This file is indexed.

/usr/include/boost/math/tools/test.hpp is in libboost1.54-dev 1.54.0-4ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
//  (C) Copyright John Maddock 2006.
//  Use, modification and distribution are subject to the
//  Boost Software License, Version 1.0. (See accompanying file
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_MATH_TOOLS_TEST_HPP
#define BOOST_MATH_TOOLS_TEST_HPP

#ifdef _MSC_VER
#pragma once
#endif

#include <boost/math/tools/config.hpp>
#include <boost/math/tools/stats.hpp>
#include <boost/math/special_functions/fpclassify.hpp>
#include <boost/test/test_tools.hpp>
#include <stdexcept>
#include <iostream>
#include <iomanip>

namespace boost{ namespace math{ namespace tools{

template <class T>
struct test_result
{
private:
   boost::math::tools::stats<T> stat;   // Statistics for the test.
   unsigned worst_case;                 // Index of the worst case test.
public:
   test_result() { worst_case = 0; }
   void set_worst(int i){ worst_case = i; }
   void add(const T& point){ stat.add(point); }
   // accessors:
   unsigned worst()const{ return worst_case; }
   T min BOOST_PREVENT_MACRO_SUBSTITUTION()const{ return (stat.min)(); }
   T max BOOST_PREVENT_MACRO_SUBSTITUTION()const{ return (stat.max)(); }
   T total()const{ return stat.total(); }
   T mean()const{ return stat.mean(); }
   boost::uintmax_t count()const{ return stat.count(); }
   T variance()const{ return stat.variance(); }
   T variance1()const{ return stat.variance1(); }
   T rms()const{ return stat.rms(); }

   test_result& operator+=(const test_result& t)
   {
      if((t.stat.max)() > (stat.max)())
         worst_case = t.worst_case;
      stat += t.stat;
      return *this;
   }
};

template <class T>
struct calculate_result_type
{
   typedef typename T::value_type row_type;
   typedef typename row_type::value_type value_type;
};

template <class T>
T relative_error(T a, T b)
{
   BOOST_MATH_STD_USING
#ifdef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
   //
   // If math.h has no long double support we can't rely
   // on the math functions generating exponents outside
   // the range of a double:
   //
   T min_val = (std::max)(
      tools::min_value<T>(),
      static_cast<T>((std::numeric_limits<double>::min)()));
   T max_val = (std::min)(
      tools::max_value<T>(),
      static_cast<T>((std::numeric_limits<double>::max)()));
#else
   T min_val = tools::min_value<T>();
   T max_val = tools::max_value<T>();
#endif

   if((a != 0) && (b != 0))
   {
      // TODO: use isfinite:
      if(fabs(b) >= max_val)
      {
         if(fabs(a) >= max_val)
            return 0;  // one infinity is as good as another!
      }
      // If the result is denormalised, treat all denorms as equivalent:
      if((a < min_val) && (a > 0))
         a = min_val;
      else if((a > -min_val) && (a < 0))
         a = -min_val;
      if((b < min_val) && (b > 0))
         b = min_val;
      else if((b > -min_val) && (b < 0))
         b = -min_val;
      return (std::max)(fabs((a-b)/a), fabs((a-b)/b));
   }

   // Handle special case where one or both are zero:
   if(min_val == 0)
      return fabs(a-b);
   if(fabs(a) < min_val)
      a = min_val;
   if(fabs(b) < min_val)
      b = min_val;
   return (std::max)(fabs((a-b)/a), fabs((a-b)/b));
}

#if defined(macintosh) || defined(__APPLE__) || defined(__APPLE_CC__)
template <>
inline double relative_error<double>(double a, double b)
{
   BOOST_MATH_STD_USING
   //
   // On Mac OS X we evaluate "double" functions at "long double" precision,
   // but "long double" actually has a very slightly narrower range than "double"!  
   // Therefore use the range of "long double" as our limits since results outside
   // that range may have been truncated to 0 or INF:
   //
   double min_val = (std::max)((double)tools::min_value<long double>(), tools::min_value<double>());
   double max_val = (std::min)((double)tools::max_value<long double>(), tools::max_value<double>());

   if((a != 0) && (b != 0))
   {
      // TODO: use isfinite:
      if(b > max_val)
      {
         if(a > max_val)
            return 0;  // one infinity is as good as another!
      }
      // If the result is denormalised, treat all denorms as equivalent:
      if((a < min_val) && (a > 0))
         a = min_val;
      else if((a > -min_val) && (a < 0))
         a = -min_val;
      if((b < min_val) && (b > 0))
         b = min_val;
      else if((b > -min_val) && (b < 0))
         b = -min_val;
      return (std::max)(fabs((a-b)/a), fabs((a-b)/b));
   }

