This file is indexed.

/usr/include/boost/polygon/transform.hpp is in libboost1.54-dev 1.54.0-4ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
// Boost.Polygon library point_data.hpp header file

// Copyright (c) Intel Corporation 2008.
// Copyright (c) 2008-2012 Simonson Lucanus.
// Copyright (c) 2012-2012 Andrii Sydorchuk.

// See http://www.boost.org for updates, documentation, and revision history.
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_POLYGON_TRANSFORM_HPP
#define BOOST_POLYGON_TRANSFORM_HPP

#include "isotropy.hpp"

namespace boost {
namespace polygon {
// Transformation of Coordinate System.
// Enum meaning:
// Select which direction_2d to change the positive direction of each
// axis in the old coordinate system to map it to the new coordiante system.
// The first direction_2d listed for each enum is the direction to map the
// positive horizontal direction to.
// The second direction_2d listed for each enum is the direction to map the
// positive vertical direction to.
// The zero position bit (LSB) indicates whether the horizontal axis flips
// when transformed.
// The 1st postion bit indicates whether the vertical axis flips when
// transformed.
// The 2nd position bit indicates whether the horizontal and vertical axis
// swap positions when transformed.
// Enum Values:
//   000 EAST NORTH
//   001 WEST NORTH
//   010 EAST SOUTH
//   011 WEST SOUTH
//   100 NORTH EAST
//   101 SOUTH EAST
//   110 NORTH WEST
//   111 SOUTH WEST
class axis_transformation {
 public:
  enum ATR {
    NULL_TRANSFORM = 0,
    BEGIN_TRANSFORM = 0,
      EN = 0, EAST_NORTH = 0,
      WN = 1, WEST_NORTH = 1, FLIP_X       = 1,
      ES = 2, EAST_SOUTH = 2, FLIP_Y       = 2,
      WS = 3, WEST_SOUTH = 3, FLIP_XY      = 3,
      NE = 4, NORTH_EAST = 4, SWAP_XY      = 4,
      SE = 5, SOUTH_EAST = 5, ROTATE_LEFT  = 5,
      NW = 6, NORTH_WEST = 6, ROTATE_RIGHT = 6,
      SW = 7, SOUTH_WEST = 7, FLIP_SWAP_XY = 7,
    END_TRANSFORM = 7
  };

  // Individual axis enum values indicate which axis an implicit individual
  // axis will be mapped to.
  // The value of the enum paired with an axis provides the information
  // about what the axis will transform to.
  // Three individual axis values, one for each axis, are equivalent to one
  // ATR enum value, but easier to work with because they are independent.
  // Converting to and from the individual axis values from the ATR value
  // is a convenient way to implement tranformation related functionality.
  // Enum meanings:
  // PX: map to positive x axis
  // NX: map to negative x axis
  // PY: map to positive y axis
  // NY: map to negative y axis
  enum INDIVIDUAL_AXIS {
    PX = 0,
    NX = 1,
    PY = 2,
    NY = 3
  };

  axis_transformation() : atr_(NULL_TRANSFORM) {}
  explicit axis_transformation(ATR atr) : atr_(atr) {}
  axis_transformation(const axis_transformation& atr) : atr_(atr.atr_) {}

  explicit axis_transformation(const orientation_2d& orient) {
    const ATR tmp[2] = {
      NORTH_EAST,  // sort x, then y
      EAST_NORTH   // sort y, then x
    };
    atr_ = tmp[orient.to_int()];
  }

  explicit axis_transformation(const direction_2d& dir) {
    const ATR tmp[4] = {
      SOUTH_EAST,  // sort x, then y
      NORTH_EAST,  // sort x, then y
      EAST_SOUTH,  // sort y, then x
      EAST_NORTH   // sort y, then x
    };
    atr_ = tmp[dir.to_int()];
  }

  // assignment operator
  axis_transformation& operator=(const axis_transformation& a) {
    atr_ = a.atr_;
    return *this;
  }

  // assignment operator
  axis_transformation& operator=(const ATR& atr) {
    atr_ = atr;
    return *this;
  }

  // equivalence operator
  bool operator==(const axis_transformation& a) const {
    return atr_ == a.atr_;
  }

