/usr/include/vigra/accumulator.hxx is in libvigraimpex-dev 1.10.0+dfsg-3ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 | /************************************************************************/
/* */
/* Copyright 2011-2012 by Ullrich Koethe */
/* */
/* This file is part of the VIGRA computer vision library. */
/* The VIGRA Website is */
/* http://hci.iwr.uni-heidelberg.de/vigra/ */
/* Please direct questions, bug reports, and contributions to */
/* ullrich.koethe@iwr.uni-heidelberg.de or */
/* vigra@informatik.uni-hamburg.de */
/* */
/* Permission is hereby granted, free of charge, to any person */
/* obtaining a copy of this software and associated documentation */
/* files (the "Software"), to deal in the Software without */
/* restriction, including without limitation the rights to use, */
/* copy, modify, merge, publish, distribute, sublicense, and/or */
/* sell copies of the Software, and to permit persons to whom the */
/* Software is furnished to do so, subject to the following */
/* conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the */
/* Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES */
/* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND */
/* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT */
/* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, */
/* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING */
/* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR */
/* OTHER DEALINGS IN THE SOFTWARE. */
/* */
/************************************************************************/
#ifndef VIGRA_ACCUMULATOR_HXX
#define VIGRA_ACCUMULATOR_HXX
#ifdef _MSC_VER
#pragma warning (disable: 4503)
#endif
#include "accumulator-grammar.hxx"
#include "config.hxx"
#include "metaprogramming.hxx"
#include "bit_array.hxx"
#include "static_assert.hxx"
#include "mathutil.hxx"
#include "utilities.hxx"
#include "multi_iterator_coupled.hxx"
#include "matrix.hxx"
#include "multi_math.hxx"
#include "eigensystem.hxx"
#include "histogram.hxx"
#include <algorithm>
#include <iostream>
namespace vigra {
/** \defgroup FeatureAccumulators Feature Accumulators
The namespace <tt>vigra::acc</tt> provides the function \ref vigra::acc::extractFeatures() along with associated statistics functors and accumulator classes. Together, they provide a framework for efficient compution of a wide variety of statistical features, both globally for an entire image, and locally for each region defined by a label array. Many different statistics can be composed out of a small number of fundamental statistics and suitable modifiers. The user simply selects the desired statistics by means of their <i>tags</i> (see below), and a template meta-program automatically generates an efficient functor that computes exactly those statistics.
The function \ref acc::extractFeatures() "extractFeatures()" scans the data in as few passes as the selected statstics permit (usually one or two passes are sufficient). Statistics are computed by accurate incremental algorithms, whose internal state is maintained by accumulator objects. The state is updated by passing data to the accumulator one sample at a time. Accumulators are grouped within an accumulator chain. Dependencies between accumulators in the accumulator chain are automatically resolved and missing dependencies are inserted. For example, to compute the mean, you also need to count the number of samples. This allows accumulators to offload some of their computations on other accumulators, making the algorithms more efficient. Each accumulator only sees data in the appropriate pass through the data, called its "working pass".
<b>\#include</b> \<vigra/accumulator.hxx\>
<b>Basic statistics:</b>
- PowerSum<N> (computes @f$ \sum_i x_i^N @f$)
- AbsPowerSum<N> (computes @f$ \sum_i |x_i|^N @f$)
- Skewness, UnbiasedSkewness
- Kurtosis, UnbiasedKurtosis
- Minimum, Maximum
- FlatScatterMatrix (flattened upper-triangular part of scatter matrix)
- 4 histogram classes (see \ref histogram "below")
- StandardQuantiles (0%, 10%, 25%, 50%, 75%, 90%, 100%)
- ArgMinWeight, ArgMaxWeight (store data or coordinate where weight assumes its minimal or maximal value)
- CoordinateSystem (identity matrix of appropriate size)
<b>Modifiers:</b> (S is the statistc to be modified)
- Normalization
<table border="0">
<tr><td> DivideByCount<S> </td><td> S/Count </td></tr>
<tr><td> RootDivideByCount<S> </td><td> sqrt( S/Count ) </td></tr>
<tr><td> DivideUnbiased<S> </td><td> S/(Count-1) </td></tr>
<tr><td> RootDivideUnbiased<S> </td><td> sqrt( S/(Count-1) ) </td></tr>
</table>
- Data preparation:
<table border="0">
<tr><td> Central<S> </td><td> substract mean before computing S </td></tr>
<tr><td> Principal<S> </td><td> project onto PCA eigenvectors </td></tr>
<tr><td> Whitened<S> </td><td> scale to unit variance after PCA </td></tr>
<tr><td> Coord<S> </td><td> compute S from pixel coordinates rather than from pixel values </td></tr>
<tr><td> Weighted<S> </td><td> compute weighted version of S </td></tr>
<tr><td> Global<S> </td><td> compute S globally rather than per region (per region is default if labels are given) </td></tr>
</table>
Aliases for many important features are implemented (mainly as <tt>typedef FullName Alias</tt>). The alias names are equivalent to full names. Below are some examples for supported alias names. A full list of all available statistics and alias names can be found in the namespace reference <tt>vigra::acc</tt>. These examples also show how to compose statistics from the fundamental statistics and modifiers:
<table border="0">
<tr><th> Alias </th><th> Full Name </th></tr>
<tr><td> Count </td><td> PowerSum<0> </td></tr>
<tr><td> Sum </td><td> PowerSum<1> </td></tr>
<tr><td> SumOfSquares </td><td> PowerSum<2> </td></tr>
<tr><td> Mean </td><td> DivideByCount<PowerSum<1>> </td></tr>
<tr><td> RootMeanSquares </td><td> RootDivideByCount<PowerSum<2>> </td></tr>
<tr><td> Moment<N> </td><td> DivideByCount<PowerSum<N>> </td></tr>
<tr><td> Variance </td><td> DivideByCount<Central<PowerSum<2>>> </td></tr>
<tr><td> StdDev </td><td> RootDivideByCount<Central<PowerSum<2>>> </td></tr>
<tr><td> Covariance </td><td> DivideByCount<FlatScatterMatrix> </td></tr>
<tr><td> RegionCenter </td><td> Coord<Mean> </td></tr>
<tr><td> CenterOfMass </td><td> Weighted<Coord<Mean>> </td></tr>
</table>
There are a few <b>rules for composing statistics</b>:
- modifiers can be specified in any order, but are internally transformed to standard order: Global<Weighted<Coord<normalization<data preparation<basic statistic
- only one normalization modifier and one data preparation modifier (Central or Principal or Whitened) is permitted
- Count ignores all modifiers except Global and Weighted
- Sum ignores Central and Principal, because sum would be zero
- ArgMinWeight and ArgMaxWeight are automatically Weighted
Here is an example how to use \ref acc::AccumulatorChain to compute statistics. (To use Weighted<> or Coord<> modifiers, see below):
\code
#include <vigra/multi_array.hxx>
#include <vigra/impex.hxx>
#include <vigra/accumulator.hxx>
using namespace vigra::acc;
typedef double DataType;
int size = 1000;
vigra::MultiArray<2, DataType> data(vigra::Shape2(size, size));
AccumulatorChain<DataType,
Select<Variance, Mean, StdDev, Minimum, Maximum, RootMeanSquares, Skewness, Covariance> >
a;
std::cout << "passes required: " << a.passesRequired() << std::endl;
extractFeatures(data.begin(), data.end(), a);
std::cout << "Mean: " << get<Mean>(a) << std::endl;
std::cout << "Variance: " << get<Variance>(a) << std::endl;
\endcode
The \ref acc::AccumulatorChain object contains the selected statistics and their dependencies. Statistics have to be wrapped with \ref acc::Select. The statistics are computed with the acc::extractFeatures function and the statistics can be accessed with acc::get .
Rules and notes:
- order of statistics in Select<> is arbitrary
- up to 20 statistics in Select<>, but Select<> can be nested
- dependencies are automatically inserted
- duplicates are automatically removed
- extractFeatures() does as many passes through the data as necessary
- each accumulator only sees data in the appropriate pass (its "working pass")
The Accumulators can also be used with vector-valued data (vigra::RGBValue, vigra::TinyVector, vigra::MultiArray or vigra::MultiArrayView):
\code
typedef vigra::RGBValue<double> DataType;
AccumulatorChain<DataType, Select<...> > a;
...
\endcode
To compute <b>weighted statistics</b> (Weighted<>) or <b>statistics over coordinates</b> (Coord<>), the accumulator chain can be used with several coupled arrays, one for the data and another for the weights and/or the labels. "Coupled" means that statistics are computed over the corresponding elements of the involved arrays. This is internally done by means of \ref CoupledScanOrderIterator and \ref vigra::CoupledHandle which provide simultaneous access to several arrays (e.g. weight and data) and corresponding coordinates. The types of the coupled arrays are best specified by means of the helper class \ref vigra::CoupledArrays :
\code
vigra::MultiArray<3, RGBValue<unsigned char> > data(...);
vigra::MultiArray<3, double> weights(...);
AccumulatorChain<CoupledArrays<3, RGBValue<unsigned char>, double>,
Select<...> > a;
\endcode
This works likewise for label images which are needed for region statistics (see below). The indxx of the array holding data, weights, or labels respectively can be specified inside the Select wrapper. These <b>index specifiers</b> are: (INDEX is of type int)
- DataArg<INDEX>: data are in array 'INDEX' (default INDEX=1)
- LabelArg<INDEX>: labels are in array 'INDEX' (default INDEX=2)
- WeightArg<INDEX>: weights are in array 'INDEX' (default INDEX=rightmost index)
Pixel coordinates are always at index 0. To collect statistics, you simply pass all arrays to the <tt>extractFeatures()</tt> function:
\code
using namespace vigra::acc;
vigra::MultiArray<3, double> data(...), weights(...);
AccumulatorChain<CoupledArrays<3, double, double>, // two 3D arrays for data and weights
Select<DataArg<1>, WeightArg<2>, // in which array to look (coordinates are always arg 0)
Mean, Variance, //statistics over values
Coord<Mean>, Coord<Variance>, //statistics over coordinates,
Weighted<Mean>, Weighted<Variance>, //weighted values,
Weighted<Coord<Mean> > > > //weighted coordinates.
a;
extractFeatures(data, weights, a);
\endcode
This even works for a single array, which is useful if you want to combine values with coordinates. For example, to find the location of the minimum element in an array, you interpret the data as weights and select the <tt>Coord<ArgMinWeight></tt> statistic (note that the version of <tt>extractFeatures()</tt> below only works in conjunction with <tt>CoupledArrays</tt>, despite the fact that there is only one array involved):
\code
using namespace vigra::acc;
vigra::MultiArray<3, double> data(...);
AccumulatorChain<CoupledArrays<3, double>,
Select<WeightArg<1>, // we interprete the data as weights
Coord<ArgMinWeight> > > // and look for the coordinate with minimal weight
a;
extractFeatures(data, a);
std::cout << "minimum is at " << get<Coord<ArgMinWeight> >(a) << std::endl;
\endcode
To compute <b>region statistics</b>, you use \ref acc::AccumulatorChainArray. Regions are defined by means of a label array whose elements specify the region ID of the corresponding point. Therefore, you will always need at least two arrays here, which are again best specified using the <tt>CoupledArrays</tt> helper:
\code
using namespace vigra::acc;
vigra::MultiArray<3, double> data(...);
vigra::MultiArray<3, int> labels(...);
AccumulatorChainArray<CoupledArrays<3, double, int>,
Select<DataArg<1>, LabelArg<2>, // in which array to look (coordinates are always arg 0)
Mean, Variance, //per-region statistics over values
Coord<Mean>, Coord<Variance>, //per-region statistics over coordinates
Global<Mean>, Global<Variance> > > //global statistics
a;
a.ignoreLabel(0); //statistics will not be computed for region 0 (e.g. background)
extractFeatures(data, labels, a);
int regionlabel = ...;
std::cout << get<Mean>(a, regionlabel) << std::endl; //get Mean of region with label 'regionlabel'
\endcode
In some application it will be known only at run-time which statistics have to be computed. An Accumulator with <b>run-time activation</b> is provided by the \ref acc::DynamicAccumulatorChain class. One specifies a set of statistics at compile-time and from this set one can activate the needed statistics at run-time:
\code
using namespace vigra::acc;
vigra::MultiArray<2, double> data(...);
DynamicAccumulatorChain<double,
Select<Mean, Minimum, Maximum, Variance, StdDev> > a; // at compile-time
activate<Mean>(a); //at run-time
a.activate("Minimum"); //same as activate<Minimum>(a) (alias names are not recognized)
extractFeatures(data.begin(), data.end(), a);
std::cout << "Mean: " << get<Mean>(a) << std::endl; //ok
//std::cout << "Maximum: " << get<Maximum>(a) << std::endl; // run-time error because Maximum not activated
\endcode
Likewise, for run-time activation of region statistics, use \ref acc::DynamicAccumulatorChainArray.
<b>Accumulator merging</b> (e.g. for parallelization or hierarchical segmentation) is possible for many accumulators:
\code
using namespace vigra::acc;
vigra::MultiArray<2, double> data(...);
AccumulatorChain<double, Select<Mean, Variance, Skewness> > a, a1, a2;
extractFeatures(data.begin(), data.end(), a); //process entire data set at once
extractFeatures(data.begin(), data.begin()+data.size()/2, a1); //process first half
extractFeatures(data.begin()+data.size()/2, data.end(), a2); //process second half
a1 += a2; // merge: a1 now equals a0 (within numerical tolerances)
\endcode
Not all statistics can be merged (e.g. Principal<A> usually cannot, except for some important specializations). A statistic can be merged if the "+=" operator is supported (see the documentation of that particular statistic). If the accumulator chain only requires one pass to collect the data, it is also possible to just apply the extractFeatures() function repeatedly:
\code
using namespace vigra::acc;
vigra::MultiArray<2, double> data(...);
AccumulatorChain<double, Select<Mean, Variance> > a;
extractFeatures(data.begin(), data.begin()+data.size()/2, a); // this works because
extractFeatures(data.begin()+data.size()/2, data.end(), a); // all statistics only need pass 1
\endcode
More care is needed to merge coordinate-based statistics. By default, all coordinate statistics are computed in the local coordinate system of the current region of interest. That is, the upper left corner of the ROI has the coordinate (0, 0) by default. This behavior is not desirable when you want to merge coordinate statistics from different ROIs: then, all accumulators should use the same coordinate system, usually the global system of the entire dataset. This can be achieved by the <tt>setCoordinateOffset()</tt> function. The following code demonstrates this for the <tt>RegionCenter</tt> statistic:
\code
using namespace vigra;
using namespace vigra::acc;
MultiArray<2, double> data(width, height);
MultiArray<2, int> labels(width, height);
AccumulatorChainArray<CoupledArrays<2, double, int>,
Select<DataArg<1>, LabelArg<2>,
RegionCenter> >
a1, a2;
// a1 is responsible for the left half of the image. The local coordinate system of this ROI
// happens to be identical to the global coordinate system, so the offset is zero.
Shape2 origin(0,0);
a1.setCoordinateOffset(origin);
extractFeatures(data.subarray(origin, Shape2(width/2, height)),
labels.subarray(origin, Shape2(width/2, height)),
a1);
// a2 is responsible for the right half, so the offset of the local coordinate system is (width/2, 0)
origin = Shape2(width/2, 0);
a2.setCoordinateOffset(origin);
extractFeatures(data.subarray(origin, Shape2(width, height)),
labels.subarray(origin, Shape2(width, height)),
a2);
// since both accumulators worked in the same global coordinate system, we can safely merge them
a1.merge(a2);
\endcode
When you compute region statistics in ROIs, it is sometimes desirable to use a local region labeling in each ROI. In this way, the labels of each ROI cover a consecutive range of numbers starting with 0. This can save a lot of memory, because <tt>AccumulatorChainArray</tt> internally uses dense arrays -- accumulators will be allocated for all labels from 0 to the maxmimum label, even when many of them are unused. This is avoided by a local labeling. However, this means that label 1 (say) may refer to two different regions in different ROIs. To adjust for this mismatch, you can pass a label mapping to <tt>merge()</tt> that provides a global label for each label of the accumulator to be merged. Thus, each region on the right hand side will be merged into the left-hand-side accumulator with the given <i>global</i> label. For example, let us assume that the left and right half of the image contain just one region and background. Then, the accumulators of both ROIs have the label 0 (background) and 1 (the region). Upon merging, the region from the right ROI should be given the global label 2, whereas the background should keep its label 0. This is achieved like this:
\code
std::vector<int> labelMapping(2);
labelMapping[0] = 0; // background keeps label 0
labelMapping[1] = 2; // local region 1 becomes global region 2
a1.merge(a2, labelMapping);
\endcode
\anchor histogram
Four kinds of <b>histograms</b> are currently implemented:
<table border="0">
<tr><td> IntegerHistogram </td><td> Data values are equal to bin indices </td></tr>
<tr><td> UserRangeHistogram </td><td> User provides lower and upper bounds for linear range mapping from values to indices. </td></tr>
<tr><td> AutoRangeHistogram </td><td> Range mapping bounds are defiend by minimum and maximum of the data (2 passes needed!) </td></tr>
<tr><td> GlobalRangeHistogram </td><td> Likewise, but use global min/max rather than region min/max as AutoRangeHistogram will </td></tr>
</table>
- The number of bins is specified at compile time (as template parameter int BinCount) or at run-time (if BinCount is zero at compile time). In the first case the return type of the accumulator is TinyVector<double, BinCount> (number of bins cannot be changed). In the second case, the return type is MultiArray<1, double> and the number of bins must be set before seeing data (see example below).
- If UserRangeHistogram is used, the bounds for the linear range mapping from values to indices must be set before seeing data (see below).
- Options can be set by passing an instance of HistogramOptions to the accumulator chain (same options for all histograms in the chain) or by directly calling the appropriate member functions of the accumulators.
- Merging is supported if the range mapping of the histograms is the same.
- Histogram accumulators have two members for outliers (left_outliers, right_outliers).
With the StandardQuantiles class, <b>histogram quantiles</b> (0%, 10%, 25%, 50%, 75%, 90%, 100%) are computed from a given histgram using linear interpolation. The return type is TinyVector<double, 7> .
\anchor acc_hist_options Usage:
\code
using namespace vigra::acc;
typedef double DataType;
vigra::MultiArray<2, DataType> data(...);
typedef UserRangeHistogram<40> SomeHistogram; //binCount set at compile time
typedef UserRangeHistogram<0> SomeHistogram2; // binCount must be set at run-time
typedef AutoRangeHistogram<0> SomeHistogram3;
typedef StandardQuantiles<SomeHistogram3> Quantiles3;
AccumulatorChain<DataType, Select<SomeHistogram, SomeHistogram2, SomeHistogram3, Quantiles3> > a;
//set options for all histograms in the accumulator chain:
vigra::HistogramOptions histogram_opt;
histogram_opt = histogram_opt.setBinCount(50);
//histogram_opt = histogram_opt.setMinMax(0.1, 0.9); // this would set min/max for all three histograms, but range bounds
// shall be set automatically by min/max of data for SomeHistogram3
a.setHistogramOptions(histogram_opt);
// set options for a specific histogram in the accumulator chain:
getAccumulator<SomeHistogram>(a).setMinMax(0.1, 0.9); // number of bins must be set before setting min/max
getAccumulator<SomeHistogram2>(a).setMinMax(0.0, 1.0);
extractFeatures(data.begin(), data.end(), a);
vigra::TinyVector<double, 40> hist = get<SomeHistogram>(a);
vigra::MultiArray<1, double> hist2 = get<SomeHistogram2>(a);
vigra::TinyVector<double, 7> quant = get<Quantiles3>(a);
double right_outliers = getAccumulator<SomeHistogram>(a).right_outliers;
\endcode
*/
/** This namespace contains the accumulator classes, fundamental statistics and modifiers. See \ref FeatureAccumulators for examples of usage.
