/usr/lib/python2.7/sets.py is in libpython2.7-stdlib 2.7.6-8.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 | """Classes to represent arbitrary sets (including sets of sets).
This module implements sets using dictionaries whose values are
ignored. The usual operations (union, intersection, deletion, etc.)
are provided as both methods and operators.
Important: sets are not sequences! While they support 'x in s',
'len(s)', and 'for x in s', none of those operations are unique for
sequences; for example, mappings support all three as well. The
characteristic operation for sequences is subscripting with small
integers: s[i], for i in range(len(s)). Sets don't support
subscripting at all. Also, sequences allow multiple occurrences and
their elements have a definite order; sets on the other hand don't
record multiple occurrences and don't remember the order of element
insertion (which is why they don't support s[i]).
The following classes are provided:
BaseSet -- All the operations common to both mutable and immutable
sets. This is an abstract class, not meant to be directly
instantiated.
Set -- Mutable sets, subclass of BaseSet; not hashable.
ImmutableSet -- Immutable sets, subclass of BaseSet; hashable.
An iterable argument is mandatory to create an ImmutableSet.
_TemporarilyImmutableSet -- A wrapper around a Set, hashable,
giving the same hash value as the immutable set equivalent
would have. Do not use this class directly.
Only hashable objects can be added to a Set. In particular, you cannot
really add a Set as an element to another Set; if you try, what is
actually added is an ImmutableSet built from it (it compares equal to
the one you tried adding).
When you ask if `x in y' where x is a Set and y is a Set or
ImmutableSet, x is wrapped into a _TemporarilyImmutableSet z, and
what's tested is actually `z in y'.
"""
# Code history:
#
# - Greg V. Wilson wrote the first version, using a different approach
# to the mutable/immutable problem, and inheriting from dict.
#
# - Alex Martelli modified Greg's version to implement the current
# Set/ImmutableSet approach, and make the data an attribute.
#
# - Guido van Rossum rewrote much of the code, made some API changes,
# and cleaned up the docstrings.
#
# - Raymond Hettinger added a number of speedups and other
# improvements.
from itertools import ifilter, ifilterfalse
__all__ = ['BaseSet', 'Set', 'ImmutableSet']
import warnings
warnings.warn("the sets module is deprecated", DeprecationWarning,
stacklevel=2)
class BaseSet(object):
"""Common base class for mutable and immutable sets."""
__slots__ = ['_data']
# Constructor
def __init__(self):
"""This is an abstract class."""
# Don't call this from a concrete subclass!
if self.__class__ is BaseSet:
raise TypeError, ("BaseSet is an abstract class. "
"Use Set or ImmutableSet.")
# Standard protocols: __len__, __repr__, __str__, __iter__
def __len__(self):
"""Return the number of elements of a set."""
return len(self._data)
def __repr__(self):
"""Return string representation of a set.
This looks like 'Set([<list of elements>])'.
"""
return self._repr()
# __str__ is the same as __repr__
__str__ = __repr__
def _repr(self, sorted=False):
elements = self._data.keys()
if sorted:
elements.sort()
return '%s(%r)' % (self.__class__.__name__, elements)
def __iter__(self):
"""Return an iterator over the elements or a set.
This is the keys iterator for the underlying dict.
"""
return self._data.iterkeys()
# Three-way comparison is not supported. However, because __eq__ is
# tried before __cmp__, if Set x == Set y, x.__eq__(y) returns True and
# then cmp(x, y) returns 0 (Python doesn't actually call __cmp__ in this
# case).
def __cmp__(self, other):
raise TypeError, "can't compare sets using cmp()"
# Equality comparisons using the underlying dicts. Mixed-type comparisons
# are allowed here, where Set == z for non-Set z always returns False,
# and Set != z always True. This allows expressions like "x in y" to
# give the expected result when y is a sequence of mixed types, not
# raising a pointless TypeError just because y contains a Set, or x is
# a Set and y contain's a non-set ("in" invokes only __eq__).
# Subtle: it would be nicer if __eq__ and __ne__ could return
# NotImplemented instead of True or False. Then the other comparand
# would get a chance to determine the result, and if the other comparand
# also returned NotImplemented then it would fall back to object address
# comparison (which would always return False for __eq__ and always
# True for __ne__). However, that doesn't work, because this type
# *also* implements __cmp__: if, e.g., __eq__ returns NotImplemented,
# Python tries __cmp__ next, and the __cmp__ here then raises TypeError.
def __eq__(self, other):
if isinstance(other, BaseSet):
return self._data == other._data
else:
return False
def __ne__(self, other):
if isinstance(other, BaseSet):
return self._data != other._data
else:
return True
# Copying operations
def copy(self):
"""Return a shallow copy of a set."""
result = self.__class__()
result._data.update(self._data)
return result
__copy__ = copy # For the copy module
def __deepcopy__(self, memo):
"""Return a deep copy of a set; used by copy module."""
