This file is indexed.

/usr/include/boost/pending/disjoint_sets.hpp is in libboost1.54-dev 1.54.0-4ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
//
//=======================================================================
// Copyright 1997, 1998, 1999, 2000 University of Notre Dame.
// Authors: Andrew Lumsdaine, Lie-Quan Lee, Jeremy G. Siek
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//=======================================================================
//
#ifndef BOOST_DISJOINT_SETS_HPP
#define BOOST_DISJOINT_SETS_HPP

#include <vector>
#include <boost/graph/properties.hpp>
#include <boost/pending/detail/disjoint_sets.hpp>

namespace boost {

  struct find_with_path_halving {
    template <class ParentPA, class Vertex>
    Vertex operator()(ParentPA p, Vertex v) { 
      return detail::find_representative_with_path_halving(p, v);
    }
  };

  struct find_with_full_path_compression {
    template <class ParentPA, class Vertex>
    Vertex operator()(ParentPA p, Vertex v){
      return detail::find_representative_with_full_compression(p, v);
    }
  };

  // This is a generalized functor to provide disjoint sets operations
  // with "union by rank" and "path compression".  A disjoint-set data
  // structure maintains a collection S={S1, S2, ..., Sk} of disjoint
  // sets. Each set is identified by a representative, which is some
  // member of of the set. Sets are represented by rooted trees. Two
  // heuristics: "union by rank" and "path compression" are used to
  // speed up the operations.

  // Disjoint Set requires two vertex properties for internal use.  A
  // RankPA and a ParentPA. The RankPA must map Vertex to some Integral type
  // (preferably the size_type associated with Vertex). The ParentPA
  // must map Vertex to Vertex.
  template <class RankPA, class ParentPA,
    class FindCompress = find_with_full_path_compression
    >
  class disjoint_sets {
    typedef disjoint_sets self;
    
    inline disjoint_sets() {}
  public:
    inline disjoint_sets(RankPA r, ParentPA p) 
      : rank(r), parent(p) {}

    inline disjoint_sets(const self& c) 
      : rank(c.rank), parent(c.parent) {}
    
    // Make Set -- Create a singleton set containing vertex x
    template <class Element>
    inline void make_set(Element x)
    {
      put(parent, x, x);
      typedef typename property_traits<RankPA>::value_type R;
      put(rank, x, R());
    }
    
    // Link - union the two sets represented by vertex x and y
    template <class Element>
    inline void link(Element x, Element y)
    {
      detail::link_sets(parent, rank, x, y, rep);
    }
    
    // Union-Set - union the two sets containing vertex x and y 
    template <class Element>
    inline void union_set(Element x, Element y)
    {
      link(find_set(x), find_set(y));
    }
    
    // Find-Set - returns the Element representative of the set
    // containing Element x and applies path compression.
    template <class Element>
    inline Element find_set(Element x)
    {
      return rep(parent, x);
    }

    template <class ElementIterator>
    inline std::size_t count_sets(ElementIterator first, ElementIterator last)
    {
      std::size_t count = 0;  
      for ( ; first != last; ++first)
      if (get(parent, *first) == *first)
        ++count;
      return count;
    }

    template <class ElementIterator>
    inline void normalize_sets(ElementIterator first, ElementIterator last)
    {
      for (; first != last; ++first) 
        detail::normalize_node(parent, *first);
    }    
    
    template <class ElementIterator>
    inline void compress_sets(ElementIterator first, ElementIterator last)
    {
      for (; first != last; ++first) 
        detail::find_representative_with_full_compression(parent, *first);
    }    
  protected:
    RankPA rank;
    ParentPA parent;
    FindCompress rep;
  };


  

  template <class ID = identity_property_map,
            class InverseID = identity_property_map,
            class FindCompress = find_with_full_path_compression
            >
  class disjoint_sets_with_storage
  {
    typedef typename property_traits<ID>::value_type Index;
    typedef std::vector<Index> ParentContainer;
    typedef std::vector<unsigned char> RankContainer;
  public:
    typedef typename ParentContainer::size_type size_type;

    disjoint_sets_with_storage(size_type n = 0,
                               ID id_ = ID(),
                               InverseID inv = InverseID())
      : id(id_), id_to_vertex(inv), rank(n, 0), parent(n)
    {
      for (Index i = 0; i < n; ++i)
        parent[i] = i;
    }
    // note this is not normally needed
    template <class Element>
    inline void 
    make_set(Element x) {
      parent[x] = x;
      rank[x]   = 0;
    }
    template <class Element>
    inline void 
    link(Element x, Element y)
    {
      extend_sets(x,y);
      detail::link_sets(&parent[0], &rank[0], 
                        get(id,x), get(id,y), rep);
    }
    template <class Element>
    inline void 
    union_set(Element x, Element y) {
      Element rx = find_set(x);
      Element ry = find_set(y);
      link(rx, ry);
    }
    template <class Element>
    inline Element find_set(Element x) {
      return id_to_vertex[rep(&parent[0], get(id,x))];
    }

    template <class ElementIterator>
    inline std::size_t count_sets(ElementIterator first, ElementIterator last)
    {
      std::size_t count = 0;  
      for ( ; first != last; ++first)
      if (parent[*first] == *first)
        ++count;
      return count;
    }

    template <class ElementIterator>
    inline void normalize_sets(ElementIterator first, ElementIterator last)
    {
      for (; first != last; ++first) 
        detail::normalize_node(&parent[0], *first);
    }    
    
    template <class ElementIterator>
    inline void compress_sets(ElementIterator first, ElementIterator last)
    {
      for (; first != last; ++first) 
        detail::find_representative_with_full_compression(&parent[0],
                                                          *first);
    }    

    const ParentContainer& parents() { return parent; }

  protected:

    template <class Element>
    inline void 
    extend_sets(Element x, Element y)
    {
      Index needed = get(id,x) > get(id,y) ? get(id,x) + 1 : get(id,y) + 1;
      if (needed > parent.size()) {
        rank.insert(rank.end(), needed - rank.size(), 0);
        for (Index k = parent.size(); k < needed; ++k)
        parent.push_back(k);
      } 
    }

    ID id;
    InverseID id_to_vertex;
    RankContainer rank;
    ParentContainer parent;
    FindCompress rep;
  };

} // namespace boost

#endif // BOOST_DISJOINT_SETS_HPP