/usr/include/boost/polygon/transform.hpp is in libboost1.54-dev 1.54.0-4ubuntu3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 | // Boost.Polygon library point_data.hpp header file
// Copyright (c) Intel Corporation 2008.
// Copyright (c) 2008-2012 Simonson Lucanus.
// Copyright (c) 2012-2012 Andrii Sydorchuk.
// See http://www.boost.org for updates, documentation, and revision history.
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_POLYGON_TRANSFORM_HPP
#define BOOST_POLYGON_TRANSFORM_HPP
#include "isotropy.hpp"
namespace boost {
namespace polygon {
// Transformation of Coordinate System.
// Enum meaning:
// Select which direction_2d to change the positive direction of each
// axis in the old coordinate system to map it to the new coordiante system.
// The first direction_2d listed for each enum is the direction to map the
// positive horizontal direction to.
// The second direction_2d listed for each enum is the direction to map the
// positive vertical direction to.
// The zero position bit (LSB) indicates whether the horizontal axis flips
// when transformed.
// The 1st postion bit indicates whether the vertical axis flips when
// transformed.
// The 2nd position bit indicates whether the horizontal and vertical axis
// swap positions when transformed.
// Enum Values:
// 000 EAST NORTH
// 001 WEST NORTH
// 010 EAST SOUTH
// 011 WEST SOUTH
// 100 NORTH EAST
// 101 SOUTH EAST
// 110 NORTH WEST
// 111 SOUTH WEST
class axis_transformation {
public:
enum ATR {
NULL_TRANSFORM = 0,
BEGIN_TRANSFORM = 0,
EN = 0, EAST_NORTH = 0,
WN = 1, WEST_NORTH = 1, FLIP_X = 1,
ES = 2, EAST_SOUTH = 2, FLIP_Y = 2,
WS = 3, WEST_SOUTH = 3, FLIP_XY = 3,
NE = 4, NORTH_EAST = 4, SWAP_XY = 4,
SE = 5, SOUTH_EAST = 5, ROTATE_LEFT = 5,
NW = 6, NORTH_WEST = 6, ROTATE_RIGHT = 6,
SW = 7, SOUTH_WEST = 7, FLIP_SWAP_XY = 7,
END_TRANSFORM = 7
};
// Individual axis enum values indicate which axis an implicit individual
// axis will be mapped to.
// The value of the enum paired with an axis provides the information
// about what the axis will transform to.
// Three individual axis values, one for each axis, are equivalent to one
// ATR enum value, but easier to work with because they are independent.
// Converting to and from the individual axis values from the ATR value
// is a convenient way to implement tranformation related functionality.
// Enum meanings:
// PX: map to positive x axis
// NX: map to negative x axis
// PY: map to positive y axis
// NY: map to negative y axis
enum INDIVIDUAL_AXIS {
PX = 0,
NX = 1,
PY = 2,
NY = 3
};
axis_transformation() : atr_(NULL_TRANSFORM) {}
explicit axis_transformation(ATR atr) : atr_(atr) {}
axis_transformation(const axis_transformation& atr) : atr_(atr.atr_) {}
explicit axis_transformation(const orientation_2d& orient) {
const ATR tmp[2] = {
NORTH_EAST, // sort x, then y
EAST_NORTH // sort y, then x
};
atr_ = tmp[orient.to_int()];
}
explicit axis_transformation(const direction_2d& dir) {
const ATR tmp[4] = {
SOUTH_EAST, // sort x, then y
NORTH_EAST, // sort x, then y
EAST_SOUTH, // sort y, then x
EAST_NORTH // sort y, then x
};
atr_ = tmp[dir.to_int()];
}
// assignment operator
axis_transformation& operator=(const axis_transformation& a) {
atr_ = a.atr_;