# This pre-creates the result and inserts it in the memo
# early, in case the deep copy recurses into another reference
# to this same set. A set can't be an element of itself, but
# it can certainly contain an object that has a reference to
# itself.
from copy import deepcopy
result = self.__class__()
memo[id(self)] = result
data = result._data
value = True
for elt in self:
data[deepcopy(elt, memo)] = value
return result
# Standard set operations: union, intersection, both differences.
# Each has an operator version (e.g. __or__, invoked with |) and a
# method version (e.g. union).
# Subtle: Each pair requires distinct code so that the outcome is
# correct when the type of other isn't suitable. For example, if
# we did "union = __or__" instead, then Set().union(3) would return
# NotImplemented instead of raising TypeError (albeit that *why* it
# raises TypeError as-is is also a bit subtle).
def __or__(self, other):
"""Return the union of two sets as a new set.
(I.e. all elements that are in either set.)
"""
if not isinstance(other, BaseSet):
return NotImplemented
return self.union(other)
def union(self, other):
"""Return the union of two sets as a new set.
(I.e. all elements that are in either set.)
"""
result = self.__class__(self)
result._update(other)
return result
def __and__(self, other):
"""Return the intersection of two sets as a new set.
(I.e. all elements that are in both sets.)
"""
if not isinstance(other, BaseSet):
return NotImplemented
return self.intersection(other)
def intersection(self, other):
"""Return the intersection of two sets as a new set.
(I.e. all elements that are in both sets.)
"""
if not isinstance(other, BaseSet):
other = Set(other)
if len(self) <= len(other):
little, big = self, other
else:
little, big = other, self
common = ifilter(big._data.__contains__, little)
return self.__class__(common)
def __xor__(self, other):
"""Return the symmetric difference of two sets as a new set.
(I.e. all elements that are in exactly one of the sets.)
"""
if not isinstance(other, BaseSet):
return NotImplemented
return self.symmetric_difference(other)
def symmetric_difference(self, other):
"""Return the symmetric difference of two sets as a new set.
(I.e. all elements that are in exactly one of the sets.)
"""
result = self.__class__()
data = result._data
value = True
selfdata = self._data
try:
otherdata = other._data
except AttributeError:
otherdata = Set(other)._data
for elt in ifilterfalse(otherdata.__contains__, selfdata):
data[elt] = value
for elt in ifilterfalse(selfdata.__contains__, otherdata):
data[elt] = value
return result
def __sub__(self, other):
"""Return the difference of two sets as a new Set.
(I.e. all elements that are in this set and not in the other.)
"""
if not isinstance(other, BaseSet):
return NotImplemented
return self.difference(other)
def difference(self, other):
"""Return the difference of two sets as a new Set.
(I.e. all elements that are in this set and not in the other.)
"""
result = self.__class__()
data = result._data
try:
otherdata = other._data
except AttributeError:
otherdata = Set(other)._data
value = True
for elt in ifilterfalse(otherdata.__contains__, self):
data[elt] = value
return result
# Membership test
def __contains__(self, element):
"""Report whether an element is a member of a set.
(Called in response to the expression `element in self'.)
"""
try:
return element in self._data
except TypeError:
transform = getattr(element, "__as_temporarily_immutable__", None)
if transform is None:
raise # re-raise the TypeError exception we caught
return transform() in self._data
# Subset and superset test
def issubset(self, other):
"""Report whether another set contains this set."""
self._binary_sanity_check(other)
if len(self) > len(other): # Fast check for obvious cases
return False
for elt in ifilterfalse(other._data.__contains__, self):
return False
return True
def issuperset(self, other):
"""Report whether this set contains another set."""
self._binary_sanity_check(other)
if len(self) < len(other): # Fast check for obvious cases
return False
for elt in ifilterfalse(self._data.__contains__, other):
return False
return True
# Inequality comparisons using the is-subset relation.
__le__ = issubset
__ge__ = issuperset
def __lt__(self, other):
self._binary_sanity_check(other)
return len(self) < len(other) and self.issubset(other)
def __gt__(self, other):
self._binary_sanity_check(other)
return len(self) > len(other) and self.issuperset(other)
# We inherit object.__hash__, so we must deny this explicitly
__hash__ = None
# Assorted helpers
def _binary_sanity_check(self, other):
# Check that the other argument to a binary operation is also
# a set, raising a TypeError otherwise.
if not isinstance(other, BaseSet):
raise TypeError, "Binary operation only permitted between sets"
def _compute_hash(self):
# Calculate hash code for a set by xor'ing the hash codes of
# the elements. This ensures that the hash code does not depend
# on the order in which elements are added to the set. This is
# not called __hash__ because a BaseSet should not be hashable;
# only an ImmutableSet is hashable.
result = 0
for elt in self:
result ^= hash(elt)
return result
def _update(self, iterable):