*/
namespace acc {
/****************************************************************************/
/* */
/* infrastructure */
/* */
/****************************************************************************/
/// \brief Wrapper for MakeTypeList that additionally performs tag standardization.
template <class T01=void, class T02=void, class T03=void, class T04=void, class T05=void,
class T06=void, class T07=void, class T08=void, class T09=void, class T10=void,
class T11=void, class T12=void, class T13=void, class T14=void, class T15=void,
class T16=void, class T17=void, class T18=void, class T19=void, class T20=void>
struct Select
: public MakeTypeList<
typename StandardizeTag<T01>::type, typename StandardizeTag<T02>::type, typename StandardizeTag<T03>::type,
typename StandardizeTag<T04>::type, typename StandardizeTag<T05>::type, typename StandardizeTag<T06>::type,
typename StandardizeTag<T07>::type, typename StandardizeTag<T08>::type, typename StandardizeTag<T09>::type,
typename StandardizeTag<T10>::type, typename StandardizeTag<T11>::type, typename StandardizeTag<T12>::type,
typename StandardizeTag<T13>::type, typename StandardizeTag<T14>::type, typename StandardizeTag<T15>::type,
typename StandardizeTag<T16>::type, typename StandardizeTag<T17>::type, typename StandardizeTag<T18>::type,
typename StandardizeTag<T19>::type, typename StandardizeTag<T20>::type
>
{};
// enable nesting of Select<> expressions
template <class T01, class T02, class T03, class T04, class T05,
class T06, class T07, class T08, class T09, class T10,
class T11, class T12, class T13, class T14, class T15,
class T16, class T17, class T18, class T19, class T20>
struct StandardizeTag<Select<T01, T02, T03, T04, T05,
T06, T07, T08, T09, T10,
T11, T12, T13, T14, T15,
T16, T17, T18, T19, T20>,
Select<T01, T02, T03, T04, T05,
T06, T07, T08, T09, T10,
T11, T12, T13, T14, T15,
T16, T17, T18, T19, T20> >
{
typedef typename Select<T01, T02, T03, T04, T05,
T06, T07, T08, T09, T10,
T11, T12, T13, T14, T15,
T16, T17, T18, T19, T20>::type type;
};
struct AccumulatorBegin
{
typedef Select<> Dependencies;
static std::string name()
{
return "AccumulatorBegin (internal)";
// static const std::string n("AccumulatorBegin (internal)");
// return n;
}
template <class T, class BASE>
struct Impl
: public BASE
{};
};
struct AccumulatorEnd;
struct DataArgTag;
struct WeightArgTag;
struct LabelArgTag;
struct CoordArgTag;
struct LabelDispatchTag;
struct Error__Global_statistics_are_only_defined_for_AccumulatorChainArray;
/** \brief Specifies index of labels in CoupledHandle.
LabelArg<INDEX> tells the acc::AccumulatorChainArray which index of the Handle contains the labels. (Note that coordinates are always index 0)
*/
template <int INDEX>
class LabelArg
{
public:
typedef Select<> Dependencies;
static std::string name()
{
return std::string("LabelArg<") + asString(INDEX) + "> (internal)";
// static const std::string n = std::string("LabelArg<") + asString(INDEX) + "> (internal)";
// return n;
}
template <class T, class BASE>
struct Impl
: public BASE
{
typedef LabelArgTag Tag;
typedef void value_type;
typedef void result_type;
static const int value = INDEX;
static const unsigned int workInPass = 0;
};
};
template <int INDEX>
class CoordArg
{
public:
typedef Select<> Dependencies;
static std::string name()
{
return std::string("CoordArg<") + asString(INDEX) + "> (internal)";
// static const std::string n = std::string("CoordArg<") + asString(INDEX) + "> (internal)";
// return n;
}
template <class T, class BASE>
struct Impl
: public BASE
{
typedef CoordArgTag Tag;
typedef void value_type;
typedef void result_type;
static const int value = INDEX;
static const unsigned int workInPass = 0;
};
};
template <class T, class TAG, class NEXT=AccumulatorEnd>
struct AccumulatorBase;
template <class Tag, class A>
struct LookupTag;
template <class Tag, class A, class TargetTag=typename A::Tag>
struct LookupDependency;
#ifndef _MSC_VER // compiler bug? (causes 'ambiguous overload error')
template <class TAG, class A>
typename LookupTag<TAG, A>::reference
getAccumulator(A & a);
template <class TAG, class A>
typename LookupDependency<TAG, A>::result_type
getDependency(A const & a);
#endif
namespace acc_detail {
/****************************************************************************/
/* */
/* internal tag handling meta-functions */
/* */
/****************************************************************************/
// we must make sure that Arg<INDEX> tags are at the end of the chain because
// all other tags potentially depend on them
template <class T>
struct PushArgTagToTail
{
typedef T type;
};
#define VIGRA_PUSHARGTAG(TAG) \
template <int INDEX, class TAIL> \
struct PushArgTagToTail<TypeList<TAG<INDEX>, TAIL> > \
{ \
typedef typename Push<TAIL, TypeList<TAG<INDEX> > >::type type; \
};
VIGRA_PUSHARGTAG(DataArg)
VIGRA_PUSHARGTAG(WeightArg)
VIGRA_PUSHARGTAG(CoordArg)
VIGRA_PUSHARGTAG(LabelArg)
#undef VIGRA_PUSHARGTAG
// Insert the dependencies of the selected functors into the TypeList and sort
// the list such that dependencies come after the functors using them. Make sure
// that each functor is contained only once.
template <class T>
struct AddDependencies;
template <class HEAD, class TAIL>
struct AddDependencies<TypeList<HEAD, TAIL> >
{
typedef typename AddDependencies<TAIL>::type TailWithDependencies;
typedef typename StandardizeDependencies<HEAD>::type HeadDependencies;
typedef typename AddDependencies<HeadDependencies>::type TransitiveHeadDependencies;
typedef TypeList<HEAD, TransitiveHeadDependencies> HeadWithDependencies;
typedef typename PushUnique<HeadWithDependencies, TailWithDependencies>::type UnsortedDependencies;
typedef typename PushArgTagToTail<UnsortedDependencies>::type type;
};
template <>
struct AddDependencies<void>
{
typedef void type;
};
// Helper class to activate dependencies at runtime (i.e. when activate<Tag>(accu) is called,
// activate() must also be called for Tag's dependencies).
template <class Dependencies>
struct ActivateDependencies;
template <class HEAD, class TAIL>
struct ActivateDependencies<TypeList<HEAD, TAIL> >
{
template <class Chain, class ActiveFlags>
static void exec(ActiveFlags & flags)
{
LookupTag<HEAD, Chain>::type::activateImpl(flags);
ActivateDependencies<TAIL>::template exec<Chain>(flags);
}
template <class Chain, class ActiveFlags, class GlobalFlags>
static void exec(ActiveFlags & flags, GlobalFlags & gflags)
{
LookupTag<HEAD, Chain>::type::template activateImpl<Chain>(flags, gflags);
ActivateDependencies<TAIL>::template exec<Chain>(flags, gflags);
}
};
template <class HEAD, class TAIL>
struct ActivateDependencies<TypeList<Global<HEAD>, TAIL> >
{
template <class Chain, class ActiveFlags, class GlobalFlags>
static void exec(ActiveFlags & flags, GlobalFlags & gflags)
{
LookupTag<Global<HEAD>, Chain>::type::activateImpl(gflags);
ActivateDependencies<TAIL>::template exec<Chain>(flags, gflags);
}
};
template <>
struct ActivateDependencies<void>
{
template <class Chain, class ActiveFlags>
static void exec(ActiveFlags &)
{}
template <class Chain, class ActiveFlags, class GlobalFlags>
static void exec(ActiveFlags &, GlobalFlags &)
{}
};
template <class List>
struct SeparateGlobalAndRegionTags;
template <class HEAD, class TAIL>
struct SeparateGlobalAndRegionTags<TypeList<HEAD, TAIL> >
{
typedef SeparateGlobalAndRegionTags<TAIL> Inner;
typedef TypeList<HEAD, typename Inner::RegionTags> RegionTags;
typedef typename Inner::GlobalTags GlobalTags;
};
template <class HEAD, class TAIL>
struct SeparateGlobalAndRegionTags<TypeList<Global<HEAD>, TAIL> >
{
typedef SeparateGlobalAndRegionTags<TAIL> Inner;
typedef typename Inner::RegionTags RegionTags;
typedef TypeList<HEAD, typename Inner::GlobalTags> GlobalTags;
};
template <int INDEX, class TAIL>
struct SeparateGlobalAndRegionTags<TypeList<DataArg<INDEX>, TAIL> >
{
typedef SeparateGlobalAndRegionTags<TAIL> Inner;
typedef TypeList<DataArg<INDEX>, typename Inner::RegionTags> RegionTags;
typedef TypeList<DataArg<INDEX>, typename Inner::GlobalTags> GlobalTags;
};
template <int INDEX, class TAIL>
struct SeparateGlobalAndRegionTags<TypeList<LabelArg<INDEX>, TAIL> >
{
typedef SeparateGlobalAndRegionTags<TAIL> Inner;
typedef typename Inner::RegionTags RegionTags;
typedef TypeList<LabelArg<INDEX>, typename Inner::GlobalTags> GlobalTags;
};
template <int INDEX, class TAIL>
struct SeparateGlobalAndRegionTags<TypeList<WeightArg<INDEX>, TAIL> >
{
typedef SeparateGlobalAndRegionTags<TAIL> Inner;
typedef TypeList<WeightArg<INDEX>, typename Inner::RegionTags> RegionTags;
typedef TypeList<WeightArg<INDEX>, typename Inner::GlobalTags> GlobalTags;
};
template <int INDEX, class TAIL>
struct SeparateGlobalAndRegionTags<TypeList<CoordArg<INDEX>, TAIL> >
{
typedef SeparateGlobalAndRegionTags<TAIL> Inner;
typedef TypeList<CoordArg<INDEX>, typename Inner::RegionTags> RegionTags;
typedef TypeList<CoordArg<INDEX>, typename Inner::GlobalTags> GlobalTags;
};
template <>
struct SeparateGlobalAndRegionTags<void>
{
typedef void RegionTags;
typedef void GlobalTags;
};
/****************************************************************************/
/* */
/* helper classes to handle tags at runtime via strings */
/* */
/****************************************************************************/
template <class Accumulators>
struct CollectAccumulatorNames;
template <class HEAD, class TAIL>
struct CollectAccumulatorNames<TypeList<HEAD, TAIL> >
{
template <class BackInsertable>
static void exec(BackInsertable & a, bool skipInternals=true)
{
if(!skipInternals || HEAD::name().find("internal") == std::string::npos)
a.push_back(HEAD::name());
CollectAccumulatorNames<TAIL>::exec(a, skipInternals);
}
};
template <>
struct CollectAccumulatorNames<void>
{
template <class BackInsertable>
static void exec(BackInsertable & a, bool skipInternals=true)
{}
};
template <class T>
struct ApplyVisitorToTag;
template <class HEAD, class TAIL>
struct ApplyVisitorToTag<TypeList<HEAD, TAIL> >
{
template <class Accu, class Visitor>
static bool exec(Accu & a, std::string const & tag, Visitor const & v)
{
static std::string * name = VIGRA_SAFE_STATIC(name, new std::string(normalizeString(HEAD::name())));
if(*name == tag)
{
v.template exec<HEAD>(a);
return true;
}
else
{
return ApplyVisitorToTag<TAIL>::exec(a, tag, v);
}
}
};
template <>
struct ApplyVisitorToTag<void>
{
template <class Accu, class Visitor>
static bool exec(Accu & a, std::string const & tag, Visitor const & v)
{
return false;
}
};
struct ActivateTag_Visitor
{
template <class TAG, class Accu>
void exec(Accu & a) const
{
a.template activate<TAG>();
}
};
struct TagIsActive_Visitor
{
mutable bool result;
template <class TAG, class Accu>
void exec(Accu & a) const
{
result = a.template isActive<TAG>();
}
};
/****************************************************************************/
/* */
/* histogram initialization functors */
/* */
/****************************************************************************/
template <class TAG>
struct SetHistogramBincount
{
template <class Accu>
static void exec(Accu & a, HistogramOptions const & options)
{}
};
template <template <int> class Histogram>
struct SetHistogramBincount<Histogram<0> >
{
template <class Accu>
static void exec(Accu & a, HistogramOptions const & options)
{
a.setBinCount(options.binCount);
}
};
template <class TAG>
struct ApplyHistogramOptions
{
template <class Accu>
static void exec(Accu & a, HistogramOptions const & options)
{}
};
template <class TAG>
struct ApplyHistogramOptions<StandardQuantiles<TAG> >
{
template <class Accu>
static void exec(Accu & a, HistogramOptions const & options)
{}
};
template <class TAG, template <class> class MODIFIER>
struct ApplyHistogramOptions<MODIFIER<TAG> >
: public ApplyHistogramOptions<TAG>
{};
template <>
struct ApplyHistogramOptions<IntegerHistogram<0> >
{
template <class Accu>
static void exec(Accu & a, HistogramOptions const & options)
{
SetHistogramBincount<IntegerHistogram<0> >::exec(a, options);
}
};
template <int BinCount>
struct ApplyHistogramOptions<UserRangeHistogram<BinCount> >
{
template <class Accu>
static void exec(Accu & a, HistogramOptions const & options)
{
SetHistogramBincount<UserRangeHistogram<BinCount> >::exec(a, options);
if(a.scale_ == 0.0 && options.validMinMax())
a.setMinMax(options.minimum, options.maximum);
}
};
template <int BinCount>
struct ApplyHistogramOptions<AutoRangeHistogram<BinCount> >
{
template <class Accu>
static void exec(Accu & a, HistogramOptions const & options)
{
SetHistogramBincount<AutoRangeHistogram<BinCount> >::exec(a, options);
if(a.scale_ == 0.0 && options.validMinMax())
a.setMinMax(options.minimum, options.maximum);
}
};
template <int BinCount>
struct ApplyHistogramOptions<GlobalRangeHistogram<BinCount> >
{
template <class Accu>
static void exec(Accu & a, HistogramOptions const & options)
{
SetHistogramBincount<GlobalRangeHistogram<BinCount> >::exec(a, options);
if(a.scale_ == 0.0)
{
if(options.validMinMax())
a.setMinMax(options.minimum, options.maximum);
else
a.setRegionAutoInit(options.local_auto_init);
}
}
};
/****************************************************************************/
/* */
/* internal accumulator chain classes */
/* */
/****************************************************************************/
// AccumulatorEndImpl has the following functionalities:
// * marks end of accumulator chain by the AccumulatorEnd tag
// * provides empty implementation of standard accumulator functions
// * provides active_accumulators_ flags for run-time activation of dynamic accumulators
// * provides is_dirty_ flags for caching accumulators
// * hold the GlobalAccumulatorHandle for global accumulator lookup from region accumulators
template <unsigned LEVEL, class GlobalAccumulatorHandle>
struct AccumulatorEndImpl
{
typedef typename GlobalAccumulatorHandle::type GlobalAccumulatorType;
typedef AccumulatorEnd Tag;
typedef void value_type;
typedef bool result_type;
typedef BitArray<LEVEL> AccumulatorFlags;
static const unsigned int workInPass = 0;
static const int index = -1;
static const unsigned level = LEVEL;
AccumulatorFlags active_accumulators_;
mutable AccumulatorFlags is_dirty_;
GlobalAccumulatorHandle globalAccumulator_;
template <class GlobalAccumulator>
void setGlobalAccumulator(GlobalAccumulator const * a)
{
globalAccumulator_.pointer_ = a;
}
static std::string name()
{
return "AccumulatorEnd (internal)";
}
bool operator()() const { return false; }
bool get() const { return false; }
template <unsigned, class U>
void pass(U const &)
{}
template <unsigned, class U>
void pass(U const &, double)
{}
template <class U>
void mergeImpl(U const &)
{}
template <class U>
void resize(U const &)
{}
template <class U>
void setCoordinateOffsetImpl(U const &)
{}
void activate()
{}
bool isActive() const
{
return false;
}
template <class Flags>
static void activateImpl(Flags &)
{}
template <class Accu, class Flags1, class Flags2>
static void activateImpl(Flags1 &, Flags2 &)
{}
template <class Flags>
static bool isActiveImpl(Flags const &)
{
return true;
}
void applyHistogramOptions(HistogramOptions const &)
{}
static unsigned int passesRequired()
{
return 0;
}
static unsigned int passesRequired(AccumulatorFlags const &)
{
return 0;
}
void reset()
{
active_accumulators_.clear();
is_dirty_.clear();
}
template <int which>
void setDirtyImpl() const
{
is_dirty_.template set<which>();
}
template <int which>
void setCleanImpl() const
{
is_dirty_.template reset<which>();
}
template <int which>
bool isDirtyImpl() const
{
return is_dirty_.template test<which>();
}
};
// DecoratorImpl implement the functionality of Decorator below
template <class A, unsigned CurrentPass, bool allowRuntimeActivation, unsigned WorkPass=A::workInPass>
struct DecoratorImpl
{
template <class T>
static void exec(A & a, T const & t)
{}
template <class T>
static void exec(A & a, T const & t, double weight)
{}
};
template <class A, unsigned CurrentPass>
struct DecoratorImpl<A, CurrentPass, false, CurrentPass>
{
template <class T>
static void exec(A & a, T const & t)
{
a.update(t);
}
template <class T>
static void exec(A & a, T const & t, double weight)
{
a.update(t, weight);
}
static typename A::result_type get(A const & a)
{
return a();
}
static void mergeImpl(A & a, A const & o)
{
a += o;
}
template <class T>
static void resize(A & a, T const & t)
{
a.reshape(t);
}
static void applyHistogramOptions(A & a, HistogramOptions const & options)
{
ApplyHistogramOptions<typename A::Tag>::exec(a, options);
}
static unsigned int passesRequired()
{
static const unsigned int A_workInPass = A::workInPass;
return std::max(A_workInPass, A::InternalBaseType::passesRequired());
}
};
template <class A, unsigned CurrentPass>
struct DecoratorImpl<A, CurrentPass, true, CurrentPass>
{
static bool isActive(A const & a)
{
return A::isActiveImpl(getAccumulator<AccumulatorEnd>(a).active_accumulators_);
}
template <class T>
static void exec(A & a, T const & t)
{
if(isActive(a))
a.update(t);
}
template <class T>
static void exec(A & a, T const & t, double weight)
{
if(isActive(a))
a.update(t, weight);
}
static typename A::result_type get(A const & a)
{
if(!isActive(a))
{
std::string message = std::string("get(accumulator): attempt to access inactive statistic '") +
A::Tag::name() + "'.";
vigra_precondition(false, message);
}
return a();
}
static void mergeImpl(A & a, A const & o)
{
if(isActive(a))
a += o;
}
template <class T>
static void resize(A & a, T const & t)
{
if(isActive(a))
a.reshape(t);
}
static void applyHistogramOptions(A & a, HistogramOptions const & options)
{
if(isActive(a))
ApplyHistogramOptions<typename A::Tag>::exec(a, options);
}
template <class ActiveFlags>
static unsigned int passesRequired(ActiveFlags const & flags)
{
static const unsigned int A_workInPass = A::workInPass;
return A::isActiveImpl(flags)
? std::max(A_workInPass, A::InternalBaseType::passesRequired(flags))
: A::InternalBaseType::passesRequired(flags);
}
};
// Generic reshape function (expands to a no-op when T has fixed shape, and to
// the appropriate specialized call otherwise). Shape is an instance of MultiArrayShape<N>::type.
