This file is indexed.

/usr/include/boost/units/static_rational.hpp is in libboost1.54-dev 1.54.0-4ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
// Boost.Units - A C++ library for zero-overhead dimensional analysis and 
// unit/quantity manipulation and conversion
//
// Copyright (C) 2003-2008 Matthias Christian Schabel
// Copyright (C) 2008 Steven Watanabe
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_UNITS_STATIC_RATIONAL_HPP 
#define BOOST_UNITS_STATIC_RATIONAL_HPP

#include <boost/math/common_factor_ct.hpp>
#include <boost/mpl/less.hpp>
#include <boost/mpl/arithmetic.hpp>

#ifdef __BORLANDC__
#include <boost/mpl/eval_if.hpp>
#include <boost/mpl/integral_c.hpp>
#include <boost/mpl/identity.hpp>
#endif

#include <boost/units/config.hpp>
#include <boost/units/operators.hpp>

/// \file 
/// \brief Compile-time rational numbers and operators.

namespace boost {

namespace units { 

namespace detail {

struct static_rational_tag {};

}

typedef long   integer_type;

/// Compile time absolute value.
template<integer_type Value>
struct static_abs
{
    BOOST_STATIC_CONSTANT(integer_type,value = Value < 0 ? -Value : Value);
};

// Compile time rational number.
/** 
This is an implementation of a compile time rational number, where @c static_rational<N,D> represents
a rational number with numerator @c N and denominator @c D. Because of the potential for ambiguity arising 
from multiple equivalent values of @c static_rational (e.g. @c static_rational<6,2>==static_rational<3>), 
static rationals should always be accessed through @c static_rational<N,D>::type. Template specialization 
prevents instantiation of zero denominators (i.e. @c static_rational<N,0>). The following compile-time 
arithmetic operators are provided for static_rational variables only (no operators are defined between 
long and static_rational):
    - @c mpl::negate
    - @c mpl::plus
    - @c mpl::minus
    - @c mpl::times
    - @c mpl::divides

Neither @c static_power nor @c static_root are defined for @c static_rational. This is because template types 
may not be floating point values, while powers and roots of rational numbers can produce floating point 
values. 
*/
#ifdef __BORLANDC__

template<integer_type X>
struct make_integral_c {
    typedef boost::mpl::integral_c<integer_type, X> type;
};

template<integer_type N,integer_type D = 1>
class static_rational
{
    public:

        typedef static_rational this_type;

        typedef boost::mpl::integral_c<integer_type, N> N_type;
        typedef boost::mpl::integral_c<integer_type, D> D_type;

        typedef typename make_integral_c<
            (::boost::math::static_gcd<
                ::boost::units::static_abs<N>::value,
                ::boost::units::static_abs<D>::value
            >::value)>::type gcd_type;
        typedef typename boost::mpl::eval_if<
            boost::mpl::less<
                D_type,
                boost::mpl::integral_c<integer_type, 0>
            >,
            boost::mpl::negate<gcd_type>,
            gcd_type
        >::type den_type;
        
    public: 
        // for mpl arithmetic support
        typedef detail::static_rational_tag tag;
        
        BOOST_STATIC_CONSTANT(integer_type, Numerator =
            (::boost::mpl::divides<N_type, den_type>::value));
        BOOST_STATIC_CONSTANT(integer_type, Denominator =
            (::boost::mpl::divides<D_type, den_type>::value));
        
        /// INTERNAL ONLY
        typedef static_rational<N,D>    this_type;
        
        /// static_rational<N,D> reduced by GCD
        typedef static_rational<
            (::boost::mpl::divides<N_type, den_type>::value),
            (::boost::mpl::divides<D_type, den_type>::value)
        >  type;
                                 
        static integer_type numerator()      { return Numerator; }
        static integer_type denominator()    { return Denominator; }
        
        // INTERNAL ONLY
        static_rational() { }
        //~static_rational() { }
};
#else
template<integer_type N,integer_type D = 1>
class static_rational
{
    private:

        static const integer_type   nabs = static_abs<N>::value,
                                    dabs = static_abs<D>::value;
        
        /// greatest common divisor of N and D
        // need cast to signed because static_gcd returns unsigned long
        static const integer_type   den = 
            static_cast<integer_type>(boost::math::static_gcd<nabs,dabs>::value) * ((D < 0) ? -1 : 1);
        
    public: 
        // for mpl arithmetic support
        typedef detail::static_rational_tag tag;
        
        static const integer_type   Numerator = N/den,
            Denominator = D/den;
        
        /// INTERNAL ONLY
        typedef static_rational<N,D>    this_type;
        
        /// static_rational<N,D> reduced by GCD
        typedef static_rational<Numerator,Denominator>  type;
                                 
        static integer_type numerator()      { return Numerator; }
        static integer_type denominator()    { return Denominator; }
        
        // INTERNAL ONLY
        static_rational() { }
        //~static_rational() { }   
};
#endif

}

}

#if BOOST_UNITS_HAS_BOOST_TYPEOF

#include BOOST_TYPEOF_INCREMENT_REGISTRATION_GROUP()