  // inequivalence operator
  bool operator!=(const axis_transformation& a) const {
    return !(*this == a);
  }

  // ordering
  bool operator<(const axis_transformation& a) const {
    return atr_ < a.atr_;
  }

  // concatenate this with that
  axis_transformation& operator+=(const axis_transformation& a) {
    bool abit2 = (a.atr_ & 4) != 0;
    bool abit1 = (a.atr_ & 2) != 0;
    bool abit0 = (a.atr_ & 1) != 0;
    bool bit2 = (atr_ & 4) != 0;
    bool bit1 = (atr_ & 2) != 0;
    bool bit0 = (atr_ & 1) != 0;
    int indexes[2][2] = {
      { (int)bit2, (int)(!bit2) },
      { (int)abit2, (int)(!abit2) }
    };
    int zero_bits[2][2] = {
      {bit0, bit1}, {abit0, abit1}
    };
    int nbit1 = zero_bits[0][1] ^ zero_bits[1][indexes[0][1]];
    int nbit0 = zero_bits[0][0] ^ zero_bits[1][indexes[0][0]];
    indexes[0][0] = indexes[1][indexes[0][0]];
    indexes[0][1] = indexes[1][indexes[0][1]];
    int nbit2 = indexes[0][0] & 1;  // swap xy
    atr_ = (ATR)((nbit2 << 2) + (nbit1 << 1) + nbit0);
    return *this;
  }

  // concatenation operator
  axis_transformation operator+(const axis_transformation& a) const {
    axis_transformation retval(*this);
    return retval+=a;
  }

  // populate_axis_array writes the three INDIVIDUAL_AXIS values that the
  // ATR enum value of 'this' represent into axis_array
  void populate_axis_array(INDIVIDUAL_AXIS axis_array[]) const {
    bool bit2 = (atr_ & 4) != 0;
    bool bit1 = (atr_ & 2) != 0;
    bool bit0 = (atr_ & 1) != 0;
    axis_array[1] = (INDIVIDUAL_AXIS)(((int)(!bit2) << 1) + bit1);
    axis_array[0] = (INDIVIDUAL_AXIS)(((int)(bit2) << 1) + bit0);
  }

  // it is recommended that the directions stored in an array
  // in the caller code for easier isotropic access by orientation value
  void get_directions(direction_2d& horizontal_dir,
                      direction_2d& vertical_dir) const {
    bool bit2 = (atr_ & 4) != 0;
    bool bit1 = (atr_ & 2) != 0;
    bool bit0 = (atr_ & 1) != 0;
    vertical_dir = direction_2d((direction_2d_enum)(((int)(!bit2) << 1) + !bit1));
    horizontal_dir = direction_2d((direction_2d_enum)(((int)(bit2) << 1) + !bit0));
  }

  // combine_axis_arrays concatenates this_array and that_array overwriting
  // the result into this_array
  static void combine_axis_arrays(INDIVIDUAL_AXIS this_array[],
                                  const INDIVIDUAL_AXIS that_array[]) {
    int indexes[2] = { this_array[0] >> 1, this_array[1] >> 1 };
    int zero_bits[2][2] = {
      { this_array[0] & 1, this_array[1] & 1 },
      { that_array[0] & 1, that_array[1] & 1 }
    };
    this_array[0] = (INDIVIDUAL_AXIS)((int)this_array[0] |
                                      ((int)zero_bits[0][0] ^
                                       (int)zero_bits[1][indexes[0]]));
    this_array[1] = (INDIVIDUAL_AXIS)((int)this_array[1] |
                                      ((int)zero_bits[0][1] ^
                                       (int)zero_bits[1][indexes[1]]));
  }

  // write_back_axis_array converts an array of three INDIVIDUAL_AXIS values
  // to the ATR enum value and sets 'this' to that value
  void write_back_axis_array(const INDIVIDUAL_AXIS this_array[]) {
    int bit2 = ((int)this_array[0] & 2) != 0;  // swap xy
    int bit1 = ((int)this_array[1] & 1);
    int bit0 = ((int)this_array[0] & 1);
    atr_ = ATR((bit2 << 2) + (bit1 << 1) + bit0);
  }