template <class T, class Shape>
void reshapeImpl(T &, Shape const &)
{}
template <class T, class Shape, class Initial>
void reshapeImpl(T &, Shape const &, Initial const & = T())
{}
template <unsigned int N, class T, class Alloc, class Shape>
void reshapeImpl(MultiArray<N, T, Alloc> & a, Shape const & s, T const & initial = T())
{
MultiArray<N, T, Alloc>(s, initial).swap(a);
}
template <class T, class Alloc, class Shape>
void reshapeImpl(Matrix<T, Alloc> & a, Shape const & s, T const & initial = T())
{
Matrix<T, Alloc>(s, initial).swap(a);
}
template <class T, class U>
void copyShapeImpl(T const &, U const &) // to be used for scalars and static arrays
{}
template <unsigned int N, class T, class Alloc, class U>
void copyShapeImpl(MultiArray<N, T, Alloc> const & from, U & to)
{
to.reshape(from.shape());
}
template <class T, class Alloc, class U>
void copyShapeImpl(Matrix<T, Alloc> const & from, U & to)
{
to.reshape(from.shape());
}
template <class T, class U>
bool hasDataImpl(T const &) // to be used for scalars and static arrays
{
return true;
}
template <unsigned int N, class T, class Stride>
bool hasDataImpl(MultiArrayView<N, T, Stride> const & a)
{
return a.hasData();
}
// generic functions to create suitable shape objects from various input data types
template <unsigned int N, class T, class Stride>
inline typename MultiArrayShape<N>::type
shapeOf(MultiArrayView<N, T, Stride> const & a)
{
return a.shape();
}
template <class T, int N>
inline Shape1
shapeOf(TinyVector<T, N> const &)
{
return Shape1(N);
}
template <class T, class NEXT>
inline CoupledHandle<T, NEXT> const &
shapeOf(CoupledHandle<T, NEXT> const & t)
{
return t;
}
#define VIGRA_SHAPE_OF(type) \
inline Shape1 \
shapeOf(type) \
{ \
return Shape1(1); \
}
VIGRA_SHAPE_OF(unsigned char)
VIGRA_SHAPE_OF(signed char)
VIGRA_SHAPE_OF(unsigned short)
VIGRA_SHAPE_OF(short)
VIGRA_SHAPE_OF(unsigned int)
VIGRA_SHAPE_OF(int)
VIGRA_SHAPE_OF(unsigned long)
VIGRA_SHAPE_OF(long)
VIGRA_SHAPE_OF(unsigned long long)
VIGRA_SHAPE_OF(long long)
VIGRA_SHAPE_OF(float)
VIGRA_SHAPE_OF(double)
VIGRA_SHAPE_OF(long double)
#undef VIGRA_SHAPE_OF
// LabelDispatch is only used in AccumulatorChainArrays and has the following functionalities:
// * hold an accumulator chain for global statistics
// * hold an array of accumulator chains (one per region) for region statistics
// * forward data to the appropriate chains
// * allocate the region array with appropriate size
// * store and forward activation requests
// * compute required number of passes as maximum from global and region accumulators
template <class T, class GlobalAccumulators, class RegionAccumulators>
struct LabelDispatch
{
typedef LabelDispatchTag Tag;
typedef GlobalAccumulators GlobalAccumulatorChain;
typedef RegionAccumulators RegionAccumulatorChain;
typedef typename LookupTag<AccumulatorEnd, RegionAccumulatorChain>::type::AccumulatorFlags ActiveFlagsType;
typedef ArrayVector<RegionAccumulatorChain> RegionAccumulatorArray;
typedef LabelDispatch type;
typedef LabelDispatch & reference;
typedef LabelDispatch const & const_reference;
typedef GlobalAccumulatorChain InternalBaseType;
typedef T const & argument_type;
typedef argument_type first_argument_type;
typedef double second_argument_type;
typedef RegionAccumulatorChain & result_type;
static const int index = GlobalAccumulatorChain::index + 1;
template <class IndexDefinition, class TagFound=typename IndexDefinition::Tag>
struct CoordIndexSelector
{
static const int value = 0; // default: CoupledHandle holds coordinates at index 0
};
template <class IndexDefinition>
struct CoordIndexSelector<IndexDefinition, CoordArgTag>
{
static const int value = IndexDefinition::value;
};
static const int coordIndex = CoordIndexSelector<typename LookupTag<CoordArgTag, GlobalAccumulatorChain>::type>::value;
static const int coordSize = CoupledHandleCast<coordIndex, T>::type::value_type::static_size;
typedef TinyVector<double, coordSize> CoordinateType;
GlobalAccumulatorChain next_;
RegionAccumulatorArray regions_;
HistogramOptions region_histogram_options_;
MultiArrayIndex ignore_label_;
ActiveFlagsType active_region_accumulators_;
CoordinateType coordinateOffset_;
template <class IndexDefinition, class TagFound=typename IndexDefinition::Tag>
struct LabelIndexSelector
{
static const int value = 2; // default: CoupledHandle holds labels at index 2
template <class U, class NEXT>
static MultiArrayIndex exec(CoupledHandle<U, NEXT> const & t)
{
return (MultiArrayIndex)get<value>(t);
}
};
template <class IndexDefinition>
struct LabelIndexSelector<IndexDefinition, LabelArgTag>
{
static const int value = IndexDefinition::value;
template <class U, class NEXT>
static MultiArrayIndex exec(CoupledHandle<U, NEXT> const & t)
{
return (MultiArrayIndex)get<value>(t);
}
};
template <class TAG>
struct ActivateImpl
{
typedef typename LookupTag<TAG, type>::type TargetAccumulator;
static void activate(GlobalAccumulatorChain & globals, RegionAccumulatorArray & regions,
ActiveFlagsType & flags)
{
TargetAccumulator::template activateImpl<LabelDispatch>(
flags, getAccumulator<AccumulatorEnd>(globals).active_accumulators_);
for(unsigned int k=0; k<regions.size(); ++k)
getAccumulator<AccumulatorEnd>(regions[k]).active_accumulators_ = flags;
}
static bool isActive(GlobalAccumulatorChain const &, ActiveFlagsType const & flags)
{
return TargetAccumulator::isActiveImpl(flags);
}
};
template <class TAG>
struct ActivateImpl<Global<TAG> >
{
static void activate(GlobalAccumulatorChain & globals, RegionAccumulatorArray &, ActiveFlagsType &)
{
LookupTag<TAG, GlobalAccumulatorChain>::type::activateImpl(getAccumulator<AccumulatorEnd>(globals).active_accumulators_);
}
static bool isActive(GlobalAccumulatorChain const & globals, ActiveFlagsType const &)
{
return LookupTag<TAG, GlobalAccumulatorChain>::type::isActiveImpl(getAccumulator<AccumulatorEnd>(globals).active_accumulators_);
}
};
template <int INDEX>
struct ActivateImpl<LabelArg<INDEX> >
{
static void activate(GlobalAccumulatorChain &, RegionAccumulatorArray &, ActiveFlagsType &)
{}
static bool isActive(GlobalAccumulatorChain const & globals, ActiveFlagsType const &)
{
return getAccumulator<LabelArg<INDEX> >(globals).isActive();
}
};
typedef typename LookupTag<LabelArgTag, GlobalAccumulatorChain>::type FindLabelIndex;
LabelDispatch()
: next_(),
regions_(),
region_histogram_options_(),
ignore_label_(-1),
active_region_accumulators_()
{}
LabelDispatch(LabelDispatch const & o)
: next_(o.next_),
regions_(o.regions_),
region_histogram_options_(o.region_histogram_options_),
ignore_label_(o.ignore_label_),
active_region_accumulators_(o.active_region_accumulators_)
{
for(unsigned int k=0; k<regions_.size(); ++k)
{
getAccumulator<AccumulatorEnd>(regions_[k]).setGlobalAccumulator(&next_);
}
}
MultiArrayIndex maxRegionLabel() const
{
return (MultiArrayIndex)regions_.size() - 1;
}
void setMaxRegionLabel(unsigned maxlabel)
{
if(maxRegionLabel() == (MultiArrayIndex)maxlabel)
return;
unsigned int oldSize = regions_.size();
regions_.resize(maxlabel + 1);
for(unsigned int k=oldSize; k<regions_.size(); ++k)
{
getAccumulator<AccumulatorEnd>(regions_[k]).setGlobalAccumulator(&next_);
getAccumulator<AccumulatorEnd>(regions_[k]).active_accumulators_ = active_region_accumulators_;
regions_[k].applyHistogramOptions(region_histogram_options_);
regions_[k].setCoordinateOffsetImpl(coordinateOffset_);
}
}
void ignoreLabel(MultiArrayIndex l)
{
ignore_label_ = l;
}
void applyHistogramOptions(HistogramOptions const & options)
{
applyHistogramOptions(options, options);
}
void applyHistogramOptions(HistogramOptions const & regionoptions, HistogramOptions const & globaloptions)
{
region_histogram_options_ = regionoptions;
for(unsigned int k=0; k<regions_.size(); ++k)
{
regions_[k].applyHistogramOptions(region_histogram_options_);
}
next_.applyHistogramOptions(globaloptions);
}
void setCoordinateOffsetImpl(CoordinateType const & offset)
{
coordinateOffset_ = offset;
for(unsigned int k=0; k<regions_.size(); ++k)
{
regions_[k].setCoordinateOffsetImpl(coordinateOffset_);
}
next_.setCoordinateOffsetImpl(coordinateOffset_);
}
template <class U>
void resize(U const & t)
{
if(regions_.size() == 0)
{
static const int labelIndex = LabelIndexSelector<FindLabelIndex>::value;
typedef typename CoupledHandleCast<labelIndex, T>::type LabelHandle;
typedef typename LabelHandle::value_type LabelType;
typedef MultiArrayView<LabelHandle::dimensions, LabelType, StridedArrayTag> LabelArray;
LabelArray labelArray(t.shape(), cast<labelIndex>(t).strides(), const_cast<LabelType *>(cast<labelIndex>(t).ptr()));
LabelType minimum, maximum;
labelArray.minmax(&minimum, &maximum);
setMaxRegionLabel(maximum);
}
next_.resize(t);
// FIXME: only call resize when label k actually exists?
for(unsigned int k=0; k<regions_.size(); ++k)
regions_[k].resize(t);
}
template <unsigned N>
void pass(T const & t)
{
if(LabelIndexSelector<FindLabelIndex>::exec(t) != ignore_label_)
{
next_.template pass<N>(t);
regions_[LabelIndexSelector<FindLabelIndex>::exec(t)].template pass<N>(t);
}
}
template <unsigned N>
void pass(T const & t, double weight)
{
if(LabelIndexSelector<FindLabelIndex>::exec(t) != ignore_label_)
{
next_.template pass<N>(t, weight);
regions_[LabelIndexSelector<FindLabelIndex>::exec(t)].template pass<N>(t, weight);
}
}
static unsigned int passesRequired()
{
return std::max(GlobalAccumulatorChain::passesRequired(), RegionAccumulatorChain::passesRequired());
}
unsigned int passesRequiredDynamic() const
{
return std::max(GlobalAccumulatorChain::passesRequired(getAccumulator<AccumulatorEnd>(next_).active_accumulators_),
RegionAccumulatorChain::passesRequired(active_region_accumulators_));
}
void reset()
{
next_.reset();
active_region_accumulators_.clear();
RegionAccumulatorArray().swap(regions_);
// FIXME: or is it better to just reset the region accumulators?
// for(unsigned int k=0; k<regions_.size(); ++k)
// regions_[k].reset();
}
template <class TAG>
void activate()
{
ActivateImpl<TAG>::activate(next_, regions_, active_region_accumulators_);
}
void activateAll()
{
getAccumulator<AccumulatorEnd>(next_).active_accumulators_.set();
active_region_accumulators_.set();
for(unsigned int k=0; k<regions_.size(); ++k)
getAccumulator<AccumulatorEnd>(regions_[k]).active_accumulators_.set();
}
template <class TAG>
bool isActive() const
{
return ActivateImpl<TAG>::isActive(next_, active_region_accumulators_);
}
void mergeImpl(LabelDispatch const & o)
{
for(unsigned int k=0; k<regions_.size(); ++k)
regions_[k].mergeImpl(o.regions_[k]);
next_.mergeImpl(o.next_);
}
void mergeImpl(unsigned i, unsigned j)
{
regions_[i].mergeImpl(regions_[j]);
regions_[j].reset();
getAccumulator<AccumulatorEnd>(regions_[j]).active_accumulators_ = active_region_accumulators_;
}
template <class ArrayLike>
void mergeImpl(LabelDispatch const & o, ArrayLike const & labelMapping)
{
MultiArrayIndex newMaxLabel = std::max<MultiArrayIndex>(maxRegionLabel(), *argMax(labelMapping.begin(), labelMapping.end()));
setMaxRegionLabel(newMaxLabel);
for(unsigned int k=0; k<labelMapping.size(); ++k)
regions_[labelMapping[k]].mergeImpl(o.regions_[k]);
next_.mergeImpl(o.next_);
}
};
template <class TargetTag, class TagList>
struct FindNextTag;
template <class TargetTag, class HEAD, class TAIL>
struct FindNextTag<TargetTag, TypeList<HEAD, TAIL> >
{
typedef typename FindNextTag<TargetTag, TAIL>::type type;
};
template <class TargetTag, class TAIL>
struct FindNextTag<TargetTag, TypeList<TargetTag, TAIL> >
{
typedef typename TAIL::Head type;
};
template <class TargetTag>
struct FindNextTag<TargetTag, TypeList<TargetTag, void> >
{
typedef void type;
};
template <class TargetTag>
struct FindNextTag<TargetTag, void>
{
typedef void type;
};
// AccumulatorFactory creates the decorator hierarchy for the given TAG and configuration CONFIG
template <class TAG, class CONFIG, unsigned LEVEL=0>
struct AccumulatorFactory
{
typedef typename FindNextTag<TAG, typename CONFIG::TagList>::type NextTag;
typedef typename AccumulatorFactory<NextTag, CONFIG, LEVEL+1>::type NextType;
typedef typename CONFIG::InputType InputType;
template <class T>
struct ConfigureTag
{
typedef TAG type;
};
// When InputType is a CoupledHandle, some tags need to be wrapped into
// DataFromHandle<> and/or Weighted<> modifiers. The following code does
// this when appropriate.
template <class T, class NEXT>
struct ConfigureTag<CoupledHandle<T, NEXT> >
{
typedef typename StandardizeTag<DataFromHandle<TAG> >::type WrappedTag;
typedef typename IfBool<(!HasModifierPriority<WrappedTag, WeightingPriority>::value && ShouldBeWeighted<WrappedTag>::value),
Weighted<WrappedTag>, WrappedTag>::type type;
};
typedef typename ConfigureTag<InputType>::type UseTag;
// base class of the decorator hierarchy: default (possibly empty)
// implementations of all members
struct AccumulatorBase
{
typedef AccumulatorBase ThisType;
typedef TAG Tag;
typedef NextType InternalBaseType;
typedef InputType input_type;
typedef input_type const & argument_type;
typedef argument_type first_argument_type;
typedef double second_argument_type;
typedef void result_type;
static const unsigned int workInPass = 1;
static const int index = InternalBaseType::index + 1;
InternalBaseType next_;
static std::string name()
{
return TAG::name();
}
template <class ActiveFlags>
static void activateImpl(ActiveFlags & flags)
{
flags.template set<index>();
typedef typename StandardizeDependencies<Tag>::type StdDeps;
acc_detail::ActivateDependencies<StdDeps>::template exec<ThisType>(flags);
}
template <class Accu, class ActiveFlags, class GlobalFlags>
static void activateImpl(ActiveFlags & flags, GlobalFlags & gflags)
{
flags.template set<index>();
typedef typename StandardizeDependencies<Tag>::type StdDeps;
acc_detail::ActivateDependencies<StdDeps>::template exec<Accu>(flags, gflags);
}
template <class ActiveFlags>
static bool isActiveImpl(ActiveFlags & flags)
{
return flags.template test<index>();
}
void setDirty() const
{
next_.template setDirtyImpl<index>();
}
template <int INDEX>
void setDirtyImpl() const
{
next_.template setDirtyImpl<INDEX>();
}
void setClean() const
{
next_.template setCleanImpl<index>();
}
template <int INDEX>
void setCleanImpl() const
{
next_.template setCleanImpl<INDEX>();
}
bool isDirty() const
{
return next_.template isDirtyImpl<index>();
}
template <int INDEX>
bool isDirtyImpl() const
{
return next_.template isDirtyImpl<INDEX>();
}
void reset()
{}
template <class Shape>
void setCoordinateOffset(Shape const &)
{}
template <class Shape>
void reshape(Shape const &)
{}
void operator+=(AccumulatorBase const &)
{}
template <class U>
void update(U const &)
{}
template <class U>
void update(U const &, double)
{}
template <class TargetTag>
typename LookupDependency<TargetTag, ThisType>::result_type
call_getDependency() const
{
return getDependency<TargetTag>(*this);
}
};
// The middle class(es) of the decorator hierarchy implement the actual feature computation.
typedef typename UseTag::template Impl<InputType, AccumulatorBase> AccumulatorImpl;
// outer class of the decorator hierarchy. It has the following functionalities
// * ensure that only active accumulators are called in a dynamic accumulator chain
// * ensure that each accumulator is only called in its desired pass as defined in A::workInPass
// * determine how many passes through the data are required
struct Accumulator
: public AccumulatorImpl
{
typedef Accumulator type;
typedef Accumulator & reference;
typedef Accumulator const & const_reference;
typedef AccumulatorImpl A;
static const unsigned int workInPass = A::workInPass;
static const bool allowRuntimeActivation = CONFIG::allowRuntimeActivation;
template <class T>
void resize(T const & t)
{
this->next_.resize(t);
DecoratorImpl<Accumulator, workInPass, allowRuntimeActivation>::resize(*this, t);
}
void reset()
{
this->next_.reset();
A::reset();
}
typename A::result_type get() const
{
return DecoratorImpl<A, workInPass, allowRuntimeActivation>::get(*this);
}
template <unsigned N, class T>
void pass(T const & t)
{
this->next_.template pass<N>(t);
DecoratorImpl<Accumulator, N, allowRuntimeActivation>::exec(*this, t);
}
template <unsigned N, class T>
void pass(T const & t, double weight)
{
this->next_.template pass<N>(t, weight);
DecoratorImpl<Accumulator, N, allowRuntimeActivation>::exec(*this, t, weight);
}
void mergeImpl(Accumulator const & o)
{
DecoratorImpl<Accumulator, Accumulator::workInPass, allowRuntimeActivation>::mergeImpl(*this, o);
this->next_.mergeImpl(o.next_);
}
void applyHistogramOptions(HistogramOptions const & options)
{
DecoratorImpl<Accumulator, workInPass, allowRuntimeActivation>::applyHistogramOptions(*this, options);
this->next_.applyHistogramOptions(options);
}
template <class SHAPE>
void setCoordinateOffsetImpl(SHAPE const & offset)
{
this->setCoordinateOffset(offset);
this->next_.setCoordinateOffsetImpl(offset);
}
static unsigned int passesRequired()
{
return DecoratorImpl<Accumulator, workInPass, allowRuntimeActivation>::passesRequired();
}
template <class ActiveFlags>
static unsigned int passesRequired(ActiveFlags const & flags)
{
return DecoratorImpl<Accumulator, workInPass, allowRuntimeActivation>::passesRequired(flags);
}
};
typedef Accumulator type;
};
template <class CONFIG, unsigned LEVEL>
struct AccumulatorFactory<void, CONFIG, LEVEL>
{
typedef AccumulatorEndImpl<LEVEL, typename CONFIG::GlobalAccumulatorHandle> type;
};
struct InvalidGlobalAccumulatorHandle
{
typedef Error__Global_statistics_are_only_defined_for_AccumulatorChainArray type;
InvalidGlobalAccumulatorHandle()
: pointer_(0)
{}
type const * pointer_;
};
// helper classes to create an accumulator chain from a TypeList
// if dynamic=true, a dynamic accumulator will be created
// if dynamic=false, a plain accumulator will be created
template <class T, class Selected, bool dynamic=false, class GlobalHandle=InvalidGlobalAccumulatorHandle>
struct ConfigureAccumulatorChain
#ifndef DOXYGEN
: public ConfigureAccumulatorChain<T, typename AddDependencies<typename Selected::type>::type, dynamic>
#endif
{};
template <class T, class HEAD, class TAIL, bool dynamic, class GlobalHandle>
struct ConfigureAccumulatorChain<T, TypeList<HEAD, TAIL>, dynamic, GlobalHandle>
{
typedef TypeList<HEAD, TAIL> TagList;
typedef T InputType;
static const bool allowRuntimeActivation = dynamic;
typedef GlobalHandle GlobalAccumulatorHandle;
typedef typename AccumulatorFactory<HEAD, ConfigureAccumulatorChain>::type type;
};
template <class T, class Selected, bool dynamic=false>
struct ConfigureAccumulatorChainArray
#ifndef DOXYGEN
: public ConfigureAccumulatorChainArray<T, typename AddDependencies<typename Selected::type>::type, dynamic>
#endif
{};
template <class T, class HEAD, class TAIL, bool dynamic>
struct ConfigureAccumulatorChainArray<T, TypeList<HEAD, TAIL>, dynamic>
{
typedef TypeList<HEAD, TAIL> TagList;
typedef SeparateGlobalAndRegionTags<TagList> TagSeparator;
typedef typename TagSeparator::GlobalTags GlobalTags;
typedef typename TagSeparator::RegionTags RegionTags;
typedef typename ConfigureAccumulatorChain<T, GlobalTags, dynamic>::type GlobalAccumulatorChain;
struct GlobalAccumulatorHandle
{
typedef GlobalAccumulatorChain type;
GlobalAccumulatorHandle()
: pointer_(0)
{}
type const * pointer_;
};
typedef typename ConfigureAccumulatorChain<T, RegionTags, dynamic, GlobalAccumulatorHandle>::type RegionAccumulatorChain;
typedef LabelDispatch<T, GlobalAccumulatorChain, RegionAccumulatorChain> type;
};
} // namespace acc_detail
/****************************************************************************/
/* */
/* accumulator chain */
/* */
/****************************************************************************/
// Implement the high-level interface of an accumulator chain
template <class T, class NEXT>
class AccumulatorChainImpl
{
public:
typedef NEXT InternalBaseType;
typedef AccumulatorBegin Tag;
typedef typename InternalBaseType::argument_type argument_type;
typedef typename InternalBaseType::first_argument_type first_argument_type;
typedef typename InternalBaseType::second_argument_type second_argument_type;
typedef void value_type;
typedef typename InternalBaseType::result_type result_type;
static const int staticSize = InternalBaseType::index;
InternalBaseType next_;
/** \brief Current pass of the accumulator chain.