return *this;
}
// assignment operator
axis_transformation& operator=(const ATR& atr) {
atr_ = atr;
return *this;
}
// equivalence operator
bool operator==(const axis_transformation& a) const {
return atr_ == a.atr_;
}
// inequivalence operator
bool operator!=(const axis_transformation& a) const {
return !(*this == a);
}
// ordering
bool operator<(const axis_transformation& a) const {
return atr_ < a.atr_;
}
// concatenate this with that
axis_transformation& operator+=(const axis_transformation& a) {
bool abit2 = (a.atr_ & 4) != 0;
bool abit1 = (a.atr_ & 2) != 0;
bool abit0 = (a.atr_ & 1) != 0;
bool bit2 = (atr_ & 4) != 0;
bool bit1 = (atr_ & 2) != 0;
bool bit0 = (atr_ & 1) != 0;
int indexes[2][2] = {
{ (int)bit2, (int)(!bit2) },
{ (int)abit2, (int)(!abit2) }
};
int zero_bits[2][2] = {
{bit0, bit1}, {abit0, abit1}
};
int nbit1 = zero_bits[0][1] ^ zero_bits[1][indexes[0][1]];
int nbit0 = zero_bits[0][0] ^ zero_bits[1][indexes[0][0]];
indexes[0][0] = indexes[1][indexes[0][0]];
indexes[0][1] = indexes[1][indexes[0][1]];
int nbit2 = indexes[0][0] & 1; // swap xy
atr_ = (ATR)((nbit2 << 2) + (nbit1 << 1) + nbit0);
return *this;
}
// concatenation operator
axis_transformation operator+(const axis_transformation& a) const {
axis_transformation retval(*this);
return retval+=a;
}
// populate_axis_array writes the three INDIVIDUAL_AXIS values that the
// ATR enum value of 'this' represent into axis_array
void populate_axis_array(INDIVIDUAL_AXIS axis_array[]) const {
bool bit2 = (atr_ & 4) != 0;
bool bit1 = (atr_ & 2) != 0;
bool bit0 = (atr_ & 1) != 0;
axis_array[1] = (INDIVIDUAL_AXIS)(((int)(!bit2) << 1) + bit1);
axis_array[0] = (INDIVIDUAL_AXIS)(((int)(bit2) << 1) + bit0);
}
// it is recommended that the directions stored in an array
// in the caller code for easier isotropic access by orientation value
void get_directions(direction_2d& horizontal_dir,
direction_2d& vertical_dir) const {
bool bit2 = (atr_ & 4) != 0;
bool bit1 = (atr_ & 2) != 0;
bool bit0 = (atr_ & 1) != 0;
vertical_dir = direction_2d((direction_2d_enum)(((int)(!bit2) << 1) + !bit1));
horizontal_dir = direction_2d((direction_2d_enum)(((int)(bit2) << 1) + !bit0));
}
// combine_axis_arrays concatenates this_array and that_array overwriting
// the result into this_array
static void combine_axis_arrays(INDIVIDUAL_AXIS this_array[],
const INDIVIDUAL_AXIS that_array[]) {
int indexes[2] = { this_array[0] >> 1, this_array[1] >> 1 };
int zero_bits[2][2] = {
{ this_array[0] & 1, this_array[1] & 1 },
{ that_array[0] & 1, that_array[1] & 1 }
};
this_array[0] = (INDIVIDUAL_AXIS)((int)this_array[0] |
((int)zero_bits[0][0] ^
(int)zero_bits[1][indexes[0]]));
this_array[1] = (INDIVIDUAL_AXIS)((int)this_array[1] |
((int)zero_bits[0][1] ^
(int)zero_bits[1][indexes[1]]));
}
// write_back_axis_array converts an array of three INDIVIDUAL_AXIS values
// to the ATR enum value and sets 'this' to that value
void write_back_axis_array(const INDIVIDUAL_AXIS this_array[]) {
int bit2 = ((int)this_array[0] & 2) != 0; // swap xy
int bit1 = ((int)this_array[1] & 1);
int bit0 = ((int)this_array[0] & 1);
atr_ = ATR((bit2 << 2) + (bit1 << 1) + bit0);
}
// behavior is deterministic but undefined in the case where illegal
// combinations of directions are passed in.