  // behavior is deterministic but undefined in the case where illegal
  // combinations of directions are passed in.
  axis_transformation& set_directions(const direction_2d& horizontal_dir,
                                      const direction_2d& vertical_dir) {
    int bit2 = (static_cast<orientation_2d>(horizontal_dir).to_int()) != 0;
    int bit1 = !(vertical_dir.to_int() & 1);
    int bit0 = !(horizontal_dir.to_int() & 1);
    atr_ = ATR((bit2 << 2) + (bit1 << 1) + bit0);
    return *this;
  }

  // transform the three coordinates by reference
  template <typename coordinate_type>
  void transform(coordinate_type& x, coordinate_type& y) const {
    int bit2 = (atr_ & 4) != 0;
    int bit1 = (atr_ & 2) != 0;
    int bit0 = (atr_ & 1) != 0;
    x *= -((bit0 << 1) - 1);
    y *= -((bit1 << 1) - 1);
    predicated_swap(bit2 != 0, x, y);
  }

  // invert this axis_transformation
  axis_transformation& invert() {
    int bit2 = ((atr_ & 4) != 0);
    int bit1 = ((atr_ & 2) != 0);
    int bit0 = ((atr_ & 1) != 0);
    // swap bit 0 and bit 1 if bit2 is 1
    predicated_swap(bit2 != 0, bit0, bit1);
    bit1 = bit1 << 1;
    atr_ = (ATR)(atr_ & (32+16+8+4));  // mask away bit0 and bit1
    atr_ = (ATR)(atr_ | bit0 | bit1);
    return *this;
  }

  // get the inverse axis_transformation of this
  axis_transformation inverse() const {
    axis_transformation retval(*this);
    return retval.invert();
  }

 private:
  ATR atr_;
};

// Scaling object to be used to store the scale factor for each axis.
// For use by the transformation object, in that context the scale factor
// is the amount that each axis scales by when transformed.
template <typename scale_factor_type>
class anisotropic_scale_factor {
 public:
  anisotropic_scale_factor() {
    scale_[0] = 1;
    scale_[1] = 1;
  }
  anisotropic_scale_factor(scale_factor_type xscale,
                           scale_factor_type yscale) {
    scale_[0] = xscale;
    scale_[1] = yscale;
  }

  // get a component of the anisotropic_scale_factor by orientation
  scale_factor_type get(orientation_2d orient) const {
    return scale_[orient.to_int()];
  }

  // set a component of the anisotropic_scale_factor by orientation
  void set(orientation_2d orient, scale_factor_type value) {
    scale_[orient.to_int()] = value;
  }

  scale_factor_type x() const {
    return scale_[HORIZONTAL];
  }

  scale_factor_type y() const {
    return scale_[VERTICAL];
  }

  void x(scale_factor_type value) {
    scale_[HORIZONTAL] = value;
  }

  void y(scale_factor_type value) {
    scale_[VERTICAL] = value;
  }

  // concatination operator (convolve scale factors)
  anisotropic_scale_factor operator+(const anisotropic_scale_factor& s) const {
    anisotropic_scale_factor<scale_factor_type> retval(*this);
    return retval += s;
  }

  // concatinate this with that
  const anisotropic_scale_factor& operator+=(
      const anisotropic_scale_factor& s) {
    scale_[0] *= s.scale_[0];
    scale_[1] *= s.scale_[1];
    return *this;
  }

  // transform this scale with an axis_transform
  anisotropic_scale_factor& transform(axis_transformation atr) {
    direction_2d dirs[2];
    atr.get_directions(dirs[0], dirs[1]);
    scale_factor_type tmp[2] = {scale_[0], scale_[1]};
    for (int i = 0; i < 2; ++i) {
      scale_[orientation_2d(dirs[i]).to_int()] = tmp[i];
    }
    return *this;
  }

  // scale the two coordinates
  template <typename coordinate_type>
  void scale(coordinate_type& x, coordinate_type& y) const {
    x = scaling_policy<coordinate_type>::round(
        (scale_factor_type)x * get(HORIZONTAL));
    y = scaling_policy<coordinate_type>::round(
        (scale_factor_type)y * get(HORIZONTAL));
  }