*/
unsigned int current_pass_;
AccumulatorChainImpl()
: current_pass_(0)
{}
/** Set options for all histograms in the accumulator chain. See histogram accumulators for possible options. The function is ignored if there is no histogram in the accumulator chain.
*/
void setHistogramOptions(HistogramOptions const & options)
{
next_.applyHistogramOptions(options);
}
/** Set regional and global options for all histograms in the accumulator chain.
*/
void setHistogramOptions(HistogramOptions const & regionoptions, HistogramOptions const & globaloptions)
{
next_.applyHistogramOptions(regionoptions, globaloptions);
}
/** Set an offset for <tt>Coord<...></tt> statistics.
If the offset is non-zero, coordinate statistics such as <tt>RegionCenter</tt> are computed
in the global coordinate system defined by the \a offset. Without an offset, these statistics
are computed in the local coordinate system of the current region of interest.
*/
template <class SHAPE>
void setCoordinateOffset(SHAPE const & offset)
{
next_.setCoordinateOffsetImpl(offset);
}
/** Reset current_pass_ of the accumulator chain to 'reset_to_pass'.
*/
void reset(unsigned int reset_to_pass = 0)
{
current_pass_ = reset_to_pass;
if(reset_to_pass == 0)
next_.reset();
}
template <unsigned N>
void update(T const & t)
{
if(current_pass_ == N)
{
next_.template pass<N>(t);
}
else if(current_pass_ < N)
{
current_pass_ = N;
if(N == 1)
next_.resize(acc_detail::shapeOf(t));
next_.template pass<N>(t);
}
else
{
std::string message("AccumulatorChain::update(): cannot return to pass ");
message << N << " after working on pass " << current_pass_ << ".";
vigra_precondition(false, message);
}
}
template <unsigned N>
void update(T const & t, double weight)
{
if(current_pass_ == N)
{
next_.template pass<N>(t, weight);
}
else if(current_pass_ < N)
{
current_pass_ = N;
if(N == 1)
next_.resize(acc_detail::shapeOf(t));
next_.template pass<N>(t, weight);
}
else
{
std::string message("AccumulatorChain::update(): cannot return to pass ");
message << N << " after working on pass " << current_pass_ << ".";
vigra_precondition(false, message);
}
}
/** Equivalent to merge(o) .
*/
void operator+=(AccumulatorChainImpl const & o)
{
merge(o);
}
/** Merge the accumulator chain with accumulator chain 'o'. This only works if all selected statistics in the accumulator chain support the '+=' operator. See the documentations of the particular statistics for support information.
*/
void merge(AccumulatorChainImpl const & o)
{
next_.mergeImpl(o.next_);
}
result_type operator()() const
{
return next_.get();
}
void operator()(T const & t)
{
update<1>(t);
}
void operator()(T const & t, double weight)
{
update<1>(t, weight);
}
void updatePass2(T const & t)
{
update<2>(t);
}
void updatePass2(T const & t, double weight)
{
update<2>(t, weight);
}
/** Upate all accumulators in the accumulator chain that work in pass N with data t. Requirement: 0 < N < 6 and N >= current_pass_ . If N < current_pass_ call reset() first.
*/
void updatePassN(T const & t, unsigned int N)
{
switch (N)
{
case 1: update<1>(t); break;
case 2: update<2>(t); break;
case 3: update<3>(t); break;
case 4: update<4>(t); break;
case 5: update<5>(t); break;
default:
vigra_precondition(false,
"AccumulatorChain::updatePassN(): 0 < N < 6 required.");
}
}
/** Upate all accumulators in the accumulator chain that work in pass N with data t and weight. Requirement: 0 < N < 6 and N >= current_pass_ . If N < current_pass_ call reset() first.
*/
void updatePassN(T const & t, double weight, unsigned int N)
{
switch (N)
{
case 1: update<1>(t, weight); break;
case 2: update<2>(t, weight); break;
case 3: update<3>(t, weight); break;
case 4: update<4>(t, weight); break;
case 5: update<5>(t, weight); break;
default:
vigra_precondition(false,
"AccumulatorChain::updatePassN(): 0 < N < 6 required.");
}
}
/** Return the number of passes required to compute all statistics in the accumulator chain.
*/
unsigned int passesRequired() const
{
return InternalBaseType::passesRequired();
}
};
// Create an accumulator chain containing the Selected statistics and their dependencies.
/** \brief Create an accumulator chain containing the selected statistics and their dependencies.
AccumulatorChain is used to compute global statistics which have to be selected at compile time.
The template parameters are as follows:
- T: The input type
- either element type of the data(e.g. double, int, RGBValue, ...)
- or type of CoupledHandle (for simultaneous access to coordinates and/or weights)
- Selected: statistics to be computed and index specifier for the CoupledHandle, wrapped with Select
Usage:
\code
typedef double DataType;
AccumulatorChain<DataType, Select<Variance, Mean, Minimum, ...> > accumulator;
\endcode
Usage, using CoupledHandle:
\code
const int dim = 3; //dimension of MultiArray
typedef double DataType;
typedef double WeightType;
typedef vigra::CoupledIteratorType<dim, DataType, WeightType>::HandleType Handle;
AccumulatorChain<Handle, Select<DataArg<1>, WeightArg<2>, Mean,...> > a;
\endcode
See \ref FeatureAccumulators for more information and examples of use.
*/
template <class T, class Selected, bool dynamic=false>
class AccumulatorChain
#ifndef DOXYGEN // hide AccumulatorChainImpl from documentation
: public AccumulatorChainImpl<T, typename acc_detail::ConfigureAccumulatorChain<T, Selected, dynamic>::type>
#endif
{
public:
// \brief TypeList of Tags in the accumulator chain (?).
typedef typename acc_detail::ConfigureAccumulatorChain<T, Selected, dynamic>::TagList AccumulatorTags;
/** Before having seen data (current_pass_==0), the shape of the data can be changed... (?)
*/
template <class U, int N>
void reshape(TinyVector<U, N> const & s)
{
vigra_precondition(this->current_pass_ == 0,
"AccumulatorChain::reshape(): cannot reshape after seeing data. Call AccumulatorChain::reset() first.");
this->next_.resize(s);
this->current_pass_ = 1;
}
/** Return the names of all tags in the accumulator chain (selected statistics and their dependencies).
*/
static ArrayVector<std::string> const & tagNames()
{
static ArrayVector<std::string> * n = VIGRA_SAFE_STATIC(n, new ArrayVector<std::string>(collectTagNames()));
return *n;
}
#ifdef DOXYGEN // hide AccumulatorChainImpl from documentation
/** Set options for all histograms in the accumulator chain. See histogram accumulators for possible options. The function is ignored if there is no histogram in the accumulator chain.
*/
void setHistogramOptions(HistogramOptions const & options);
/** Set an offset for <tt>Coord<...></tt> statistics.
If the offset is non-zero, coordinate statistics such as <tt>RegionCenter</tt> are computed
in the global coordinate system defined by the \a offset. Without an offset, these statistics
are computed in the local coordinate system of the current region of interest.
*/
template <class SHAPE>
void setCoordinateOffset(SHAPE const & offset);
/** Reset current_pass_ of the accumulator chain to 'reset_to_pass'. */
void reset(unsigned int reset_to_pass = 0);
/** Equivalent to merge(o) . */
void operator+=(AccumulatorChainImpl const & o);
/** Merge the accumulator chain with accumulator chain 'o'. This only works if all selected statistics in the accumulator chain support the '+=' operator. See the documentations of the particular statistics for support information.
*/
void merge(AccumulatorChainImpl const & o);
/** Upate all accumulators in the accumulator chain that work in pass N with data t. Requirement: 0 < N < 6 and N >= current_pass_ . If N < current_pass_ call reset first.
*/
void updatePassN(T const & t, unsigned int N);
/** Upate all accumulators in the accumulator chain that work in pass N with data t and weight. Requirement: 0 < N < 6 and N >= current_pass_ . If N < current_pass_ call reset first.
*/
void updatePassN(T const & t, double weight, unsigned int N);
/** Return the number of passes required to compute all statistics in the accumulator chain.
*/
unsigned int passesRequired() const;
#endif
private:
static ArrayVector<std::string> collectTagNames()
{
ArrayVector<std::string> n;
acc_detail::CollectAccumulatorNames<AccumulatorTags>::exec(n);
std::sort(n.begin(), n.end());
return n;
}
};
template <unsigned int N, class T1, class T2, class T3, class T4, class T5, class Selected, bool dynamic>
class AccumulatorChain<CoupledArrays<N, T1, T2, T3, T4, T5>, Selected, dynamic>
: public AccumulatorChain<typename CoupledArrays<N, T1, T2, T3, T4, T5>::HandleType, Selected, dynamic>
{};
// Create a dynamic accumulator chain containing the Selected statistics and their dependencies.
// Statistics will only be computed if activate<Tag>() is called at runtime.
/** \brief Create a dynamic accumulator chain containing the selected statistics and their dependencies.
DynamicAccumulatorChain is used to compute global statistics with run-time activation. A set of statistics is selected at run-time and from this set statistics can be activated at run-time by calling activate<stat>() or activate(std::string stat).
The template parameters are as follows:
- T: The input type
- either element type of the data(e.g. double, int, RGBValue, ...)
- or type of CoupledHandle (for access to coordinates and/or weights)
- Selected: statistics to be computed and index specifier for the CoupledHandle, wrapped with Select
Usage:
\code
typedef double DataType;
DynamicAccumulatorChain<DataType, Select<Variance, Mean, Minimum, ...> > accumulator;
\endcode
Usage, using CoupledHandle:
\code
const int dim = 3; //dimension of MultiArray
typedef double DataType;
typedef double WeightType;
typedef vigra::CoupledIteratorType<dim, DataType, WeightType>::HandleType Handle;
DynamicAccumulatorChain<Handle, Select<DataArg<1>, WeightArg<2>, Mean,...> > a;
\endcode
See \ref FeatureAccumulators for more information and examples of use.
*/
template <class T, class Selected>
class DynamicAccumulatorChain
: public AccumulatorChain<T, Selected, true>
{
public:
typedef typename AccumulatorChain<T, Selected, true>::InternalBaseType InternalBaseType;
typedef typename DynamicAccumulatorChain::AccumulatorTags AccumulatorTags;
/** Activate statistic 'tag'. Alias names are not recognized. If the statistic is not in the accumulator chain a PreconditionViolation is thrown.
*/
void activate(std::string tag)
{
vigra_precondition(activateImpl(tag),
std::string("DynamicAccumulatorChain::activate(): Tag '") + tag + "' not found.");
}
/** %activate\<TAG\>() activates statistic 'TAG'. If the statistic is not in the accumulator chain it is ignored. (?)
*/
template <class TAG>
void activate()
{
LookupTag<TAG, DynamicAccumulatorChain>::type::activateImpl(getAccumulator<AccumulatorEnd>(*this).active_accumulators_);
}
/** Activate all statistics in the accumulator chain.
*/
void activateAll()
{
getAccumulator<AccumulatorEnd>(*this).active_accumulators_.set();
}
/** Return true if the statistic 'tag' is active, i.e. activate(std::string tag) or activate<TAG>() has been called. If the statistic is not in the accumulator chain a PreconditionViolation is thrown. (Note that alias names are not recognized.)
*/
bool isActive(std::string tag) const
{
acc_detail::TagIsActive_Visitor v;
vigra_precondition(isActiveImpl(tag, v),
std::string("DynamicAccumulatorChain::isActive(): Tag '") + tag + "' not found.");
return v.result;
}
/** %isActive\<TAG\>() returns true if statistic 'TAG' is active, i.e. activate(std::string tag) or activate<TAG>() has been called. If the statistic is not in the accumulator chain, true is returned. (?)
*/
template <class TAG>
bool isActive() const
{
return LookupTag<TAG, DynamicAccumulatorChain>::type::isActiveImpl(getAccumulator<AccumulatorEnd>(*this).active_accumulators_);
}
/** Return names of all statistics in the accumulator chain that are active.
*/
ArrayVector<std::string> activeNames() const
{
ArrayVector<std::string> res;
for(unsigned k=0; k<DynamicAccumulatorChain::tagNames().size(); ++k)
if(isActive(DynamicAccumulatorChain::tagNames()[k]))
res.push_back(DynamicAccumulatorChain::tagNames()[k]);
return res;
}
/** Return number of passes required to compute the active statistics in the accumulator chain.
*/
unsigned int passesRequired() const
{
return InternalBaseType::passesRequired(getAccumulator<AccumulatorEnd>(*this).active_accumulators_);
}
protected:
bool activateImpl(std::string tag)
{
return acc_detail::ApplyVisitorToTag<AccumulatorTags>::exec(*this,
normalizeString(tag), acc_detail::ActivateTag_Visitor());
}
bool isActiveImpl(std::string tag, acc_detail::TagIsActive_Visitor & v) const
{
return acc_detail::ApplyVisitorToTag<AccumulatorTags>::exec(*this, normalizeString(tag), v);
}
};
template <unsigned int N, class T1, class T2, class T3, class T4, class T5, class Selected>
class DynamicAccumulatorChain<CoupledArrays<N, T1, T2, T3, T4, T5>, Selected>
: public DynamicAccumulatorChain<typename CoupledArrays<N, T1, T2, T3, T4, T5>::HandleType, Selected>
{};
/** \brief Create an array of accumulator chains containing the selected per-region and global statistics and their dependencies.
AccumulatorChainArray is used to compute per-region statistics (as well as global statistics). The statistics are selected at compile-time. An array of accumulator chains (one per region) for region statistics is created and one accumulator chain for global statistics. The region labels always start at 0. Use the Global modifier to compute global statistics (by default per-region statistics are computed).
The template parameters are as follows:
- T: The input type, type of CoupledHandle (for access to coordinates, labels and weights)
- Selected: statistics to be computed and index specifier for the CoupledHandle, wrapped with Select
Usage:
\code
const int dim = 3; //dimension of MultiArray
typedef double DataType;
typedef double WeightType;
typedef unsigned int LabelType;
typedef vigra::CoupledIteratorType<dim, DataType, WeightType, LabelType>::HandleType Handle;
AccumulatorChainArray<Handle, Select<DataArg<1>, WeightArg<2>, LabelArg<3>, Mean, Variance, ...> > a;
\endcode
See \ref FeatureAccumulators for more information and examples of use.
*/
template <class T, class Selected, bool dynamic=false>
class AccumulatorChainArray
#ifndef DOXYGEN //hide AccumulatorChainImpl vom documentation
: public AccumulatorChainImpl<T, typename acc_detail::ConfigureAccumulatorChainArray<T, Selected, dynamic>::type>
#endif
{
public:
typedef typename acc_detail::ConfigureAccumulatorChainArray<T, Selected, dynamic> Creator;
typedef typename Creator::TagList AccumulatorTags;
typedef typename Creator::GlobalTags GlobalTags;
typedef typename Creator::RegionTags RegionTags;
/** Statistics will not be computed for label l. Note that only one label can be ignored.
*/
void ignoreLabel(MultiArrayIndex l)
{
this->next_.ignoreLabel(l);
}
/** Set the maximum region label (e.g. for merging two accumulator chains).
*/
void setMaxRegionLabel(unsigned label)
{
this->next_.setMaxRegionLabel(label);
}
/** %Maximum region label. (equal to regionCount() - 1)
*/
MultiArrayIndex maxRegionLabel() const
{
return this->next_.maxRegionLabel();
}
/** Number of Regions. (equal to maxRegionLabel() + 1)
*/
unsigned int regionCount() const
{
return this->next_.regions_.size();
}
/** Equivalent to <tt>merge(o)</tt>.
*/
void operator+=(AccumulatorChainArray const & o)
{
merge(o);
}
/** Merge region i with region j.
*/
void merge(unsigned i, unsigned j)
{
vigra_precondition(i <= maxRegionLabel() && j <= maxRegionLabel(),
"AccumulatorChainArray::merge(): region labels out of range.");
this->next_.mergeImpl(i, j);
}
/** Merge with accumulator chain o. maxRegionLabel() of the two accumulators must be equal.
*/
void merge(AccumulatorChainArray const & o)
{
if(maxRegionLabel() == -1)
setMaxRegionLabel(o.maxRegionLabel());
vigra_precondition(maxRegionLabel() == o.maxRegionLabel(),
"AccumulatorChainArray::merge(): maxRegionLabel must be equal.");
this->next_.mergeImpl(o.next_);
}
/** Merge with accumulator chain o using a mapping between labels of the two accumulators. Label l of accumulator chain o is mapped to labelMapping[l]. Hence, all elements of labelMapping must be <= maxRegionLabel() and size of labelMapping must match o.regionCount().
*/
template <class ArrayLike>
void merge(AccumulatorChainArray const & o, ArrayLike const & labelMapping)
{
vigra_precondition(labelMapping.size() == o.regionCount(),
"AccumulatorChainArray::merge(): labelMapping.size() must match regionCount() of RHS.");
this->next_.mergeImpl(o.next_, labelMapping);
}
/** Return names of all tags in the accumulator chain (selected statistics and their dependencies).
*/
static ArrayVector<std::string> const & tagNames()
{
static const ArrayVector<std::string> n = collectTagNames();
return n;
}
#ifdef DOXYGEN // hide AccumulatorChainImpl from documentation
/** \copydoc vigra::acc::AccumulatorChain::setHistogramOptions(HistogramOptions const &) */
void setHistogramOptions(HistogramOptions const & options);
/** Set regional and global options for all histograms in the accumulator chain.