BOOST_TYPEOF_REGISTER_TEMPLATE(boost::units::static_rational, (long)(long))

#endif

namespace boost {

namespace units {

// prohibit zero denominator
template<integer_type N> class static_rational<N,0>;

/// get decimal value of @c static_rational
template<class T,integer_type N,integer_type D>
inline typename divide_typeof_helper<T,T>::type 
value(const static_rational<N,D>&)
{
    return T(N)/T(D);
}

} // namespace units

#ifndef BOOST_UNITS_DOXYGEN

namespace mpl {

#ifdef __BORLANDC__

template<>
struct plus_impl<boost::units::detail::static_rational_tag, boost::units::detail::static_rational_tag>
{
    template<class T0, class T1>
    struct apply {
        typedef typename boost::units::static_rational<
            ::boost::mpl::plus<
                boost::mpl::times<typename T0::N_type, typename T1::D_type>,
                boost::mpl::times<typename T1::N_type, typename T0::D_type>
            >::value,
            ::boost::mpl::times<typename T0::D_type, typename T1::D_type>::value
        >::type type;
    };
};

template<>
struct minus_impl<boost::units::detail::static_rational_tag, boost::units::detail::static_rational_tag>
{
    template<class T0, class T1>
    struct apply {
        typedef typename boost::units::static_rational<
            ::boost::mpl::minus<
                boost::mpl::times<typename T0::N_type, typename T1::D_type>,
                boost::mpl::times<typename T1::N_type, typename T0::D_type>
            >::value,
            ::boost::mpl::times<typename T0::D_type, typename T1::D_type>::value
        >::type type;
    };
};

template<>
struct times_impl<boost::units::detail::static_rational_tag, boost::units::detail::static_rational_tag>
{
    template<class T0, class T1>
    struct apply {
        typedef typename boost::units::static_rational<
            ::boost::mpl::times<typename T0::N_type, typename T1::N_type>::value,
            ::boost::mpl::times<typename T0::D_type, typename T1::D_type>::value
        >::type type;
    };
};

template<>
struct divides_impl<boost::units::detail::static_rational_tag, boost::units::detail::static_rational_tag>
{
    template<class T0, class T1>
    struct apply {
        typedef typename boost::units::static_rational<
            ::boost::mpl::times<typename T0::N_type, typename T1::D_type>::value,
            ::boost::mpl::times<typename T0::D_type, typename T1::N_type>::value
        >::type type;
    };
};

template<>
struct negate_impl<boost::units::detail::static_rational_tag>
{
    template<class T0>
    struct apply {
        typedef typename boost::units::static_rational<
            ::boost::mpl::negate<typename T0::N_type>::value,
            ::boost::mpl::identity<T0>::type::Denominator
        >::type type;
    };
};

template<>
struct less_impl<boost::units::detail::static_rational_tag, boost::units::detail::static_rational_tag>
{
    template<class T0, class T1>
    struct apply
    {
        typedef mpl::bool_<((mpl::minus<T0, T1>::type::Numerator) < 0)> type;
    };
};

#else

template<>
struct plus_impl<boost::units::detail::static_rational_tag, boost::units::detail::static_rational_tag>
{
    template<class T0, class T1>
    struct apply {
        typedef typename boost::units::static_rational<
            T0::Numerator*T1::Denominator+T1::Numerator*T0::Denominator,
            T0::Denominator*T1::Denominator
        >::type type;
    };
};

template<>
struct minus_impl<boost::units::detail::static_rational_tag, boost::units::detail::static_rational_tag>
{
    template<class T0, class T1>
    struct apply {
        typedef typename boost::units::static_rational<
            T0::Numerator*T1::Denominator-T1::Numerator*T0::Denominator,
            T0::Denominator*T1::Denominator
        >::type type;
    };
};

template<>
struct times_impl<boost::units::detail::static_rational_tag, boost::units::detail::static_rational_tag>
{
    template<class T0, class T1>
    struct apply {
        typedef typename boost::units::static_rational<
            T0::Numerator*T1::Numerator,
            T0::Denominator*T1::Denominator
        >::type type;
    };
};

template<>
struct divides_impl<boost::units::detail::static_rational_tag, boost::units::detail::static_rational_tag>
{
    template<class T0, class T1>
    struct apply {
        typedef typename boost::units::static_rational<
            T0::Numerator*T1::Denominator,
            T0::Denominator*T1::Numerator
        >::type type;
    };
};

template<>
struct negate_impl<boost::units::detail::static_rational_tag>
{
    template<class T0>
    struct apply {
        typedef typename boost::units::static_rational<-T0::Numerator,T0::Denominator>::type type;
    };
};

template<>
struct less_impl<boost::units::detail::static_rational_tag, boost::units::detail::static_rational_tag>
{
    template<class T0, class T1>
    struct apply
    {
        typedef mpl::bool_<((mpl::minus<T0, T1>::type::Numerator) < 0)> type;
    };
};

#endif


}

#endif

} // namespace boost

#endif // BOOST_UNITS_STATIC_RATIONAL_HPP