This file is indexed.

/usr/lib/ruby/1.9.1/bigdecimal/math.rb is in libruby1.9.1 1.9.3.484-2ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
require 'bigdecimal'

#
#--
# Contents:
#   sqrt(x, prec)
#   sin (x, prec)
#   cos (x, prec)
#   atan(x, prec)  Note: |x|<1, x=0.9999 may not converge.
#   log (x, prec)
#   PI  (prec)
#   E   (prec) == exp(1.0,prec)
#
# where:
#   x    ... BigDecimal number to be computed.
#            |x| must be small enough to get convergence.
#   prec ... Number of digits to be obtained.
#++
#
# Provides mathematical functions.
#
# Example:
#
#   require "bigdecimal"
#   require "bigdecimal/math"
#
#   include BigMath
#
#   a = BigDecimal((PI(100)/2).to_s)
#   puts sin(a,100) # -> 0.10000000000000000000......E1
#
module BigMath
  module_function

  # Computes the square root of x to the specified number of digits of
  # precision.
  #
  # BigDecimal.new('2').sqrt(16).to_s
  #  -> "0.14142135623730950488016887242096975E1"
  #
  def sqrt(x,prec)
    x.sqrt(prec)
  end

  # Computes the sine of x to the specified number of digits of precision.
  #
  # If x is infinite or NaN, returns NaN.
  def sin(x, prec)
    raise ArgumentError, "Zero or negative precision for sin" if prec <= 0
    return BigDecimal("NaN") if x.infinite? || x.nan?
    n    = prec + BigDecimal.double_fig
    one  = BigDecimal("1")
    two  = BigDecimal("2")
    x = -x if neg = x < 0
    if x > (twopi = two * BigMath.PI(prec))
      if x > 30
        x %= twopi
      else
        x -= twopi while x > twopi
      end
    end
    x1   = x
    x2   = x.mult(x,n)
    sign = 1
    y    = x
    d    = y
    i    = one
    z    = one
    while d.nonzero? && ((m = n - (y.exponent - d.exponent).abs) > 0)
      m = BigDecimal.double_fig if m < BigDecimal.double_fig
      sign = -sign
      x1  = x2.mult(x1,n)
      i  += two
      z  *= (i-one) * i
      d   = sign * x1.div(z,m)
      y  += d
    end
    neg ? -y : y
  end

  # Computes the cosine of x to the specified number of digits of precision.
  #
  # If x is infinite or NaN, returns NaN.
  def cos(x, prec)
    raise ArgumentError, "Zero or negative precision for cos" if prec <= 0
    return BigDecimal("NaN") if x.infinite? || x.nan?
    n    = prec + BigDecimal.double_fig
    one  = BigDecimal("1")
    two  = BigDecimal("2")
    x = -x if x < 0
    if x > (twopi = two * BigMath.PI(prec))
      if x > 30
        x %= twopi
      else
        x -= twopi while x > twopi
      end
    end
    x1 = one
    x2 = x.mult(x,n)
    sign = 1
    y = one
    d = y
    i = BigDecimal("0")
    z = one
    while d.nonzero? && ((m = n - (y.exponent - d.exponent).abs) > 0)
      m = BigDecimal.double_fig if m < BigDecimal.double_fig
      sign = -sign
      x1  = x2.mult(x1,n)
      i  += two
      z  *= (i-one) * i
      d   = sign * x1.div(z,m)
      y  += d
    end
    y
  end

  # Computes the arctangent of x to the specified number of digits of precision.
  #
  # If x is NaN, returns NaN.
  def atan(x, prec)
    raise ArgumentError, "Zero or negative precision for atan" if prec <= 0
    return BigDecimal("NaN") if x.nan?
    pi = PI(prec)
    x = -x if neg = x < 0
    return pi.div(neg ? -2 : 2, prec) if x.infinite?
    return pi / (neg ? -4 : 4) if x.round(prec) == 1
    x = BigDecimal("1").div(x, prec) if inv = x > 1
    x = (-1 + sqrt(1 + x**2, prec))/x if dbl = x > 0.5
    n    = prec + BigDecimal.double_fig
    y = x
    d = y
    t = x
    r = BigDecimal("3")
    x2 = x.mult(x,n)
    while d.nonzero? && ((m = n - (y.exponent - d.exponent).abs) > 0)
      m = BigDecimal.double_fig if m < BigDecimal.double_fig
      t = -t.mult(x2,n)
      d = t.div(r,m)
      y += d
      r += 2
    end
    y *= 2 if dbl
    y = pi / 2 - y if inv
    y = -y if neg
    y
  end

  # Computes the value of pi to the specified number of digits of precision.
  def PI(prec)
    raise ArgumentError, "Zero or negative argument for PI" if prec <= 0
    n      = prec + BigDecimal.double_fig
    zero   = BigDecimal("0")
    one    = BigDecimal("1")
    two    = BigDecimal("2")

    m25    = BigDecimal("-0.04")
    m57121 = BigDecimal("-57121")

    pi     = zero

    d = one
    k = one
    w = one
    t = BigDecimal("-80")
    while d.nonzero? && ((m = n - (pi.exponent - d.exponent).abs) > 0)
      m = BigDecimal.double_fig if m < BigDecimal.double_fig
      t   = t*m25
      d   = t.div(k,m)
      k   = k+two
      pi  = pi + d
    end

    d = one
    k = one
    w = one
    t = BigDecimal("956")
    while d.nonzero? && ((m = n - (pi.exponent - d.exponent).abs) > 0)
      m = BigDecimal.double_fig if m < BigDecimal.double_fig
      t   = t.div(m57121,n)
      d   = t.div(k,m)
      pi  = pi + d
      k   = k+two
    end
    pi
  end

  # Computes e (the base of natural logarithms) to the specified number of
  # digits of precision.
  def E(prec)
    raise ArgumentError, "Zero or negative precision for E" if prec <= 0
    n    = prec + BigDecimal.double_fig
    one  = BigDecimal("1")
    y  = one
    d  = y
    z  = one
    i  = 0
    while d.nonzero? && ((m = n - (y.exponent - d.exponent).abs) > 0)
      m = BigDecimal.double_fig if m < BigDecimal.double_fig
      i += 1
      z *= i
      d  = one.div(z,m)
      y += d
    end
    y
  end
end