*/
void setHistogramOptions(HistogramOptions const & regionoptions, HistogramOptions const & globaloptions);
/** \copydoc vigra::acc::AccumulatorChain::setCoordinateOffset(SHAPE const &)
*/
template <class SHAPE>
void setCoordinateOffset(SHAPE const & offset)
/** \copydoc vigra::acc::AccumulatorChain::reset() */
void reset(unsigned int reset_to_pass = 0);
/** \copydoc vigra::acc::AccumulatorChain::operator+=() */
void operator+=(AccumulatorChainImpl const & o);
/** \copydoc vigra::acc::AccumulatorChain::updatePassN(T const &,unsigned int) */
void updatePassN(T const & t, unsigned int N);
/** \copydoc vigra::acc::AccumulatorChain::updatePassN(T const &,double,unsigned int) */
void updatePassN(T const & t, double weight, unsigned int N);
#endif
private:
static ArrayVector<std::string> collectTagNames()
{
ArrayVector<std::string> n;
acc_detail::CollectAccumulatorNames<AccumulatorTags>::exec(n);
std::sort(n.begin(), n.end());
return n;
}
};
template <unsigned int N, class T1, class T2, class T3, class T4, class T5, class Selected, bool dynamic>
class AccumulatorChainArray<CoupledArrays<N, T1, T2, T3, T4, T5>, Selected, dynamic>
: public AccumulatorChainArray<typename CoupledArrays<N, T1, T2, T3, T4, T5>::HandleType, Selected, dynamic>
{};
/** \brief Create an array of dynamic accumulator chains containing the selected per-region and global statistics and their dependencies.
DynamicAccumulatorChainArray is used to compute per-region statistics (as well as global statistics) with run-time activation. A set of statistics is selected at run-time and from this set statistics can be activated at run-time by calling activate<stat>() or activate(std::string stat).
The template parameters are as follows:
- T: The input type, type of CoupledHandle (for access to coordinates, labels and weights)
- Selected: statistics to be computed and index specifier for the CoupledHandle, wrapped with Select
Usage:
\code
const int dim = 3; //dimension of MultiArray
typedef double DataType;
typedef double WeightType;
typedef unsigned int LabelType;
typedef vigra::CoupledIteratorType<dim, DataType, WeightType, LabelType>::HandleType Handle;
DynamicAccumulatorChainArray<Handle, Select<DataArg<1>, WeightArg<2>, LabelArg<3>, Mean, Variance, ...> > a;
\endcode
See \ref FeatureAccumulators for more information and examples of use.
*/
template <class T, class Selected>
class DynamicAccumulatorChainArray
: public AccumulatorChainArray<T, Selected, true>
{
public:
typedef typename DynamicAccumulatorChainArray::AccumulatorTags AccumulatorTags;
/** \copydoc DynamicAccumulatorChain::activate(std::string tag) */
void activate(std::string tag)
{
vigra_precondition(activateImpl(tag),
std::string("DynamicAccumulatorChainArray::activate(): Tag '") + tag + "' not found.");
}
/** \copydoc DynamicAccumulatorChain::activate() */
template <class TAG>
void activate()
{
this->next_.template activate<TAG>();
}
/** \copydoc DynamicAccumulatorChain::activateAll() */
void activateAll()
{
this->next_.activateAll();
}
/** Return true if the statistic 'tag' is active, i.e. activate(std::string tag) or activate<TAG>() has been called. If the statistic is not in the accumulator chain a PreconditionViolation is thrown. (Note that alias names are not recognized.)
*/
bool isActive(std::string tag) const
{
acc_detail::TagIsActive_Visitor v;
vigra_precondition(isActiveImpl(tag, v),
std::string("DynamicAccumulatorChainArray::isActive(): Tag '") + tag + "' not found.");
return v.result;
}
/** %isActive\<TAG\>() returns true if statistic 'TAG' is active, i.e. activate(std::string tag) or activate<TAG>() has been called. If the statistic is not in the accumulator chain, true is returned. (?)
*/
template <class TAG>
bool isActive() const
{
return this->next_.template isActive<TAG>();
}
/** \copydoc DynamicAccumulatorChain::activeNames() */
ArrayVector<std::string> activeNames() const
{
ArrayVector<std::string> res;
for(unsigned k=0; k<DynamicAccumulatorChainArray::tagNames().size(); ++k)
if(isActive(DynamicAccumulatorChainArray::tagNames()[k]))
res.push_back(DynamicAccumulatorChainArray::tagNames()[k]);
return res;
}
/** \copydoc DynamicAccumulatorChain::passesRequired() */
unsigned int passesRequired() const
{
return this->next_.passesRequiredDynamic();
}
protected:
bool activateImpl(std::string tag)
{
return acc_detail::ApplyVisitorToTag<AccumulatorTags>::exec(this->next_,
normalizeString(tag), acc_detail::ActivateTag_Visitor());
}
bool isActiveImpl(std::string tag, acc_detail::TagIsActive_Visitor & v) const
{
return acc_detail::ApplyVisitorToTag<AccumulatorTags>::exec(this->next_, normalizeString(tag), v);
}
};
template <unsigned int N, class T1, class T2, class T3, class T4, class T5, class Selected>
class DynamicAccumulatorChainArray<CoupledArrays<N, T1, T2, T3, T4, T5>, Selected>
: public DynamicAccumulatorChainArray<typename CoupledArrays<N, T1, T2, T3, T4, T5>::HandleType, Selected>
{};
/****************************************************************************/
/* */
/* generic access functions */
/* */
/****************************************************************************/
template <class TAG>
struct Error__Attempt_to_access_inactive_statistic;
namespace acc_detail {
// accumulator lookup rules: find the accumulator that implements TAG
// When A does not implement TAG, continue search in A::InternalBaseType.
template <class TAG, class A, class FromTag=typename A::Tag>
struct LookupTagImpl
#ifndef DOXYGEN
: public LookupTagImpl<TAG, typename A::InternalBaseType>
#endif
{};
// 'const A' is treated like A, except that the reference member is now const.
template <class TAG, class A, class FromTag>
struct LookupTagImpl<TAG, A const, FromTag>
: public LookupTagImpl<TAG, A>
{
typedef typename LookupTagImpl<TAG, A>::type const & reference;
typedef typename LookupTagImpl<TAG, A>::type const * pointer;
};
// When A implements TAG, report its type and associated information.
template <class TAG, class A>
struct LookupTagImpl<TAG, A, TAG>
{
typedef TAG Tag;
typedef A type;
typedef A & reference;
typedef A * pointer;
typedef typename A::value_type value_type;
typedef typename A::result_type result_type;
};
// Again, 'const A' is treated like A, except that the reference member is now const.
template <class TAG, class A>
struct LookupTagImpl<TAG, A const, TAG>
: public LookupTagImpl<TAG, A, TAG>
{
typedef typename LookupTagImpl<TAG, A, TAG>::type const & reference;
typedef typename LookupTagImpl<TAG, A, TAG>::type const * pointer;
};
// Recursion termination: when we end up in AccumulatorEnd without finding a
// suitable A, we stop and report an error
template <class TAG, class A>
struct LookupTagImpl<TAG, A, AccumulatorEnd>
{
typedef TAG Tag;
typedef A type;
typedef A & reference;
typedef A * pointer;
typedef Error__Attempt_to_access_inactive_statistic<TAG> value_type;
typedef Error__Attempt_to_access_inactive_statistic<TAG> result_type;
};
// ... except when we are actually looking for AccumulatorEnd
template <class A>
struct LookupTagImpl<AccumulatorEnd, A, AccumulatorEnd>
{
typedef AccumulatorEnd Tag;
typedef A type;
typedef A & reference;
typedef A * pointer;
typedef void value_type;
typedef void result_type;
};
// ... or we are looking for a global statistic, in which case
// we continue the serach via A::GlobalAccumulatorType, but remember that
// we are actually looking for a global tag.
template <class TAG, class A>
struct LookupTagImpl<Global<TAG>, A, AccumulatorEnd>
: public LookupTagImpl<TAG, typename A::GlobalAccumulatorType>
{
typedef Global<TAG> Tag;
};
// When we encounter the LabelDispatch accumulator, we continue the
// search via LabelDispatch::RegionAccumulatorChain by default
template <class TAG, class A>
struct LookupTagImpl<TAG, A, LabelDispatchTag>
: public LookupTagImpl<TAG, typename A::RegionAccumulatorChain>
{};
// ... except when we are looking for a global statistic, in which case
// we continue via LabelDispatch::GlobalAccumulatorChain, but remember that
// we are actually looking for a global tag.
template <class TAG, class A>
struct LookupTagImpl<Global<TAG>, A, LabelDispatchTag>
: public LookupTagImpl<TAG, typename A::GlobalAccumulatorChain>
{
typedef Global<TAG> Tag;
};
// ... or we are looking for the LabelDispatch accumulator itself
template <class A>
struct LookupTagImpl<LabelDispatchTag, A, LabelDispatchTag>
{
typedef LabelDispatchTag Tag;
typedef A type;
typedef A & reference;
typedef A * pointer;
typedef void value_type;
typedef void result_type;
};
} // namespace acc_detail
// Lookup the accumulator in the chain A that implements the given TAG.
template <class Tag, class A>
struct LookupTag
: public acc_detail::LookupTagImpl<typename StandardizeTag<Tag>::type, A>
{};
// Lookup the dependency TAG of the accumulator A.
// This template ensures that dependencies are used with matching modifiers.
// Specifically, if you search for Count as a dependency of Weighted<Mean>, the search
// actually returns Weighted<Count>, wheras Count will be returned for plain Mean.
template <class Tag, class A, class TargetTag>
struct LookupDependency
: public acc_detail::LookupTagImpl<
typename TransferModifiers<TargetTag, typename StandardizeTag<Tag>::type>::type, A>
{};
namespace acc_detail {
// CastImpl applies the same rules as LookupTagImpl, but returns a reference to an
// accumulator instance rather than an accumulator type
template <class Tag, class FromTag, class reference>
struct CastImpl
{
template <class A>
static reference exec(A & a)
{
return CastImpl<Tag, typename A::InternalBaseType::Tag, reference>::exec(a.next_);
}
template <class A>
static reference exec(A & a, MultiArrayIndex label)
{
return CastImpl<Tag, typename A::InternalBaseType::Tag, reference>::exec(a.next_, label);
}
};
template <class Tag, class reference>
struct CastImpl<Tag, Tag, reference>
{
template <class A>
static reference exec(A & a)
{
return const_cast<reference>(a);
}
template <class A>
static reference exec(A & a, MultiArrayIndex)
{
vigra_precondition(false,
"getAccumulator(): region accumulators can only be queried for AccumulatorChainArray.");
return a;
}
};
template <class Tag, class reference>
struct CastImpl<Tag, AccumulatorEnd, reference>
{
template <class A>
static reference exec(A & a)
{
return a;
}
template <class A>
static reference exec(A & a, MultiArrayIndex)
{
return a;
}
};
template <class Tag, class reference>
struct CastImpl<Global<Tag>, AccumulatorEnd, reference>
{
template <class A>
static reference exec(A & a)
{
return CastImpl<Tag, typename A::GlobalAccumulatorType::Tag, reference>::exec(*a.globalAccumulator_.pointer_);
}
};
template <class reference>
struct CastImpl<AccumulatorEnd, AccumulatorEnd, reference>
{
template <class A>
static reference exec(A & a)
{
return a;
}
template <class A>
static reference exec(A & a, MultiArrayIndex)
{
return a;
}
};
template <class Tag, class reference>
struct CastImpl<Tag, LabelDispatchTag, reference>
{
template <class A>
static reference exec(A & a)
{
vigra_precondition(false,
"getAccumulator(): a region label is required when a region accumulator is queried.");
return CastImpl<Tag, typename A::RegionAccumulatorChain::Tag, reference>::exec(a.regions_[0]);
}
template <class A>
static reference exec(A & a, MultiArrayIndex label)
{
return CastImpl<Tag, typename A::RegionAccumulatorChain::Tag, reference>::exec(a.regions_[label]);
}
};
template <class Tag, class reference>
struct CastImpl<Global<Tag>, LabelDispatchTag, reference>
{
template <class A>
static reference exec(A & a)
{
return CastImpl<Tag, typename A::GlobalAccumulatorChain::Tag, reference>::exec(a.next_);
}
};
template <class reference>
struct CastImpl<LabelDispatchTag, LabelDispatchTag, reference>
{
template <class A>
static reference exec(A & a)
{
return a;
}
};
} // namespace acc_detail
// Get a reference to the accumulator TAG in the accumulator chain A
/** Get a reference to the accumulator 'TAG' in the accumulator chain 'a'. This can be useful for example to update a certain accumulator with data, set individual options or get information about a certain accumulator.\n
Example of use (set options):
\code
vigra::MultiArray<2, double> data(...);
typedef UserRangeHistogram<40> SomeHistogram; //binCount set at compile time
typedef UserRangeHistogram<0> SomeHistogram2; // binCount must be set at run-time
AccumulatorChain<DataType, Select<SomeHistogram, SomeHistogram2> > a;
getAccumulator<SomeHistogram>(a).setMinMax(0.1, 0.9);
getAccumulator<SomeHistogram2>(a).setMinMax(0.0, 1.0);
extractFeatures(data.begin(), data.end(), a);
\endcode
Example of use (get information):
\code
vigra::MultiArray<2, double> data(...));
AccumulatorChain<double, Select<Mean, Skewness> > a;
std::cout << "passes required for all statistics: " << a.passesRequired() << std::endl; //skewness needs two passes
std::cout << "passes required by Mean: " << getAccumulator<Mean>(a).passesRequired() << std::endl;
\endcode
See \ref FeatureAccumulators for more information about feature computation via accumulators.
*/
template <class TAG, class A>
inline typename LookupTag<TAG, A>::reference
getAccumulator(A & a)
{
typedef typename LookupTag<TAG, A>::Tag StandardizedTag;
typedef typename LookupTag<TAG, A>::reference reference;
return acc_detail::CastImpl<StandardizedTag, typename A::Tag, reference>::exec(a);
}
// Get a reference to the accumulator TAG for region 'label' in the accumulator chain A
/** Get a reference to the accumulator 'TAG' for region 'label' in the accumulator chain 'a'.
*/
template <class TAG, class A>
inline typename LookupTag<TAG, A>::reference
getAccumulator(A & a, MultiArrayIndex label)
{
typedef typename LookupTag<TAG, A>::Tag StandardizedTag;
typedef typename LookupTag<TAG, A>::reference reference;
return acc_detail::CastImpl<StandardizedTag, typename A::Tag, reference>::exec(a, label);
}
// get the result of the accumulator specified by TAG
/** Get the result of the accumulator 'TAG' in the accumulator chain 'a'.\n
Example of use:
\code
vigra::MultiArray<2, double> data(...);
AccumulatorChain<DataType, Select<Variance, Mean, StdDev> > a;
extractFeatures(data.begin(), data.end(), a);
double mean = get<Mean>(a);
\endcode
See \ref FeatureAccumulators for more information about feature computation via accumulators.
*/
template <class TAG, class A>
inline typename LookupTag<TAG, A>::result_type
get(A const & a)
{
return getAccumulator<TAG>(a).get();
}
// get the result of the accumulator TAG for region 'label'
/** Get the result of the accumulator 'TAG' for region 'label' in the accumulator chain 'a'.\n
Example of use:
\code
vigra::MultiArray<2, double> data(...);
vigra::MultiArray<2, int> labels(...);
typedef vigra::CoupledIteratorType<2, double, int>::type Iterator;
typedef Iterator::value_type Handle;
AccumulatorChainArray<Handle,
Select<DataArg<1>, LabelArg<2>, Mean, Variance> > a;
Iterator start = createCoupledIterator(data, labels);
Iterator end = start.getEndIterator();
extractFeatures(start,end,a);
double mean_of_region_1 = get<Mean>(a,1);
double mean_of_background = get<Mean>(a,0);
\endcode
See \ref FeatureAccumulators for more information about feature computation via accumulators.
*/
template <class TAG, class A>
inline typename LookupTag<TAG, A>::result_type
get(A const & a, MultiArrayIndex label)
{
return getAccumulator<TAG>(a, label).get();
}
// Get the result of the accumulator specified by TAG without checking if the accumulator is active.
// This must be used within an accumulator implementation to access dependencies because
// it applies the approprate modifiers to the given TAG. It must not be used in other situations.
// FIXME: is there a shorter name?
template <class TAG, class A>
inline typename LookupDependency<TAG, A>::result_type
getDependency(A const & a)
{
typedef typename LookupDependency<TAG, A>::Tag StandardizedTag;
typedef typename LookupDependency<TAG, A>::reference reference;
return acc_detail::CastImpl<StandardizedTag, typename A::Tag, reference>::exec(a)();
}
// activate the dynamic accumulator specified by Tag
/** Activate the dynamic accumulator 'Tag' in the dynamic accumulator chain 'a'. Same as a.activate<Tag>() (see DynamicAccumulatorChain::activate<Tag>() or DynamicAccumulatorChainArray::activate<Tag>()). For run-time activation use DynamicAccumulatorChain::activate(std::string tag) or DynamicAccumulatorChainArray::activate(std::string tag) instead.\n
See \ref FeatureAccumulators for more information about feature computation via accumulators.
*/
template <class Tag, class A>
inline void
activate(A & a)
{
a.template activate<Tag>();
}
// check if the dynamic accumulator specified by Tag is active
/** Check if the dynamic accumulator 'Tag' in the accumulator chain 'a' is active. Same as a.isActive<Tag>() (see DynamicAccumulatorChain::isActive<Tag>() or DynamicAccumulatorChainArray::isActive<Tag>()). At run-time, use DynamicAccumulatorChain::isActive(std::string tag) const or DynamicAccumulatorChainArray::isActive(std::string tag) const instead.\n
See \ref FeatureAccumulators for more information about feature computation via accumulators.
*/
template <class Tag, class A>
inline bool
isActive(A const & a)
{
return a.template isActive<Tag>();
}
/****************************************************************************/
/* */
/* generic loops */
/* */
/****************************************************************************/
/** Generic loop to collect statistics from one or several arrays.
This function automatically performs as many passes over the data as necessary for the selected statistics. The basic version of <tt>extractFeatures()</tt> takes an iterator pair and a reference to an accumulator chain:
\code
namespace vigra { namespace acc {
template <class ITERATOR, class ACCUMULATOR>
void extractFeatures(ITERATOR start, ITERATOR end, ACCUMULATOR & a);
}}
\endcode
The <tt>ITERATOR</tt> can be any STL-conforming <i>forward iterator</i> (including raw pointers and \ref vigra::CoupledScanOrderIterator). The <tt>ACCUMULATOR</tt> must be instantiated with the <tt>ITERATOR</tt>'s <tt>value_type</tt> as its first template argument. For example, to use a raw pointer you write:
\code
AccumulatorChain<double, Select<Mean, Variance> > a;
double * start = ...,
* end = ...;
extractFeatures(start, end, a);
\endcode
Similarly, you can use MultiArray's scan-order iterator:
\code
AccumulatorChain<TinyVector<float, 2>, Select<Mean, Variance> > a;
MultiArray<3, TinyVector<float, 2> > data(...);
extractFeatures(data.begin(), data.end(), a);
\endcode
An alternative syntax is used when you want to compute weighted or region statistics (or both). Then it is necessary to iterate over several arrays simultaneously. This fact is best conveyed to the accumulator via the helper class \ref vigra::CoupledArrays that is used as the accumulator's first template argument and holds the dimension and value types of the arrays involved. To actually compute the features, you then pass appropriate arrays to the <tt>extractfeatures()</tt> function directly. For example, region statistics can be obtained like this:
\code
MultiArray<3, double> data(...);
MultiArray<3, int> labels(...);
AccumulatorChainArray<CoupledArrays<3, double, int>,
Select<DataArg<1>, LabelArg<2>, // where to look for data and region labels
Mean, Variance> > // what statistics to compute
a;
extractFeatures(data, labels, a);
\endcode
This form of <tt>extractFeatures()</tt> is supported for up to five arrays (although at most three are currently making sense in practice):
\code
namespace vigra { namespace acc {
template <unsigned int N, class T1, class S1,
class ACCUMULATOR>
void extractFeatures(MultiArrayView<N, T1, S1> const & a1,
ACCUMULATOR & a);
...
template <unsigned int N, class T1, class S1,
class T2, class S2,
class T3, class S3,
class T4, class S4,
class T5, class S5,
class ACCUMULATOR>
void extractFeatures(MultiArrayView<N, T1, S1> const & a1,
MultiArrayView<N, T2, S2> const & a2,
MultiArrayView<N, T3, S3> const & a3,
MultiArrayView<N, T4, S4> const & a4,
MultiArrayView<N, T5, S5> const & a5,
ACCUMULATOR & a);
}}
\endcode
Of course, the number and types of the arrays specified in <tt>CoupledArrays</tt> must conform to the number and types of the arrays passed to <tt>extractFeatures()</tt>.
