/usr/include/OpenEXR/ImathFrame.h is in libilmbase-dev 1.0.1-6ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 | ///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
// Digital Ltd. LLC
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Industrial Light & Magic nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
///////////////////////////////////////////////////////////////////////////
#ifndef INCLUDED_IMATHFRAME_H
#define INCLUDED_IMATHFRAME_H
namespace Imath {
template<class T> class Vec3;
template<class T> class Matrix44;
//
// These methods compute a set of reference frames, defined by their
// transformation matrix, along a curve. It is designed so that the
// array of points and the array of matrices used to fetch these routines
// don't need to be ordered as the curve.
//
// A typical usage would be :
//
// m[0] = Imath::firstFrame( p[0], p[1], p[2] );
// for( int i = 1; i < n - 1; i++ )
// {
// m[i] = Imath::nextFrame( m[i-1], p[i-1], p[i], t[i-1], t[i] );
// }
// m[n-1] = Imath::lastFrame( m[n-2], p[n-2], p[n-1] );
//
// See Graphics Gems I for the underlying algorithm.
//
template<class T> Matrix44<T> firstFrame( const Vec3<T>&, // First point
const Vec3<T>&, // Second point
const Vec3<T>& ); // Third point
template<class T> Matrix44<T> nextFrame( const Matrix44<T>&, // Previous matrix
const Vec3<T>&, // Previous point
const Vec3<T>&, // Current point
Vec3<T>&, // Previous tangent
Vec3<T>& ); // Current tangent
template<class T> Matrix44<T> lastFrame( const Matrix44<T>&, // Previous matrix
const Vec3<T>&, // Previous point
const Vec3<T>& ); // Last point
//
// firstFrame - Compute the first reference frame along a curve.
//
// This function returns the transformation matrix to the reference frame
// defined by the three points 'pi', 'pj' and 'pk'. Note that if the two
// vectors <pi,pj> and <pi,pk> are colinears, an arbitrary twist value will
// be choosen.
//
// Throw 'NullVecExc' if 'pi' and 'pj' are equals.
//
template<class T> Matrix44<T> firstFrame
(
const Vec3<T>& pi, // First point
const Vec3<T>& pj, // Second point
const Vec3<T>& pk ) // Third point
{
Vec3<T> t = pj - pi; t.normalizeExc();
Vec3<T> n = t.cross( pk - pi ); n.normalize();
if( n.length() == 0.0f )
{
int i = fabs( t[0] ) < fabs( t[1] ) ? 0 : 1;
if( fabs( t[2] ) < fabs( t[i] )) i = 2;
Vec3<T> v( 0.0, 0.0, 0.0 ); v[i] = 1.0;
n = t.cross( v ); n.normalize();
}
Vec3<T> b = t.cross( n );
Matrix44<T> M;
M[0][0] = t[0]; M[0][1] = t[1]; M[0][2] = t[2]; M[0][3] = 0.0,
M[1][0] = n[0]; M[1][1] = n[1]; M[1][2] = n[2]; M[1][3] = 0.0,
M[2][0] = b[0]; M[2][1] = b[1]; M[2][2] = b[2]; M[2][3] = 0.0,
M[3][0] = pi[0]; M[3][1] = pi[1]; M[3][2] = pi[2]; M[3][3] = 1.0;
return M;
}
//
// nextFrame - Compute the next reference frame along a curve.
//
// This function returns the transformation matrix to the next reference
// frame defined by the previously computed transformation matrix and the
// new point and tangent vector along the curve.
//
template<class T> Matrix44<T> nextFrame
(
const Matrix44<T>& Mi, // Previous matrix
const Vec3<T>& pi, // Previous point
const Vec3<T>& pj, // Current point
Vec3<T>& ti, // Previous tangent vector
Vec3<T>& tj ) // Current tangent vector
{
Vec3<T> a(0.0, 0.0, 0.0); // Rotation axis.
T r = 0.0; // Rotation angle.
if( ti.length() != 0.0 && tj.length() != 0.0 )
{
ti.normalize(); tj.normalize();
T dot = ti.dot( tj );
//
// This is *really* necessary :
//
if( dot > 1.0 ) dot = 1.0;
else if( dot < -1.0 ) dot = -1.0;
r = acosf( dot );
a = ti.cross( tj );
}
if( a.length() != 0.0 && r != 0.0 )
{
Matrix44<T> R; R.setAxisAngle( a, r );
Matrix44<T> Tj; Tj.translate( pj );
Matrix44<T> Ti; Ti.translate( -pi );
return Mi * Ti * R * Tj;
}
else
{
Matrix44<T> Tr; Tr.translate( pj - pi );
return Mi * Tr;
}
}
//
// lastFrame - Compute the last reference frame along a curve.
//
// This function returns the transformation matrix to the last reference
// frame defined by the previously computed transformation matrix and the
// last point along the curve.
//
template<class T> Matrix44<T> lastFrame
(
const Matrix44<T>& Mi, // Previous matrix
const Vec3<T>& pi, // Previous point
const Vec3<T>& pj ) // Last point
{
Matrix44<T> Tr; Tr.translate( pj - pi );
return Mi * Tr;
}
} // namespace Imath
#endif
|