axis_transformation& set_directions(const direction_2d& horizontal_dir,
const direction_2d& vertical_dir) {
int bit2 = (static_cast<orientation_2d>(horizontal_dir).to_int()) != 0;
int bit1 = !(vertical_dir.to_int() & 1);
int bit0 = !(horizontal_dir.to_int() & 1);
atr_ = ATR((bit2 << 2) + (bit1 << 1) + bit0);
return *this;
}
// transform the three coordinates by reference
template <typename coordinate_type>
void transform(coordinate_type& x, coordinate_type& y) const {
int bit2 = (atr_ & 4) != 0;
int bit1 = (atr_ & 2) != 0;
int bit0 = (atr_ & 1) != 0;
x *= -((bit0 << 1) - 1);
y *= -((bit1 << 1) - 1);
predicated_swap(bit2 != 0, x, y);
}
// invert this axis_transformation
axis_transformation& invert() {
int bit2 = ((atr_ & 4) != 0);
int bit1 = ((atr_ & 2) != 0);
int bit0 = ((atr_ & 1) != 0);
// swap bit 0 and bit 1 if bit2 is 1
predicated_swap(bit2 != 0, bit0, bit1);
bit1 = bit1 << 1;
atr_ = (ATR)(atr_ & (32+16+8+4)); // mask away bit0 and bit1
atr_ = (ATR)(atr_ | bit0 | bit1);
return *this;
}
// get the inverse axis_transformation of this
axis_transformation inverse() const {
axis_transformation retval(*this);
return retval.invert();
}
private:
ATR atr_;
};
// Scaling object to be used to store the scale factor for each axis.
// For use by the transformation object, in that context the scale factor
// is the amount that each axis scales by when transformed.
template <typename scale_factor_type>
class anisotropic_scale_factor {
public:
anisotropic_scale_factor() {
scale_[0] = 1;
scale_[1] = 1;
}
anisotropic_scale_factor(scale_factor_type xscale,
scale_factor_type yscale) {
scale_[0] = xscale;
scale_[1] = yscale;
}
// get a component of the anisotropic_scale_factor by orientation
scale_factor_type get(orientation_2d orient) const {
return scale_[orient.to_int()];
}
// set a component of the anisotropic_scale_factor by orientation
void set(orientation_2d orient, scale_factor_type value) {
scale_[orient.to_int()] = value;
}
scale_factor_type x() const {
return scale_[HORIZONTAL];
}
scale_factor_type y() const {
return scale_[VERTICAL];
}
void x(scale_factor_type value) {
scale_[HORIZONTAL] = value;
}
void y(scale_factor_type value) {
scale_[VERTICAL] = value;
}
// concatination operator (convolve scale factors)
anisotropic_scale_factor operator+(const anisotropic_scale_factor& s) const {
anisotropic_scale_factor<scale_factor_type> retval(*this);
return retval += s;
}
// concatinate this with that
const anisotropic_scale_factor& operator+=(
const anisotropic_scale_factor& s) {
scale_[0] *= s.scale_[0];
scale_[1] *= s.scale_[1];
return *this;
}
// transform this scale with an axis_transform
anisotropic_scale_factor& transform(axis_transformation atr) {
direction_2d dirs[2];
atr.get_directions(dirs[0], dirs[1]);
scale_factor_type tmp[2] = {scale_[0], scale_[1]};
for (int i = 0; i < 2; ++i) {
scale_[orientation_2d(dirs[i]).to_int()] = tmp[i];
}
return *this;
}
// scale the two coordinates
template <typename coordinate_type>
void scale(coordinate_type& x, coordinate_type& y) const {
x = scaling_policy<coordinate_type>::round(
(scale_factor_type)x * get(HORIZONTAL));
y = scaling_policy<coordinate_type>::round(
(scale_factor_type)y * get(HORIZONTAL));
}
// invert this scale factor to give the reverse scale factor
anisotropic_scale_factor& invert() {
x(1/x());
y(1/y());
return *this;
}
private:
scale_factor_type scale_[2];
};
// Transformation object, stores and provides services for transformations.