See \ref FeatureAccumulators for more information about feature computation via accumulators.
*/
doxygen_overloaded_function(template <...> void extractFeatures)
template <class ITERATOR, class ACCUMULATOR>
void extractFeatures(ITERATOR start, ITERATOR end, ACCUMULATOR & a)
{
for(unsigned int k=1; k <= a.passesRequired(); ++k)
for(ITERATOR i=start; i < end; ++i)
a.updatePassN(*i, k);
}
template <unsigned int N, class T1, class S1,
class ACCUMULATOR>
void extractFeatures(MultiArrayView<N, T1, S1> const & a1,
ACCUMULATOR & a)
{
typedef typename CoupledIteratorType<N, T1>::type Iterator;
Iterator start = createCoupledIterator(a1),
end = start.getEndIterator();
extractFeatures(start, end, a);
}
template <unsigned int N, class T1, class S1,
class T2, class S2,
class ACCUMULATOR>
void extractFeatures(MultiArrayView<N, T1, S1> const & a1,
MultiArrayView<N, T2, S2> const & a2,
ACCUMULATOR & a)
{
typedef typename CoupledIteratorType<N, T1, T2>::type Iterator;
Iterator start = createCoupledIterator(a1, a2),
end = start.getEndIterator();
extractFeatures(start, end, a);
}
template <unsigned int N, class T1, class S1,
class T2, class S2,
class T3, class S3,
class ACCUMULATOR>
void extractFeatures(MultiArrayView<N, T1, S1> const & a1,
MultiArrayView<N, T2, S2> const & a2,
MultiArrayView<N, T3, S3> const & a3,
ACCUMULATOR & a)
{
typedef typename CoupledIteratorType<N, T1, T2, T3>::type Iterator;
Iterator start = createCoupledIterator(a1, a2, a3),
end = start.getEndIterator();
extractFeatures(start, end, a);
}
template <unsigned int N, class T1, class S1,
class T2, class S2,
class T3, class S3,
class T4, class S4,
class ACCUMULATOR>
void extractFeatures(MultiArrayView<N, T1, S1> const & a1,
MultiArrayView<N, T2, S2> const & a2,
MultiArrayView<N, T3, S3> const & a3,
MultiArrayView<N, T4, S4> const & a4,
ACCUMULATOR & a)
{
typedef typename CoupledIteratorType<N, T1, T2, T3, T4>::type Iterator;
Iterator start = createCoupledIterator(a1, a2, a3, a4),
end = start.getEndIterator();
extractFeatures(start, end, a);
}
template <unsigned int N, class T1, class S1,
class T2, class S2,
class T3, class S3,
class T4, class S4,
class T5, class S5,
class ACCUMULATOR>
void extractFeatures(MultiArrayView<N, T1, S1> const & a1,
MultiArrayView<N, T2, S2> const & a2,
MultiArrayView<N, T3, S3> const & a3,
MultiArrayView<N, T4, S4> const & a4,
MultiArrayView<N, T5, S5> const & a5,
ACCUMULATOR & a)
{
typedef typename CoupledIteratorType<N, T1, T2, T3, T4, T5>::type Iterator;
Iterator start = createCoupledIterator(a1, a2, a3, a4, a5),
end = start.getEndIterator();
extractFeatures(start, end, a);
}
/****************************************************************************/
/* */
/* AccumulatorResultTraits */
/* */
/****************************************************************************/
template <class T>
struct AccumulatorResultTraits
{
typedef T type;
typedef T element_type;
typedef double element_promote_type;
typedef T MinmaxType;
typedef element_promote_type SumType;
typedef element_promote_type FlatCovarianceType;
typedef element_promote_type CovarianceType;
};
template <class T, int N>
struct AccumulatorResultTraits<TinyVector<T, N> >
{
typedef TinyVector<T, N> type;
typedef T element_type;
typedef double element_promote_type;
typedef TinyVector<T, N> MinmaxType;
typedef TinyVector<element_promote_type, N> SumType;
typedef TinyVector<element_promote_type, N*(N+1)/2> FlatCovarianceType;
typedef Matrix<element_promote_type> CovarianceType;
};
// (?) beign change
template <class T, unsigned int RED_IDX, unsigned int GREEN_IDX, unsigned int BLUE_IDX>
struct AccumulatorResultTraits<RGBValue<T, RED_IDX, GREEN_IDX, BLUE_IDX> >
{
typedef RGBValue<T> type;
typedef T element_type;
typedef double element_promote_type;
typedef RGBValue<T> MinmaxType;
typedef RGBValue<element_promote_type> SumType;
typedef TinyVector<element_promote_type, 3*(3+1)/2> FlatCovarianceType;
typedef Matrix<element_promote_type> CovarianceType;
};
// end change
template <unsigned int N, class T, class Stride>
struct AccumulatorResultTraits<MultiArrayView<N, T, Stride> >
{
typedef MultiArrayView<N, T, Stride> type;
typedef T element_type;
typedef double element_promote_type;
typedef MultiArray<N, T> MinmaxType;
typedef MultiArray<N, element_promote_type> SumType;
typedef MultiArray<1, element_promote_type> FlatCovarianceType;
typedef Matrix<element_promote_type> CovarianceType;
};
template <unsigned int N, class T, class Alloc>
struct AccumulatorResultTraits<MultiArray<N, T, Alloc> >
{
typedef MultiArrayView<N, T, Alloc> type;
typedef T element_type;
typedef double element_promote_type;
typedef MultiArray<N, T> MinmaxType;
typedef MultiArray<N, element_promote_type> SumType;
typedef MultiArray<1, element_promote_type> FlatCovarianceType;
typedef Matrix<element_promote_type> CovarianceType;
};
/****************************************************************************/
/* */
/* modifier implementations */
/* */
/****************************************************************************/
/** \brief Modifier. Compute statistic globally rather than per region.
This modifier only works when labels are given (with (Dynamic)AccumulatorChainArray), in which case statistics are computed per-region by default.
*/
template <class TAG>
class Global
{
public:
typedef typename StandardizeTag<TAG>::type TargetTag;
typedef typename TargetTag::Dependencies Dependencies;
static std::string name()
{
return std::string("Global<") + TargetTag::name() + " >";
// static const std::string n = std::string("Global<") + TargetTag::name() + " >";
// return n;
}
};
/** \brief Specifies index of data in CoupledHandle.
If AccumulatorChain is used with CoupledIterator, DataArg<INDEX> tells the accumulator chain which index of the Handle contains the data. (Coordinates are always index 0)
*/
template <int INDEX>
class DataArg
{
public:
typedef Select<> Dependencies;
static std::string name()
{
return std::string("DataArg<") + asString(INDEX) + "> (internal)";
// static const std::string n = std::string("DataArg<") + asString(INDEX) + "> (internal)";
// return n;
}
template <class T, class BASE>
struct Impl
: public BASE
{
typedef DataArgTag Tag;
typedef void value_type;
typedef void result_type;
static const int value = INDEX;
static const unsigned int workInPass = 0;
};
};
// Tags are automatically wrapped with DataFromHandle if CoupledHandle used
template <class TAG>
class DataFromHandle
{
public:
typedef typename StandardizeTag<TAG>::type TargetTag;
typedef typename TargetTag::Dependencies Dependencies;
static std::string name()
{
return std::string("DataFromHandle<") + TargetTag::name() + " > (internal)";
// static const std::string n = std::string("DataFromHandle<") + TargetTag::name() + " > (internal)";
// return n;
}
template <class IndexDefinition, class TagFound=typename IndexDefinition::Tag>
struct DataIndexSelector
{
static const int value = 1; // default: CoupledHandle holds data at index 1
template <class U, class NEXT>
static typename CoupledHandleCast<value, CoupledHandle<U, NEXT> >::type::const_reference
exec(CoupledHandle<U, NEXT> const & t)
{
return vigra::get<value>(t);
}
};
template <class IndexDefinition>
struct DataIndexSelector<IndexDefinition, DataArgTag>
{
static const int value = IndexDefinition::value;
template <class U, class NEXT>
static typename CoupledHandleCast<value, CoupledHandle<U, NEXT> >::type::const_reference
exec(CoupledHandle<U, NEXT> const & t)
{
return vigra::get<value>(t);
}
};
template <class T, class BASE>
struct SelectInputType
{
typedef typename LookupTag<DataArgTag, BASE>::type FindDataIndex;
typedef DataIndexSelector<FindDataIndex> DataIndex;
typedef typename CoupledHandleCast<DataIndex::value, T>::type::value_type type;
};
template <class T, class BASE>
struct Impl
: public TargetTag::template Impl<typename SelectInputType<T, BASE>::type, BASE>
{
typedef SelectInputType<T, BASE> InputTypeSelector;
typedef typename InputTypeSelector::DataIndex DataIndex;
typedef typename InputTypeSelector::type input_type;
typedef input_type const & argument_type;
typedef argument_type first_argument_type;
typedef typename TargetTag::template Impl<input_type, BASE> ImplType;
using ImplType::reshape;
template <class U, class NEXT>
void reshape(CoupledHandle<U, NEXT> const & t)
{
ImplType::reshape(acc_detail::shapeOf(DataIndex::exec(t)));
}
template <class U, class NEXT>
void update(CoupledHandle<U, NEXT> const & t)
{
ImplType::update(DataIndex::exec(t));
}
template <class U, class NEXT>
void update(CoupledHandle<U, NEXT> const & t, double weight)
{
ImplType::update(DataIndex::exec(t), weight);
}
};
};
/** \brief Modifier. Compute statistic from pixel coordinates rather than from pixel values.
AccumulatorChain must be used with CoupledIterator in order to have access to pixel coordinates.
*/
template <class TAG>
class Coord
{
public:
typedef typename StandardizeTag<TAG>::type TargetTag;
typedef typename TargetTag::Dependencies Dependencies;
static std::string name()
{
return std::string("Coord<") + TargetTag::name() + " >";
// static const std::string n = std::string("Coord<") + TargetTag::name() + " >";
// return n;
}
template <class IndexDefinition, class TagFound=typename IndexDefinition::Tag>
struct CoordIndexSelector
{
static const int value = 0; // default: CoupledHandle holds coordinates at index 0
template <class U, class NEXT>
static typename CoupledHandleCast<value, CoupledHandle<U, NEXT> >::type::const_reference
exec(CoupledHandle<U, NEXT> const & t)
{
return vigra::get<value>(t);
}
};
template <class IndexDefinition>
struct CoordIndexSelector<IndexDefinition, CoordArgTag>
{
static const int value = IndexDefinition::value;
template <class U, class NEXT>
static typename CoupledHandleCast<value, CoupledHandle<U, NEXT> >::type::const_reference
exec(CoupledHandle<U, NEXT> const & t)
{
return vigra::get<value>(t);
}
};
template <class T, class BASE>
struct SelectInputType
{
typedef typename LookupTag<CoordArgTag, BASE>::type FindDataIndex;
typedef CoordIndexSelector<FindDataIndex> CoordIndex;
typedef typename CoupledHandleCast<CoordIndex::value, T>::type::value_type type;
static const int size = type::static_size;
};
template <class T, class BASE>
struct Impl
: public TargetTag::template Impl<TinyVector<double, SelectInputType<T, BASE>::size>, BASE>
{
typedef SelectInputType<T, BASE> InputTypeSelector;
typedef typename InputTypeSelector::CoordIndex CoordIndex;
typedef TinyVector<double, SelectInputType<T, BASE>::size> input_type;
typedef input_type const & argument_type;
typedef argument_type first_argument_type;
typedef typename TargetTag::template Impl<input_type, BASE> ImplType;
input_type offset_;
Impl()
: offset_()
{}
void setCoordinateOffset(input_type const & offset)
{
offset_ = offset;
}
using ImplType::reshape;
template <class U, class NEXT>
void reshape(CoupledHandle<U, NEXT> const & t)
{
ImplType::reshape(acc_detail::shapeOf(CoordIndex::exec(t)));
}
template <class U, class NEXT>
void update(CoupledHandle<U, NEXT> const & t)
{
ImplType::update(CoordIndex::exec(t)+offset_);
}
template <class U, class NEXT>
void update(CoupledHandle<U, NEXT> const & t, double weight)
{
ImplType::update(CoordIndex::exec(t)+offset_, weight);
}
};
};
/** \brief Specifies index of data in CoupledHandle.
If AccumulatorChain is used with CoupledIterator, WeightArg<INDEX> tells the accumulator chain which index of the Handle contains the weights. (Note that coordinates are always index 0.)
*/
template <int INDEX>
class WeightArg
{
public:
typedef Select<> Dependencies;
static std::string name()
{
return std::string("WeightArg<") + asString(INDEX) + "> (internal)";
// static const std::string n = std::string("WeightArg<") + asString(INDEX) + "> (internal)";
// return n;
}
template <class T, class BASE>
struct Impl
: public BASE
{
typedef WeightArgTag Tag;
typedef void value_type;
typedef void result_type;
static const int value = INDEX;
static const unsigned int workInPass = 0;
};
};
/** \brief Compute weighted version of the statistic.
*/
template <class TAG>
class Weighted
{
public:
typedef typename StandardizeTag<TAG>::type TargetTag;
typedef typename TargetTag::Dependencies Dependencies;
static std::string name()
{
return std::string("Weighted<") + TargetTag::name() + " >";
// static const std::string n = std::string("Weighted<") + TargetTag::name() + " >";
// return n;
}
template <class IndexDefinition, class TagFound=typename IndexDefinition::Tag>
struct WeightIndexSelector
{
template <class U, class NEXT>
static double exec(CoupledHandle<U, NEXT> const & t)
{
return (double)*t; // default: CoupledHandle holds weights at the last (outermost) index
}
};
template <class IndexDefinition>
struct WeightIndexSelector<IndexDefinition, WeightArgTag>
{
template <class U, class NEXT>
static double exec(CoupledHandle<U, NEXT> const & t)
{
return (double)get<IndexDefinition::value>(t);
}
};
template <class T, class BASE>
struct Impl
: public TargetTag::template Impl<T, BASE>
{
typedef typename TargetTag::template Impl<T, BASE> ImplType;
typedef typename LookupTag<WeightArgTag, BASE>::type FindWeightIndex;
template <class U, class NEXT>
void update(CoupledHandle<U, NEXT> const & t)
{
ImplType::update(t, WeightIndexSelector<FindWeightIndex>::exec(t));
}
};
};
// Centralize by subtracting the mean and cache the result
class Centralize
{
public:
typedef Select<Mean> Dependencies;
static std::string name()
{
return "Centralize (internal)";
// static const std::string n("Centralize (internal)");
// return n;
}
template <class U, class BASE>
struct Impl
: public BASE
{
static const unsigned int workInPass = 2;
typedef typename AccumulatorResultTraits<U>::element_promote_type element_type;
typedef typename AccumulatorResultTraits<U>::SumType value_type;
typedef value_type const & result_type;
mutable value_type value_;
Impl()
: value_() // call default constructor explicitly to ensure zero initialization
{}
void reset()
{
value_ = element_type();
}
template <class Shape>
void reshape(Shape const & s)
{
acc_detail::reshapeImpl(value_, s);
}
void update(U const & t) const
{
using namespace vigra::multi_math;
value_ = t - getDependency<Mean>(*this);
}
void update(U const & t, double) const
{
update(t);
}
result_type operator()(U const & t) const
{
update(t);
return value_;
}
result_type operator()() const
{
return value_;
}
};
};
/** \brief Modifier. Substract mean before computing statistic.
Works in pass 2, %operator+=() not supported (merging not supported).
*/
template <class TAG>
class Central
{
public:
typedef typename StandardizeTag<TAG>::type TargetTag;
typedef Select<Centralize, typename TargetTag::Dependencies> Dependencies;
static std::string name()
{
return std::string("Central<") + TargetTag::name() + " >";
// static const std::string n = std::string("Central<") + TargetTag::name() + " >";
// return n;
}
template <class U, class BASE>
struct Impl
: public TargetTag::template Impl<typename AccumulatorResultTraits<U>::SumType, BASE>
{
typedef typename TargetTag::template Impl<typename AccumulatorResultTraits<U>::SumType, BASE> ImplType;
static const unsigned int workInPass = 2;
void operator+=(Impl const & o)
{
vigra_precondition(false,
"Central<...>::operator+=(): not supported.");
}
template <class T>
void update(T const & t)
{
ImplType::update(getDependency<Centralize>(*this));
}
template <class T>
void update(T const & t, double weight)
{
ImplType::update(getDependency<Centralize>(*this), weight);
}
};
};
// alternative implementation without caching
//
// template <class TAG>
// class Central
// {
// public:
// typedef typename StandardizeTag<TAG>::type TargetTag;
// typedef TypeList<Mean, typename TransferModifiers<Central<TargetTag>, typename TargetTag::Dependencies::type>::type> Dependencies;
// template <class U, class BASE>
// struct Impl
// : public TargetTag::template Impl<typename AccumulatorResultTraits<U>::SumType, BASE>
// {
// typedef typename TargetTag::template Impl<typename AccumulatorResultTraits<U>::SumType, BASE> ImplType;
// static const unsigned int workInPass = 2;
// void operator+=(Impl const & o)
// {
// vigra_precondition(false,
// "Central<...>::operator+=(): not supported.");
// }
// template <class T>
// void update(T const & t)
// {
// ImplType::update(t - getDependency<Mean>(*this));
// }
// template <class T>
// void update(T const & t, double weight)
// {
// ImplType::update(t - getDependency<Mean>(*this), weight);
// }
// };
// };
class PrincipalProjection
{
public:
typedef Select<Centralize, Principal<CoordinateSystem> > Dependencies;
static std::string name()
{
return "PrincipalProjection (internal)";
// static const std::string n("PrincipalProjection (internal)");
// return n;
}
template <class U, class BASE>
struct Impl
: public BASE
{
static const unsigned int workInPass = 2;
typedef typename AccumulatorResultTraits<U>::element_promote_type element_type;
typedef typename AccumulatorResultTraits<U>::SumType value_type;
typedef value_type const & result_type;
mutable value_type value_;
Impl()
: value_() // call default constructor explicitly to ensure zero initialization
{}
void reset()
{
value_ = element_type();
}
template <class Shape>
void reshape(Shape const & s)
{
acc_detail::reshapeImpl(value_, s);
}
void update(U const & t) const
{
for(unsigned int k=0; k<t.size(); ++k)
{
value_[k] = getDependency<Principal<CoordinateSystem> >(*this)(0, k)*getDependency<Centralize>(*this)[0];
for(unsigned int d=1; d<t.size(); ++d)
value_[k] += getDependency<Principal<CoordinateSystem> >(*this)(d, k)*getDependency<Centralize>(*this)[d];
}
}
void update(U const & t, double) const
{
update(t);
}
result_type operator()(U const & t) const
{
getAccumulator<Centralize>(*this).update(t);
update(t);
return value_;
}
result_type operator()() const
{
return value_;
}
};
};
/** \brief Modifier. Project onto PCA eigenvectors.
Works in pass 2, %operator+=() not supported (merging not supported).