  // invert this scale factor to give the reverse scale factor
  anisotropic_scale_factor& invert() {
    x(1/x());
    y(1/y());
    return *this;
  }

 private:
  scale_factor_type scale_[2];
};

// Transformation object, stores and provides services for transformations.
// Consits of axis transformation, scale factor and translation.
// The tranlation is the position of the origin of the new coordinate system of
// in the old system. Coordinates are scaled before they are transformed.
template <typename coordinate_type>
class transformation {
 public:
  transformation() : atr_(), p_(0, 0) {}
  explicit transformation(axis_transformation atr) : atr_(atr), p_(0, 0) {}
  explicit transformation(axis_transformation::ATR atr) : atr_(atr), p_(0, 0) {}
  transformation(const transformation& tr) : atr_(tr.atr_), p_(tr.p_) {}

  template <typename point_type>
  explicit transformation(const point_type& p) : atr_(), p_(0, 0) {
    set_translation(p);
  }

  template <typename point_type>
  transformation(axis_transformation atr,
                 const point_type& p) : atr_(atr), p_(0, 0) {
    set_translation(p);
  }

  template <typename point_type>
  transformation(axis_transformation atr,
                 const point_type& referencePt,
                 const point_type& destinationPt) : atr_(), p_(0, 0) {
    transformation<coordinate_type> tmp(referencePt);
    transformation<coordinate_type> rotRef(atr);
    transformation<coordinate_type> tmpInverse = tmp.inverse();
    point_type decon(referencePt);
    deconvolve(decon, destinationPt);
    transformation<coordinate_type> displacement(decon);
    tmp += rotRef;
    tmp += tmpInverse;
    tmp += displacement;
    (*this) = tmp;
  }

  // equivalence operator
  bool operator==(const transformation& tr) const {
    return (atr_ == tr.atr_) && (p_ == tr.p_);
  }

  // inequivalence operator
  bool operator!=(const transformation& tr) const {
    return !(*this == tr);
  }

  // ordering
  bool operator<(const transformation& tr) const {
    return (atr_ < tr.atr_) || ((atr_ == tr.atr_) && (p_ < tr.p_));
  }

  // concatenation operator
  transformation operator+(const transformation& tr) const {
    transformation<coordinate_type> retval(*this);
    return retval+=tr;
  }

  // concatenate this with that
  const transformation& operator+=(const transformation& tr) {
    coordinate_type x, y;
    transformation<coordinate_type> inv = inverse();
    inv.transform(x, y);
    p_.set(HORIZONTAL, p_.get(HORIZONTAL) + x);
    p_.set(VERTICAL, p_.get(VERTICAL) + y);
    // concatenate axis transforms
    atr_ += tr.atr_;
    return *this;
  }

  // get the axis_transformation portion of this
  axis_transformation get_axis_transformation() const {
    return atr_;
  }

  // set the axis_transformation portion of this
  void set_axis_transformation(const axis_transformation& atr) {
    atr_ = atr;
  }

  // get the translation
  template <typename point_type>
  void get_translation(point_type& p) const {
    assign(p, p_);
  }

  // set the translation
  template <typename point_type>
  void set_translation(const point_type& p) {
    assign(p_, p);
  }

  // apply the 2D portion of this transformation to the two coordinates given
  void transform(coordinate_type& x, coordinate_type& y) const {
    y -= p_.get(VERTICAL);
    x -= p_.get(HORIZONTAL);
    atr_.transform(x, y);
  }

  // invert this transformation
  transformation& invert() {
    coordinate_type x = p_.get(HORIZONTAL), y = p_.get(VERTICAL);
    atr_.transform(x, y);
    x *= -1;
    y *= -1;
    p_ = point_data<coordinate_type>(x, y);
    atr_.invert();
    return *this;
  }

  // get the inverse of this transformation
  transformation inverse() const {
    transformation<coordinate_type> ret_val(*this);
    return ret_val.invert();
  }

  void get_directions(direction_2d& horizontal_dir,
                      direction_2d& vertical_dir) const {
    return atr_.get_directions(horizontal_dir, vertical_dir);
  }

 private:
  axis_transformation atr_;
  point_data<coordinate_type> p_;
};
}  // polygon
}  // boost

#endif  // BOOST_POLYGON_TRANSFORM_HPP