# The main loop for update() and the subclass __init__() methods.
data = self._data
# Use the fast update() method when a dictionary is available.
if isinstance(iterable, BaseSet):
data.update(iterable._data)
return
value = True
if type(iterable) in (list, tuple, xrange):
# Optimized: we know that __iter__() and next() can't
# raise TypeError, so we can move 'try:' out of the loop.
it = iter(iterable)
while True:
try:
for element in it:
data[element] = value
return
except TypeError:
transform = getattr(element, "__as_immutable__", None)
if transform is None:
raise # re-raise the TypeError exception we caught
data[transform()] = value
else:
# Safe: only catch TypeError where intended
for element in iterable:
try:
data[element] = value
except TypeError:
transform = getattr(element, "__as_immutable__", None)
if transform is None:
raise # re-raise the TypeError exception we caught
data[transform()] = value
class ImmutableSet(BaseSet):
"""Immutable set class."""
__slots__ = ['_hashcode']
# BaseSet + hashing
def __init__(self, iterable=None):
"""Construct an immutable set from an optional iterable."""
self._hashcode = None
self._data = {}
if iterable is not None:
self._update(iterable)
def __hash__(self):
if self._hashcode is None:
self._hashcode = self._compute_hash()
return self._hashcode
def __getstate__(self):
return self._data, self._hashcode
def __setstate__(self, state):
self._data, self._hashcode = state
class Set(BaseSet):
""" Mutable set class."""
__slots__ = []
# BaseSet + operations requiring mutability; no hashing
def __init__(self, iterable=None):
"""Construct a set from an optional iterable."""
self._data = {}
if iterable is not None:
self._update(iterable)
def __getstate__(self):
# getstate's results are ignored if it is not
return self._data,
def __setstate__(self, data):
self._data, = data
# In-place union, intersection, differences.
# Subtle: The xyz_update() functions deliberately return None,
# as do all mutating operations on built-in container types.
# The __xyz__ spellings have to return self, though.
def __ior__(self, other):
"""Update a set with the union of itself and another."""
self._binary_sanity_check(other)
self._data.update(other._data)
return self
def union_update(self, other):
"""Update a set with the union of itself and another."""
self._update(other)
def __iand__(self, other):
"""Update a set with the intersection of itself and another."""
self._binary_sanity_check(other)
self._data = (self & other)._data
return self
def intersection_update(self, other):
"""Update a set with the intersection of itself and another."""
if isinstance(other, BaseSet):
self &= other
else:
self._data = (self.intersection(other))._data
def __ixor__(self, other):
"""Update a set with the symmetric difference of itself and another."""
self._binary_sanity_check(other)
self.symmetric_difference_update(other)
return self
def symmetric_difference_update(self, other):
"""Update a set with the symmetric difference of itself and another."""
data = self._data
value = True
if not isinstance(other, BaseSet):
other = Set(other)
if self is other:
self.clear()
for elt in other:
if elt in data:
del data[elt]
else:
data[elt] = value
def __isub__(self, other):
"""Remove all elements of another set from this set."""
self._binary_sanity_check(other)
self.difference_update(other)
return self
def difference_update(self, other):
"""Remove all elements of another set from this set."""
data = self._data
if not isinstance(other, BaseSet):
other = Set(other)
if self is other:
self.clear()
for elt in ifilter(data.__contains__, other):
del data[elt]
# Python dict-like mass mutations: update, clear
def update(self, iterable):
"""Add all values from an iterable (such as a list or file)."""
self._update(iterable)
def clear(self):
"""Remove all elements from this set."""
self._data.clear()
# Single-element mutations: add, remove, discard
def add(self, element):
"""Add an element to a set.
This has no effect if the element is already present.
"""
try:
self._data[element] = True
except TypeError:
transform = getattr(element, "__as_immutable__", None)
if transform is None:
raise # re-raise the TypeError exception we caught
self._data[transform()] = True
def remove(self, element):
"""Remove an element from a set; it must be a member.
If the element is not a member, raise a KeyError.
"""
try:
del self._data[element]
except TypeError:
transform = getattr(element, "__as_temporarily_immutable__", None)
if transform is None:
raise # re-raise the TypeError exception we caught
del self._data[transform()]
def discard(self, element):
"""Remove an element from a set if it is a member.
If the element is not a member, do nothing.
"""
try:
self.remove(element)
except KeyError:
pass
def pop(self):
"""Remove and return an arbitrary set element."""
return self._data.popitem()[0]
def __as_immutable__(self):
# Return a copy of self as an immutable set
return ImmutableSet(self)
def __as_temporarily_immutable__(self):
# Return self wrapped in a temporarily immutable set
return _TemporarilyImmutableSet(self)
class _TemporarilyImmutableSet(BaseSet):
# Wrap a mutable set as if it was temporarily immutable.
# This only supplies hashing and equality comparisons.
def __init__(self, set):
self._set = set
self._data = set._data # Needed by ImmutableSet.__eq__()
def __hash__(self):
return self._set._compute_hash()
|