*/
template <class TAG>
class Principal
{
public:
typedef typename StandardizeTag<TAG>::type TargetTag;
typedef Select<PrincipalProjection, typename TargetTag::Dependencies> Dependencies;
static std::string name()
{
return std::string("Principal<") + TargetTag::name() + " >";
// static const std::string n = std::string("Principal<") + TargetTag::name() + " >";
// return n;
}
template <class U, class BASE>
struct Impl
: public TargetTag::template Impl<typename AccumulatorResultTraits<U>::SumType, BASE>
{
typedef typename TargetTag::template Impl<typename AccumulatorResultTraits<U>::SumType, BASE> ImplType;
static const unsigned int workInPass = 2;
void operator+=(Impl const & o)
{
vigra_precondition(false,
"Principal<...>::operator+=(): not supported.");
}
template <class T>
void update(T const & t)
{
ImplType::update(getDependency<PrincipalProjection>(*this));
}
template <class T>
void update(T const & t, double weight)
{
ImplType::update(getDependency<PrincipalProjection>(*this), weight);
}
};
};
/*
important notes on modifiers:
* upon accumulator creation, modifiers are reordered so that data preparation is innermost,
and data access is outermost, e.g.:
Coord<DivideByCount<Principal<PowerSum<2> > > >
* modifiers are automatically transfered to dependencies as appropriate
* modifiers for lookup (getAccumulator and get) of dependent accumulators are automatically adjusted
* modifiers must adjust workInPass for the contained accumulator as appropriate
* we may implement convenience versions of Select that apply a modifier to all
contained tags at once
* weighted accumulators have their own Count object when used together
with unweighted ones (this is as yet untested - FIXME)
* certain accumulators must remain unchanged when wrapped in certain modifiers:
* Count: always except for Weighted<Count> and CoordWeighted<Count>
* Sum: data preparation modifiers
* FlatScatterMatrixImpl, CovarianceEigensystemImpl: Principal and Whitened
* will it be useful to implement initPass<N>() or finalizePass<N>() ?
*/
/****************************************************************************/
/* */
/* the actual accumulators */
/* */
/****************************************************************************/
/** \brief Basic statistic. Identity matrix of appropriate size.
*/
class CoordinateSystem
{
public:
typedef Select<> Dependencies;
static std::string name()
{
return "CoordinateSystem";
// static const std::string n("CoordinateSystem");
// return n;
}
template <class U, class BASE>
struct Impl
: public BASE
{
typedef double element_type;
typedef Matrix<double> value_type;
typedef value_type const & result_type;
value_type value_;
Impl()
: value_() // call default constructor explicitly to ensure zero initialization
{}
void reset()
{
value_ = element_type();
}
template <class Shape>
void reshape(Shape const & s)
{
acc_detail::reshapeImpl(value_, s);
}
result_type operator()() const
{
return value_;
}
};
};
template <class BASE, class T,
class ElementType=typename AccumulatorResultTraits<T>::element_promote_type,
class SumType=typename AccumulatorResultTraits<T>::SumType>
struct SumBaseImpl
: public BASE
{
typedef ElementType element_type;
typedef SumType value_type;
typedef value_type const & result_type;
value_type value_;
SumBaseImpl()
: value_() // call default constructor explicitly to ensure zero initialization
{}
void reset()
{
value_ = element_type();
}
template <class Shape>
void reshape(Shape const & s)
{
acc_detail::reshapeImpl(value_, s);
}
void operator+=(SumBaseImpl const & o)
{
value_ += o.value_;
}
result_type operator()() const
{
return value_;
}
};
// Count
template <>
class PowerSum<0>
{
public:
typedef Select<> Dependencies;
static std::string name()
{
return "PowerSum<0>";
// static const std::string n("PowerSum<0>");
// return n;
}
template <class T, class BASE>
struct Impl
: public SumBaseImpl<BASE, T, double, double>
{
void update(T const & t)
{
++this->value_;
}
void update(T const & t, double weight)
{
this->value_ += weight;
}
};
};
// Sum
template <>
class PowerSum<1>
{
public:
typedef Select<> Dependencies;
static std::string name()
{
return "PowerSum<1>";
// static const std::string n("PowerSum<1>");
// return n;
}
template <class U, class BASE>
struct Impl
: public SumBaseImpl<BASE, U>
{
void update(U const & t)
{
this->value_ += t;
}
void update(U const & t, double weight)
{
this->value_ += weight*t;
}
};
};
/** \brief Basic statistic. PowerSum<N> =@f$ \sum_i x_i^N @f$
Works in pass 1, %operator+=() supported (merging supported).
*/
template <unsigned N>
class PowerSum
{
public:
typedef Select<> Dependencies;
static std::string name()
{
return std::string("PowerSum<") + asString(N) + ">";
// static const std::string n = std::string("PowerSum<") + asString(N) + ">";
// return n;
}
template <class U, class BASE>
struct Impl
: public SumBaseImpl<BASE, U>
{
void update(U const & t)
{
using namespace vigra::multi_math;
this->value_ += pow(t, (int)N);
}
void update(U const & t, double weight)
{
using namespace vigra::multi_math;
this->value_ += weight*pow(t, (int)N);
}
};
};
template <>
class AbsPowerSum<1>
{
public:
typedef Select<> Dependencies;
static std::string name()
{
return "AbsPowerSum<1>";
// static const std::string n("AbsPowerSum<1>");
// return n;
}
template <class U, class BASE>
struct Impl
: public SumBaseImpl<BASE, U>
{
void update(U const & t)
{
using namespace vigra::multi_math;
this->value_ += abs(t);
}
void update(U const & t, double weight)
{
using namespace vigra::multi_math;
this->value_ += weight*abs(t);
}
};
};
/** \brief Basic statistic. AbsPowerSum<N> =@f$ \sum_i |x_i|^N @f$
Works in pass 1, %operator+=() supported (merging supported).
*/
template <unsigned N>
class AbsPowerSum
{
public:
typedef Select<> Dependencies;
static std::string name()
{
return std::string("AbsPowerSum<") + asString(N) + ">";
// static const std::string n = std::string("AbsPowerSum<") + asString(N) + ">";
// return n;
}
template <class U, class BASE>
struct Impl
: public SumBaseImpl<BASE, U>
{
void update(U const & t)
{
using namespace vigra::multi_math;
this->value_ += pow(abs(t), (int)N);
}
void update(U const & t, double weight)
{
using namespace vigra::multi_math;
this->value_ += weight*pow(abs(t), (int)N);
}
};
};
template <class BASE, class VALUE_TYPE, class U>
struct CachedResultBase
: public BASE
{
typedef typename AccumulatorResultTraits<U>::element_type element_type;
typedef VALUE_TYPE value_type;
typedef value_type const & result_type;
mutable value_type value_;
CachedResultBase()
: value_() // call default constructor explicitly to ensure zero initialization
{}
void reset()
{
value_ = element_type();
this->setClean();
}
template <class Shape>
void reshape(Shape const & s)
{
acc_detail::reshapeImpl(value_, s);
}
void operator+=(CachedResultBase const &)
{
this->setDirty();
}
void update(U const &)
{
this->setDirty();
}
void update(U const &, double)
{
this->setDirty();
}
};
// cached Mean and Variance
/** \brief Modifier. Divide statistic by Count: DivideByCount<TAG> = TAG / Count .
*/
template <class TAG>
class DivideByCount
{
public:
typedef typename StandardizeTag<TAG>::type TargetTag;
typedef Select<TargetTag, Count> Dependencies;
static std::string name()
{
return std::string("DivideByCount<") + TargetTag::name() + " >";
// static const std::string n = std::string("DivideByCount<") + TargetTag::name() + " >";
// return n;
}
template <class U, class BASE>
struct Impl
: public CachedResultBase<BASE, typename LookupDependency<TargetTag, BASE>::value_type, U>
{
typedef typename CachedResultBase<BASE, typename LookupDependency<TargetTag, BASE>::value_type, U>::result_type result_type;
result_type operator()() const
{
if(this->isDirty())
{
using namespace multi_math;
this->value_ = getDependency<TargetTag>(*this) / getDependency<Count>(*this);
this->setClean();
}
return this->value_;
}
};
};
// UnbiasedVariance
/** \brief Modifier. Divide statistics by Count-1: DivideUnbiased<TAG> = TAG / (Count-1)
*/
template <class TAG>
class DivideUnbiased
{
public:
typedef typename StandardizeTag<TAG>::type TargetTag;
typedef Select<TargetTag, Count> Dependencies;
static std::string name()
{
return std::string("DivideUnbiased<") + TargetTag::name() + " >";
// static const std::string n = std::string("DivideUnbiased<") + TargetTag::name() + " >";
// return n;
}
template <class U, class BASE>
struct Impl
: public BASE
{
typedef typename LookupDependency<TargetTag, BASE>::value_type value_type;
typedef value_type result_type;
result_type operator()() const
{
using namespace multi_math;
return getDependency<TargetTag>(*this) / (getDependency<Count>(*this) - 1.0);
}
};
};
// RootMeanSquares and StdDev
/** \brief Modifier. RootDivideByCount<TAG> = sqrt( TAG/Count )
*/
template <class TAG>
class RootDivideByCount
{
public:
typedef typename StandardizeTag<DivideByCount<TAG> >::type TargetTag;
typedef Select<TargetTag> Dependencies;
static std::string name()
{
typedef typename StandardizeTag<TAG>::type InnerTag;
return std::string("RootDivideByCount<") + InnerTag::name() + " >";
// static const std::string n = std::string("RootDivideByCount<") + InnerTag::name() + " >";
// return n;
}
template <class U, class BASE>
struct Impl
: public BASE
{
typedef typename LookupDependency<TargetTag, BASE>::value_type value_type;
typedef value_type result_type;
result_type operator()() const
{
using namespace multi_math;
return sqrt(getDependency<TargetTag>(*this));
}
};
};
// UnbiasedStdDev
/** \brief Modifier. RootDivideUnbiased<TAG> = sqrt( TAG / (Count-1) )
*/
template <class TAG>
class RootDivideUnbiased
{
public:
typedef typename StandardizeTag<DivideUnbiased<TAG> >::type TargetTag;
typedef Select<TargetTag> Dependencies;
static std::string name()
{
typedef typename StandardizeTag<TAG>::type InnerTag;
return std::string("RootDivideUnbiased<") + InnerTag::name() + " >";
// static const std::string n = std::string("RootDivideUnbiased<") + InnerTag::name() + " >";
// return n;
}
template <class U, class BASE>
struct Impl
: public BASE
{
typedef typename LookupDependency<TargetTag, BASE>::value_type value_type;
typedef value_type result_type;
result_type operator()() const
{
using namespace multi_math;
return sqrt(getDependency<TargetTag>(*this));
}
};
};
/** \brief Spezialization: works in pass 1, %operator+=() supported (merging supported).
*/
template <>
class Central<PowerSum<2> >
{
public:
typedef Select<Mean, Count> Dependencies;
static std::string name()
{
return "Central<PowerSum<2> >";
// static const std::string n("Central<PowerSum<2> >");
// return n;
}
template <class U, class BASE>
struct Impl
: public SumBaseImpl<BASE, U>
{
void operator+=(Impl const & o)
{
using namespace vigra::multi_math;
double n1 = getDependency<Count>(*this), n2 = getDependency<Count>(o);
if(n1 == 0.0)
{
this->value_ = o.value_;
}
else if(n2 != 0.0)
{
this->value_ += o.value_ + n1 * n2 / (n1 + n2) * sq(getDependency<Mean>(*this) - getDependency<Mean>(o));
}
}
void update(U const & t)
{
double n = getDependency<Count>(*this);
if(n > 1.0)
{
using namespace vigra::multi_math;
this->value_ += n / (n - 1.0) * sq(getDependency<Mean>(*this) - t);
}
}
void update(U const & t, double weight)
{
double n = getDependency<Count>(*this);
if(n > weight)
{
using namespace vigra::multi_math;
this->value_ += n / (n - weight) * sq(getDependency<Mean>(*this) - t);
}
}
};
};
/** \brief Specialization: works in pass 2, %operator+=() supported (merging supported).
*/
template <>
class Central<PowerSum<3> >
{
public:
typedef Select<Centralize, Count, Mean, Central<PowerSum<2> > > Dependencies;
static std::string name()
{
return "Central<PowerSum<3> >";
// static const std::string n("Central<PowerSum<3> >");
// return n;
}
template <class U, class BASE>
struct Impl
: public SumBaseImpl<BASE, U>
{
typedef typename SumBaseImpl<BASE, U>::value_type value_type;
static const unsigned int workInPass = 2;
void operator+=(Impl const & o)
{
typedef Central<PowerSum<2> > Sum2Tag;
using namespace vigra::multi_math;
double n1 = getDependency<Count>(*this), n2 = getDependency<Count>(o);
if(n1 == 0.0)
{
this->value_ = o.value_;
}
else if(n2 != 0.0)
{
double n = n1 + n2;
double weight = n1 * n2 * (n1 - n2) / sq(n);
value_type delta = getDependency<Mean>(o) - getDependency<Mean>(*this);
this->value_ += o.value_ + weight * pow(delta, 3) +
3.0 / n * delta * (n1 * getDependency<Sum2Tag>(o) - n2 * getDependency<Sum2Tag>(*this));
}
}
void update(U const & t)
{
using namespace vigra::multi_math;
this->value_ += pow(getDependency<Centralize>(*this), 3);
}
void update(U const & t, double weight)
{
using namespace vigra::multi_math;
this->value_ += weight*pow(getDependency<Centralize>(*this), 3);
}
};
};
/** \brief Specialization: works in pass 2, %operator+=() supported (merging supported).
*/
template <>
class Central<PowerSum<4> >
{
public:
typedef Select<Centralize, Central<PowerSum<3> > > Dependencies;
static std::string name()
{
return "Central<PowerSum<4> >";
// static const std::string n("Central<PowerSum<4> >");
// return n;
}
template <class U, class BASE>
struct Impl
: public SumBaseImpl<BASE, U>
{
typedef typename SumBaseImpl<BASE, U>::value_type value_type;
static const unsigned int workInPass = 2;
void operator+=(Impl const & o)
{
typedef Central<PowerSum<2> > Sum2Tag;
typedef Central<PowerSum<3> > Sum3Tag;
using namespace vigra::multi_math;
double n1 = getDependency<Count>(*this), n2 = getDependency<Count>(o);
if(n1 == 0.0)
{
this->value_ = o.value_;
}
else if(n2 != 0.0)
{
double n = n1 + n2;
double n1_2 = sq(n1);
double n2_2 = sq(n2);
double n_2 = sq(n);
double weight = n1 * n2 * (n1_2 - n1*n2 + n2_2) / n_2 / n;
value_type delta = getDependency<Mean>(o) - getDependency<Mean>(*this);
this->value_ += o.value_ + weight * pow(delta, 4) +
6.0 / n_2 * sq(delta) * (n1_2 * getDependency<Sum2Tag>(o) + n2_2 * getDependency<Sum2Tag>(*this)) +
4.0 / n * delta * (n1 * getDependency<Sum3Tag>(o) - n2 * getDependency<Sum3Tag>(*this));
}
}
void update(U const & t)
{
using namespace vigra::multi_math;
this->value_ += pow(getDependency<Centralize>(*this), 4);
}
void update(U const & t, double weight)
{
using namespace vigra::multi_math;
this->value_ += weight*pow(getDependency<Centralize>(*this), 4);
}
};
};
/** \brief Basic statistic. Skewness.
%Skewness =@f$ \frac{ \frac{1}{n}\sum_i (x_i-\hat{x})^3 }{ (\frac{1}{n}\sum_i (x_i-\hat{x})^2)^{3/2} } @f$ .
Works in pass 2, %operator+=() supported (merging supported).
*/
class Skewness
{
public:
typedef Select<Central<PowerSum<2> >, Central<PowerSum<3> > > Dependencies;
static std::string name()
{
return "Skewness";
// static const std::string n("Skewness");
// return n;
}
template <class U, class BASE>
struct Impl
: public BASE
{
static const unsigned int workInPass = 2;
typedef typename LookupDependency<Central<PowerSum<3> >, BASE>::value_type value_type;
typedef value_type result_type;
result_type operator()() const
{
typedef Central<PowerSum<3> > Sum3;
typedef Central<PowerSum<2> > Sum2;
using namespace multi_math;
return sqrt(getDependency<Count>(*this)) * getDependency<Sum3>(*this) / pow(getDependency<Sum2>(*this), 1.5);
}
};
};
/** \brief Basic statistic. Unbiased Skewness.
Works in pass 2, %operator+=() supported (merging supported).
*/
class UnbiasedSkewness
{
public:
typedef Select<Skewness> Dependencies;
static std::string name()
{
return "UnbiasedSkewness";
// static const std::string n("UnbiasedSkewness");
// return n;
}
template <class U, class BASE>
struct Impl
: public BASE
{
static const unsigned int workInPass = 2;
typedef typename LookupDependency<Central<PowerSum<3> >, BASE>::value_type value_type;
typedef value_type result_type;
result_type operator()() const
{
using namespace multi_math;
double n = getDependency<Count>(*this);
return sqrt(n*(n-1.0)) / (n - 2.0) * getDependency<Skewness>(*this);
}
};
};
/** \brief Basic statistic. Kurtosis.
%Kurtosis = @f$ \frac{ \frac{1}{n}\sum_i (x_i-\bar{x})^4 }{
(\frac{1}{n} \sum_i(x_i-\bar{x})^2)^2 } - 3 @f$ .
Works in pass 2, %operator+=() supported (merging supported).
*/
class Kurtosis
{
public:
typedef Select<Central<PowerSum<2> >, Central<PowerSum<4> > > Dependencies;
static std::string name()
{
return "Kurtosis";
// static const std::string n("Kurtosis");
// return n;
}
template <class U, class BASE>
struct Impl
: public BASE
{
static const unsigned int workInPass = 2;
typedef typename LookupDependency<Central<PowerSum<4> >, BASE>::value_type value_type;
typedef value_type result_type;
result_type operator()() const
{
typedef Central<PowerSum<4> > Sum4;
typedef Central<PowerSum<2> > Sum2;
using namespace multi_math;
return getDependency<Count>(*this) * getDependency<Sum4>(*this) / sq(getDependency<Sum2>(*this)) - value_type(3.0);
}
};
};
/** \brief Basic statistic. Unbiased Kurtosis.
Works in pass 2, %operator+=() supported (merging supported).
*/
class UnbiasedKurtosis
{
public:
typedef Select<Kurtosis> Dependencies;
static std::string name()
{
return "UnbiasedKurtosis";
// static const std::string n("UnbiasedKurtosis");
// return n;
}
template <class U, class BASE>
struct Impl
: public BASE
{
static const unsigned int workInPass = 2;
typedef typename LookupDependency<Central<PowerSum<4> >, BASE>::value_type value_type;
typedef value_type result_type;
result_type operator()() const
{
using namespace multi_math;
double n = getDependency<Count>(*this);
return (n-1.0)/((n-2.0)*(n-3.0))*((n+1.0)*getDependency<Kurtosis>(*this) + value_type(6.0));
}
};
};
namespace acc_detail {
template <class Scatter, class Sum>
void updateFlatScatterMatrix(Scatter & sc, Sum const & s, double w)
{
int size = s.size();
for(MultiArrayIndex j=0, k=0; j<size; ++j)
for(MultiArrayIndex i=j; i<size; ++i, ++k)
sc[k] += w*s[i]*s[j];
}
template <class Sum>
void updateFlatScatterMatrix(double & sc, Sum const & s, double w)
{
sc += w*s*s;
}
template <class Cov, class Scatter>
void flatScatterMatrixToScatterMatrix(Cov & cov, Scatter const & sc)
{
int size = cov.shape(0), k=0;
for(MultiArrayIndex j=0; j<size; ++j)
{
cov(j,j) = sc[k++];
for(MultiArrayIndex i=j+1; i<size; ++i)
{
cov(i,j) = sc[k++];
cov(j,i) = cov(i,j);
}
}
}
template <class Scatter>
void flatScatterMatrixToScatterMatrix(double & cov, Scatter const & sc)
{
cov = sc;
}
template <class Cov, class Scatter>
void flatScatterMatrixToCovariance(Cov & cov, Scatter const & sc, double n)
{
int size = cov.shape(0), k=0;
for(MultiArrayIndex j=0; j<size; ++j)
{
cov(j,j) = sc[k++] / n;
for(MultiArrayIndex i=j+1; i<size; ++i)
{
cov(i,j) = sc[k++] / n;
cov(j,i) = cov(i,j);
}
}
}
template <class Scatter>
void flatScatterMatrixToCovariance(double & cov, Scatter const & sc, double n)
{
cov = sc / n;
}
} // namespace acc_detail
// we only store the flattened upper triangular part of the scatter matrix
/** \brief Basic statistic. Flattened uppter-triangular part of scatter matrix.