// Consits of axis transformation, scale factor and translation.
// The tranlation is the position of the origin of the new coordinate system of
// in the old system. Coordinates are scaled before they are transformed.
template <typename coordinate_type>
class transformation {
public:
transformation() : atr_(), p_(0, 0) {}
explicit transformation(axis_transformation atr) : atr_(atr), p_(0, 0) {}
explicit transformation(axis_transformation::ATR atr) : atr_(atr), p_(0, 0) {}
transformation(const transformation& tr) : atr_(tr.atr_), p_(tr.p_) {}
template <typename point_type>
explicit transformation(const point_type& p) : atr_(), p_(0, 0) {
set_translation(p);
}
template <typename point_type>
transformation(axis_transformation atr,
const point_type& p) : atr_(atr), p_(0, 0) {
set_translation(p);
}
template <typename point_type>
transformation(axis_transformation atr,
const point_type& referencePt,
const point_type& destinationPt) : atr_(), p_(0, 0) {
transformation<coordinate_type> tmp(referencePt);
transformation<coordinate_type> rotRef(atr);
transformation<coordinate_type> tmpInverse = tmp.inverse();
point_type decon(referencePt);
deconvolve(decon, destinationPt);
transformation<coordinate_type> displacement(decon);
tmp += rotRef;
tmp += tmpInverse;
tmp += displacement;
(*this) = tmp;
}
// equivalence operator
bool operator==(const transformation& tr) const {
return (atr_ == tr.atr_) && (p_ == tr.p_);
}
// inequivalence operator
bool operator!=(const transformation& tr) const {
return !(*this == tr);
}
// ordering
bool operator<(const transformation& tr) const {
return (atr_ < tr.atr_) || ((atr_ == tr.atr_) && (p_ < tr.p_));
}
// concatenation operator
transformation operator+(const transformation& tr) const {
transformation<coordinate_type> retval(*this);
return retval+=tr;
}
// concatenate this with that
const transformation& operator+=(const transformation& tr) {
coordinate_type x, y;
transformation<coordinate_type> inv = inverse();
inv.transform(x, y);
p_.set(HORIZONTAL, p_.get(HORIZONTAL) + x);
p_.set(VERTICAL, p_.get(VERTICAL) + y);
// concatenate axis transforms
atr_ += tr.atr_;
return *this;
}
// get the axis_transformation portion of this
axis_transformation get_axis_transformation() const {
return atr_;
}
// set the axis_transformation portion of this
void set_axis_transformation(const axis_transformation& atr) {
atr_ = atr;
}
// get the translation
template <typename point_type>
void get_translation(point_type& p) const {
assign(p, p_);
}
// set the translation
template <typename point_type>
void set_translation(const point_type& p) {
assign(p_, p);
}
// apply the 2D portion of this transformation to the two coordinates given
void transform(coordinate_type& x, coordinate_type& y) const {
y -= p_.get(VERTICAL);
x -= p_.get(HORIZONTAL);
atr_.transform(x, y);
}
// invert this transformation
transformation& invert() {
coordinate_type x = p_.get(HORIZONTAL), y = p_.get(VERTICAL);
atr_.transform(x, y);
x *= -1;
y *= -1;
p_ = point_data<coordinate_type>(x, y);
atr_.invert();
return *this;
}
// get the inverse of this transformation
transformation inverse() const {
transformation<coordinate_type> ret_val(*this);
return ret_val.invert();
}
void get_directions(direction_2d& horizontal_dir,
direction_2d& vertical_dir) const {
return atr_.get_directions(horizontal_dir, vertical_dir);
}
private:
axis_transformation atr_;
point_data<coordinate_type> p_;
};
} // polygon
} // boost
#endif // BOOST_POLYGON_TRANSFORM_HPP
|