type;
typedef Real value_type;
test_result<value_type> result;
for(unsigned i = 0; i < a.size(); ++i)
{
const row_type& row = a[i];
value_type point;
try
{
point = test_func(row);
}
catch(const std::underflow_error&)
{
point = 0;
}
catch(const std::overflow_error&)
{
point = std::numeric_limits<value_type>::has_infinity ?
std::numeric_limits<value_type>::infinity()
: tools::max_value<value_type>();
}
catch(const std::exception& e)
{
std::cerr << e.what() << std::endl;
print_row(row);
BOOST_ERROR("Unexpected exception.");
// so we don't get further errors:
point = expect_func(row);
}
value_type expected = expect_func(row);
value_type err = relative_error(point, expected);
#ifdef BOOST_INSTRUMENT
if(err != 0)
{
std::cout << row[0] << " " << err;
if(std::numeric_limits<value_type>::is_specialized)
{
std::cout << " (" << err / std::numeric_limits<value_type>::epsilon() << "eps)";
}
std::cout << std::endl;
}
#endif
if(!(boost::math::isfinite)(point) && (boost::math::isfinite)(expected))
{
std::cout << "CAUTION: Found non-finite result, when a finite value was expected at entry " << i << "\n";
std::cout << "Found: " << point << " Expected " << expected << " Error: " << err << std::endl;
print_row(row);
BOOST_ERROR("Unexpected non-finite result");
}
if(err > 0.5)
{
std::cout << "CAUTION: Gross error found at entry " << i << ".\n";
std::cout << "Found: " << point << " Expected " << expected << " Error: " << err << std::endl;
print_row(row);
BOOST_ERROR("Gross error");
}
result.add(err);
if((result.max)() == err)
result.set_worst(i);
}
return result;
}
} // namespace tools
} // namespace math
} // namespace boost
#endif
|