   // Handle special case where one or both are zero:
   if(min_val == 0)
      return fabs(a-b);
   if(fabs(a) < min_val)
      a = min_val;
   if(fabs(b) < min_val)
      b = min_val;
   return (std::max)(fabs((a-b)/a), fabs((a-b)/b));
}
#endif

template <class T>
void set_output_precision(T)
{
#ifdef BOOST_MSVC
#pragma warning(push)
#pragma warning(disable:4127)
#endif
   if(std::numeric_limits<T>::digits10)
   {
      std::cout << std::setprecision(std::numeric_limits<T>::digits10 + 2);
   }
#ifdef BOOST_MSVC
#pragma warning(pop)
#endif
}

template <class Seq>
void print_row(const Seq& row)
{
   set_output_precision(row[0]);
   for(unsigned i = 0; i < row.size(); ++i)
   {
      if(i)
         std::cout << ", ";
      std::cout << row[i];
   }
   std::cout << std::endl;
}

//
// Function test accepts an matrix of input values (probably a 2D boost::array)
// and calls two functors for each row in the array - one calculates a value
// to test, and one extracts the expected value from the array (or possibly
// calculates it at high precision).  The two functors are usually simple lambda
// expressions.
//
template <class A, class F1, class F2>
test_result<typename calculate_result_type<A>::value_type> test(const A& a, F1 test_func, F2 expect_func)
{
   typedef typename A::value_type         row_type;
   typedef typename row_type::value_type  value_type;

   test_result<value_type> result;

   for(unsigned i = 0; i < a.size(); ++i)
   {
      const row_type& row = a[i];
      value_type point;
      try
      {
         point = test_func(row);
      }
      catch(const std::underflow_error&)
      {
         point = 0;
      }
      catch(const std::overflow_error&)
      {
         point = std::numeric_limits<value_type>::has_infinity ? 
            std::numeric_limits<value_type>::infinity()
            : tools::max_value<value_type>();
      }
      catch(const std::exception& e)
      {
         std::cerr << e.what() << std::endl;
         print_row(row);
         BOOST_ERROR("Unexpected exception.");
         // so we don't get further errors:
         point = expect_func(row);
      }
      value_type expected = expect_func(row);
      value_type err = relative_error(point, expected);
#ifdef BOOST_INSTRUMENT
      if(err != 0)
      {
         std::cout << row[0] << " " << err;
         if(std::numeric_limits<value_type>::is_specialized)
         {
            std::cout << " (" << err / std::numeric_limits<value_type>::epsilon() << "eps)";
         }
         std::cout << std::endl;
      }
#endif
      if(!(boost::math::isfinite)(point) && (boost::math::isfinite)(expected))
      {
         std::cout << "CAUTION: Found non-finite result, when a finite value was expected at entry " << i << "\n";
         std::cout << "Found: " << point << " Expected " << expected << " Error: " << err << std::endl;
         print_row(row);
         BOOST_ERROR("Unexpected non-finite result");
      }
      if(err > 0.5)
      {
         std::cout << "CAUTION: Gross error found at entry " << i << ".\n";
         std::cout << "Found: " << point << " Expected " << expected << " Error: " << err << std::endl;
         print_row(row);
         BOOST_ERROR("Gross error");
      }
      result.add(err);
      if((result.max)() == err)
         result.set_worst(i);
   }
   return result;
}

template <class Real, class A, class F1, class F2>
test_result<Real> test_hetero(const A& a, F1 test_func, F2 expect_func)
{
   typedef typename A::value_type         row_type;
   typedef Real                          value_type;

   test_result<value_type> result;

   for(unsigned i = 0; i < a.size(); ++i)
   {
      const row_type& row = a[i];
      value_type point;
      try
      {
         point = test_func(row);
      }
      catch(const std::underflow_error&)
      {
         point = 0;
      }
      catch(const std::overflow_error&)
      {
         point = std::numeric_limits<value_type>::has_infinity ? 
            std::numeric_limits<value_type>::infinity()
            : tools::max_value<value_type>();
      }
      catch(const std::exception& e)
      {
         std::cerr << e.what() << std::endl;
         print_row(row);
         BOOST_ERROR("Unexpected exception.");
         // so we don't get further errors:
         point = expect_func(row);
      }
      value_type expected = expect_func(row);
      value_type err = relative_error(point, expected);
#ifdef BOOST_INSTRUMENT
      if(err != 0)
      {
         std::cout << row[0] << " " << err;
         if(std::numeric_limits<value_type>::is_specialized)
         {
            std::cout << " (" << err / std::numeric_limits<value_type>::epsilon() << "eps)";
         }
         std::cout << std::endl;
      }
#endif
      if(!(boost::math::isfinite)(point) && (boost::math::isfinite)(expected))
      {
         std::cout << "CAUTION: Found non-finite result, when a finite value was expected at entry " << i << "\n";
         std::cout << "Found: " << point << " Expected " << expected << " Error: " << err << std::endl;
         print_row(row);
         BOOST_ERROR("Unexpected non-finite result");
      }
      if(err > 0.5)
      {
         std::cout << "CAUTION: Gross error found at entry " << i << ".\n";
         std::cout << "Found: " << point << " Expected " << expected << " Error: " << err << std::endl;
         print_row(row);
         BOOST_ERROR("Gross error");
      }
      result.add(err);
      if((result.max)() == err)
         result.set_worst(i);
   }
   return result;
}

} // namespace tools
} // namespace math
} // namespace boost

#endif