Works in pass 1, %operator+=() supported (merging supported).
*/
class FlatScatterMatrix
{
public:
typedef Select<Mean, Count> Dependencies;
static std::string name()
{
return "FlatScatterMatrix";
// static const std::string n("FlatScatterMatrix");
// return n;
}
template <class U, class BASE>
struct Impl
: public BASE
{
typedef typename AccumulatorResultTraits<U>::element_promote_type element_type;
typedef typename AccumulatorResultTraits<U>::FlatCovarianceType value_type;
typedef value_type const & result_type;
typedef typename AccumulatorResultTraits<U>::SumType SumType;
value_type value_;
SumType diff_;
Impl()
: value_(), // call default constructor explicitly to ensure zero initialization
diff_()
{}
void reset()
{
value_ = element_type();
}
template <class Shape>
void reshape(Shape const & s)
{
int size = prod(s);
acc_detail::reshapeImpl(value_, Shape1(size*(size+1)/2));
acc_detail::reshapeImpl(diff_, s);
}
void operator+=(Impl const & o)
{
double n1 = getDependency<Count>(*this), n2 = getDependency<Count>(o);
if(n1 == 0.0)
{
value_ = o.value_;
}
else if(n2 != 0.0)
{
using namespace vigra::multi_math;
diff_ = getDependency<Mean>(*this) - getDependency<Mean>(o);
acc_detail::updateFlatScatterMatrix(value_, diff_, n1 * n2 / (n1 + n2));
value_ += o.value_;
}
}
void update(U const & t)
{
compute(t);
}
void update(U const & t, double weight)
{
compute(t, weight);
}
result_type operator()() const
{
return value_;
}
private:
void compute(U const & t, double weight = 1.0)
{
double n = getDependency<Count>(*this);
if(n > weight)
{
using namespace vigra::multi_math;
diff_ = getDependency<Mean>(*this) - t;
acc_detail::updateFlatScatterMatrix(value_, diff_, n * weight / (n - weight));
}
}
};
};
// Covariance
template <>
class DivideByCount<FlatScatterMatrix>
{
public:
typedef Select<FlatScatterMatrix, Count> Dependencies;
static std::string name()
{
return "DivideByCount<FlatScatterMatrix>";
// static const std::string n("DivideByCount<FlatScatterMatrix>");
// return n;
}
template <class U, class BASE>
struct Impl
: public CachedResultBase<BASE, typename AccumulatorResultTraits<U>::CovarianceType, U>
{
typedef CachedResultBase<BASE, typename AccumulatorResultTraits<U>::CovarianceType, U> BaseType;
typedef typename BaseType::result_type result_type;
template <class Shape>
void reshape(Shape const & s)
{
int size = prod(s);
acc_detail::reshapeImpl(this->value_, Shape2(size,size));
}
result_type operator()() const
{
if(this->isDirty())
{
acc_detail::flatScatterMatrixToCovariance(this->value_, getDependency<FlatScatterMatrix>(*this), getDependency<Count>(*this));
this->setClean();
}
return this->value_;
}
};
};
// UnbiasedCovariance
template <>
class DivideUnbiased<FlatScatterMatrix>
{
public:
typedef Select<FlatScatterMatrix, Count> Dependencies;
static std::string name()
{
return "DivideUnbiased<FlatScatterMatrix>";
// static const std::string n("DivideUnbiased<FlatScatterMatrix>");
// return n;
}
template <class U, class BASE>
struct Impl
: public CachedResultBase<BASE, typename AccumulatorResultTraits<U>::CovarianceType, U>
{
typedef CachedResultBase<BASE, typename AccumulatorResultTraits<U>::CovarianceType, U> BaseType;
typedef typename BaseType::result_type result_type;
template <class Shape>
void reshape(Shape const & s)
{
int size = prod(s);
acc_detail::reshapeImpl(this->value_, Shape2(size,size));
}
result_type operator()() const
{
if(this->isDirty())
{
acc_detail::flatScatterMatrixToCovariance(this->value_, getDependency<FlatScatterMatrix>(*this), getDependency<Count>(*this) - 1.0);
this->setClean();
}
return this->value_;
}
};
};
/** Basic statistic. ScatterMatrixEigensystem (?)
*/
class ScatterMatrixEigensystem
{
public:
typedef Select<FlatScatterMatrix> Dependencies;
static std::string name()
{
return "ScatterMatrixEigensystem";
// static const std::string n("ScatterMatrixEigensystem");
// return n;
}
template <class U, class BASE>
struct Impl
: public BASE
{
typedef typename AccumulatorResultTraits<U>::element_promote_type element_type;
typedef typename AccumulatorResultTraits<U>::SumType EigenvalueType;
typedef typename AccumulatorResultTraits<U>::CovarianceType EigenvectorType;
typedef std::pair<EigenvalueType, EigenvectorType> value_type;
typedef value_type const & result_type;
mutable value_type value_;
Impl()
: value_()
{}
void operator+=(Impl const & o)
{
if(!acc_detail::hasDataImpl(value_.second))
{
acc_detail::copyShapeImpl(o.value_.first, value_.first);
acc_detail::copyShapeImpl(o.value_.second, value_.second);
}
this->setDirty();
}
void update(U const &)
{
this->setDirty();
}
void update(U const &, double)
{
this->setDirty();
}
void reset()
{
value_.first = element_type();
value_.second = element_type();
this->setClean();
}
template <class Shape>
void reshape(Shape const & s)
{
int size = prod(s);
acc_detail::reshapeImpl(value_.first, Shape1(size));
acc_detail::reshapeImpl(value_.second, Shape2(size,size));
}
result_type operator()() const
{
if(this->isDirty())
{
compute(getDependency<FlatScatterMatrix>(*this), value_.first, value_.second);
this->setClean();
}
return value_;
}
private:
template <class Flat, class EW, class EV>
static void compute(Flat const & flatScatter, EW & ew, EV & ev)
{
EigenvectorType scatter(ev.shape());
acc_detail::flatScatterMatrixToScatterMatrix(scatter, flatScatter);
// create a view because EW could be a TinyVector
MultiArrayView<2, element_type> ewview(Shape2(ev.shape(0), 1), &ew[0]);
symmetricEigensystem(scatter, ewview, ev);
}
static void compute(double v, double & ew, double & ev)
{
ew = v;
ev = 1.0;
}
};
};
// CovarianceEigensystem
template <>
class DivideByCount<ScatterMatrixEigensystem>
{
public:
typedef Select<ScatterMatrixEigensystem, Count> Dependencies;
static std::string name()
{
return "DivideByCount<ScatterMatrixEigensystem>";
// static const std::string n("DivideByCount<ScatterMatrixEigensystem>");
// return n;
}
template <class U, class BASE>
struct Impl
: public BASE
{
typedef typename LookupDependency<ScatterMatrixEigensystem, BASE>::type SMImpl;
typedef typename SMImpl::element_type element_type;
typedef typename SMImpl::EigenvalueType EigenvalueType;
typedef typename SMImpl::EigenvectorType EigenvectorType;
typedef std::pair<EigenvalueType, EigenvectorType const &> value_type;
typedef value_type const & result_type;
mutable value_type value_;
Impl()
: value_(EigenvalueType(), BASE::template call_getDependency<ScatterMatrixEigensystem>().second)
{}
void operator+=(Impl const &)
{
this->setDirty();
}
void update(U const &)
{
this->setDirty();
}
void update(U const &, double)
{
this->setDirty();
}
void reset()
{
value_.first = element_type();
this->setClean();
}
template <class Shape>
void reshape(Shape const & s)
{
int size = prod(s);
acc_detail::reshapeImpl(value_.first, Shape2(size,1));
}
result_type operator()() const
{
if(this->isDirty())
{
value_.first = getDependency<ScatterMatrixEigensystem>(*this).first / getDependency<Count>(*this);
this->setClean();
}
return value_;
}
};
};
// alternative implementation of CovarianceEigensystem - solve eigensystem directly
//
// template <>
// class DivideByCount<ScatterMatrixEigensystem>
// {
// public:
// typedef Select<Covariance> Dependencies;
// template <class U, class BASE>
// struct Impl
// : public BASE
// {
// typedef typename AccumulatorResultTraits<U>::element_promote_type element_type;
// typedef typename AccumulatorResultTraits<U>::SumType EigenvalueType;
// typedef typename AccumulatorResultTraits<U>::CovarianceType EigenvectorType;
// typedef std::pair<EigenvalueType, EigenvectorType> value_type;
// typedef value_type const & result_type;
// mutable value_type value_;
// Impl()
// : value_()
// {}
// void operator+=(Impl const &)
// {
// this->setDirty();
// }
// void update(U const &)
// {
// this->setDirty();
// }
// void update(U const &, double)
// {
// this->setDirty();
// }
// void reset()
// {
// value_.first = element_type();
// value_.second = element_type();
// this->setClean();
// }
// template <class Shape>
// void reshape(Shape const & s)
// {
// int size = prod(s);
// acc_detail::reshapeImpl(value_.first, Shape2(size,1));
// acc_detail::reshapeImpl(value_.second, Shape2(size,size));
// }
// result_type operator()() const
// {
// if(this->isDirty())
// {
// compute(getDependency<Covariance>(*this), value_.first, value_.second);
// this->setClean();
// }
// return value_;
// }
// private:
// template <class Cov, class EW, class EV>
// static void compute(Cov const & cov, EW & ew, EV & ev)
// {
// // create a view because EW could be a TinyVector
// MultiArrayView<2, element_type> ewview(Shape2(cov.shape(0), 1), &ew[0]);
// symmetricEigensystem(cov, ewview, ev);
// }
// static void compute(double cov, double & ew, double & ev)
// {
// ew = cov;
// ev = 1.0;
// }
// };
// };
// covariance eigenvalues
/** \brief Specialization (covariance eigenvalues): works in pass 1, %operator+=() supported (merging).
*/
template <>
class Principal<PowerSum<2> >
{
public:
typedef Select<ScatterMatrixEigensystem> Dependencies;
static std::string name()
{
return "Principal<PowerSum<2> >";
// static const std::string n("Principal<PowerSum<2> >");
// return n;
}
template <class U, class BASE>
struct Impl
: public BASE
{
typedef typename LookupDependency<ScatterMatrixEigensystem, BASE>::type::EigenvalueType value_type;
typedef value_type const & result_type;
result_type operator()() const
{
return getDependency<ScatterMatrixEigensystem>(*this).first;
}
};
};
// Principal<CoordinateSystem> == covariance eigenvectors
/** \brief Specialization (covariance eigenvectors): works in pass 1, %operator+=() supported (merging).
*/
template <>
class Principal<CoordinateSystem>
{
public:
typedef Select<ScatterMatrixEigensystem> Dependencies;
static std::string name()
{
return "Principal<CoordinateSystem>";
// static const std::string n("Principal<CoordinateSystem>");
// return n;
}
template <class U, class BASE>
struct Impl
: public BASE
{
typedef typename LookupDependency<ScatterMatrixEigensystem, BASE>::type::EigenvectorType value_type;
typedef value_type const & result_type;
result_type operator()() const
{
return getDependency<ScatterMatrixEigensystem>(*this).second;
}
};
};
/** \brief Basic statistic. %Minimum value.
Works in pass 1, %operator+=() supported (merging supported).
*/
class Minimum
{
public:
typedef Select<> Dependencies;
static std::string name()
{
return "Minimum";
// static const std::string n("Minimum");
// return n;
}
template <class U, class BASE>
struct Impl
: public BASE
{
typedef typename AccumulatorResultTraits<U>::element_type element_type;
typedef typename AccumulatorResultTraits<U>::MinmaxType value_type;
typedef value_type const & result_type;
value_type value_;
Impl()
{
value_ = NumericTraits<element_type>::max();
}
void reset()
{
value_ = NumericTraits<element_type>::max();
}
template <class Shape>
void reshape(Shape const & s)
{
acc_detail::reshapeImpl(value_, s, NumericTraits<element_type>::max());
}
void operator+=(Impl const & o)
{
updateImpl(o.value_); // necessary because std::min causes ambiguous overload
}
void update(U const & t)
{
updateImpl(t);
}
void update(U const & t, double)
{
updateImpl(t);
}
result_type operator()() const
{
return value_;
}
private:
template <class T>
void updateImpl(T const & o)
{
using namespace multi_math;
value_ = min(value_, o);
}
template <class T, class Alloc>
void updateImpl(MultiArray<1, T, Alloc> const & o)
{
value_ = multi_math::min(value_, o);
}
};
};
/** \brief Basic statistic. %Maximum value.
Works in pass 1, %operator+=() supported (merging supported).
*/
class Maximum
{
public:
typedef Select<> Dependencies;
static std::string name()
{
return "Maximum";
// static const std::string n("Maximum");
// return n;
}
template <class U, class BASE>
struct Impl
: public BASE
{
typedef typename AccumulatorResultTraits<U>::element_type element_type;
typedef typename AccumulatorResultTraits<U>::MinmaxType value_type;
typedef value_type const & result_type;
value_type value_;
Impl()
{
value_ = NumericTraits<element_type>::min();
}
void reset()
{
value_ = NumericTraits<element_type>::min();
}
template <class Shape>
void reshape(Shape const & s)
{
acc_detail::reshapeImpl(value_, s, NumericTraits<element_type>::min());
}
void operator+=(Impl const & o)
{
updateImpl(o.value_); // necessary because std::max causes ambiguous overload
}
void update(U const & t)
{
updateImpl(t);
}
void update(U const & t, double)
{
updateImpl(t);
}
result_type operator()() const
{
return value_;
}
private:
template <class T>
void updateImpl(T const & o)
{
using namespace multi_math;
value_ = max(value_, o);
}
template <class T, class Alloc>
void updateImpl(MultiArray<1, T, Alloc> const & o)
{
value_ = multi_math::max(value_, o);
}
};
};
/** \brief Basic statistic. Data value where weight assumes its minimal value.
Weights must be given. Coord<ArgMinWeight> gives coordinate where weight assumes its minimal value. Works in pass 1, %operator+=() supported (merging supported).
*/
class ArgMinWeight
{
public:
typedef Select<> Dependencies;
static std::string name()
{
return "ArgMinWeight";
// static const std::string n("ArgMinWeight");
// return n;
}
template <class U, class BASE>
struct Impl
: public BASE
{
typedef typename AccumulatorResultTraits<U>::element_type element_type;
typedef typename AccumulatorResultTraits<U>::MinmaxType value_type;
typedef value_type const & result_type;
double min_weight_;
value_type value_;
Impl()
: min_weight_(NumericTraits<double>::max()),
value_()
{}
void reset()
{
min_weight_ = NumericTraits<double>::max();
value_ = element_type();
}
template <class Shape>
void reshape(Shape const & s)
{
acc_detail::reshapeImpl(value_, s);
}
void operator+=(Impl const & o)
{
using namespace multi_math;
if(o.min_weight_ < min_weight_)
{
min_weight_ = o.min_weight_;
value_ = o.value_;
}
}
void update(U const & t)
{
vigra_precondition(false, "ArgMinWeight::update() needs weights.");
}
void update(U const & t, double weight)
{
if(weight < min_weight_)
{
min_weight_ = weight;
value_ = t;
}
}
result_type operator()() const
{
return value_;
}
};
};
/** \brief Basic statistic. Data where weight assumes its maximal value.
Weights must be given. Coord<ArgMinWeight> gives coordinate where weight assumes its maximal value. Works in pass 1, %operator+=() supported (merging supported).
*/
class ArgMaxWeight
{
public:
typedef Select<> Dependencies;
static std::string name()
{
return "ArgMaxWeight";
// static const std::string n("ArgMaxWeight");
// return n;
}
template <class U, class BASE>
struct Impl
: public BASE
{
typedef typename AccumulatorResultTraits<U>::element_type element_type;
typedef typename AccumulatorResultTraits<U>::MinmaxType value_type;
typedef value_type const & result_type;
double max_weight_;
value_type value_;
Impl()
: max_weight_(NumericTraits<double>::min()),
value_()
{}
void reset()
{
max_weight_ = NumericTraits<double>::min();
value_ = element_type();
}
template <class Shape>
void reshape(Shape const & s)
{
acc_detail::reshapeImpl(value_, s);
}
void operator+=(Impl const & o)
{
using namespace multi_math;
if(o.max_weight_ > max_weight_)
{
max_weight_ = o.max_weight_;
value_ = o.value_;
}
}
void update(U const & t)
{
vigra_precondition(false, "ArgMaxWeight::update() needs weights.");
}
void update(U const & t, double weight)
{
if(weight > max_weight_)
{
max_weight_ = weight;
value_ = t;
}
}
result_type operator()() const
{
return value_;
}
};
};
template <class BASE, int BinCount>
class HistogramBase
: public BASE
{
public:
typedef double element_type;
typedef TinyVector<double, BinCount> value_type;
typedef value_type const & result_type;
value_type value_;
double left_outliers, right_outliers;
HistogramBase()
: value_(),
left_outliers(),
right_outliers()
{}
void reset()
{
value_ = element_type();
left_outliers = 0.0;
right_outliers = 0.0;
}
void operator+=(HistogramBase const & o)
{
value_ += o.value_;
left_outliers += o.left_outliers;
right_outliers += o.right_outliers;
}
result_type operator()() const
{
return value_;
}
};
template <class BASE>
class HistogramBase<BASE, 0>
: public BASE
{
public:
typedef double element_type;
typedef MultiArray<1, double> value_type;
typedef value_type const & result_type;
value_type value_;
double left_outliers, right_outliers;
HistogramBase()
: value_(),
left_outliers(),
right_outliers()
{}
void reset()
{
value_ = element_type();
left_outliers = 0.0;
right_outliers = 0.0;
}
void operator+=(HistogramBase const & o)
{
if(value_.size() == 0)
{
value_ = o.value_;
}
else if(o.value_.size() > 0)
{
vigra_precondition(value_.size() == o.value_.size(),
"HistogramBase::operator+=(): bin counts must be equal.");
value_ += o.value_;
}
left_outliers += o.left_outliers;
right_outliers += o.right_outliers;
}
void setBinCount(int binCount)
{
vigra_precondition(binCount > 0,
"HistogramBase:.setBinCount(): binCount > 0 required.");
value_type(Shape1(binCount)).swap(value_);
}
result_type operator()() const
{
return value_;
}
};
template <class BASE, int BinCount, class U=typename BASE::input_type>
class RangeHistogramBase
: public HistogramBase<BASE, BinCount>
{
public:
double scale_, offset_, inverse_scale_;
RangeHistogramBase()
: scale_(),
offset_(),
inverse_scale_()
{}
void reset()
{
scale_ = 0.0;
offset_ = 0.0;
inverse_scale_ = 0.0;
HistogramBase<BASE, BinCount>::reset();
}
void operator+=(RangeHistogramBase const & o)
{
vigra_precondition(scale_ == 0.0 || o.scale_ == 0.0 || (scale_ == o.scale_ && offset_ == o.offset_),
"RangeHistogramBase::operator+=(): cannot merge histograms with different data mapping.");
HistogramBase<BASE, BinCount>::operator+=(o);
if(scale_ == 0.0)
{
scale_ = o.scale_;
offset_ = o.offset_;
inverse_scale_ = o.inverse_scale_;
}
}
void update(U const & t)
{
update(t, 1.0);
}
void update(U const & t, double weight)
{
double m = mapItem(t);
int index = (m == (double)this->value_.size())
? (int)m - 1
: (int)m;
if(index < 0)
this->left_outliers += weight;
else if(index >= (int)this->value_.size())
this->right_outliers += weight;
else
this->value_[index] += weight;
}
void setMinMax(double mi, double ma)
{
vigra_precondition(this->value_.size() > 0,
"RangeHistogramBase::setMinMax(...): setBinCount(...) has not been called.");
vigra_precondition(mi < ma,
"RangeHistogramBase::setMinMax(...): min < max required.");
offset_ = mi;
scale_ = (double)this->value_.size() / (ma - mi);
inverse_scale_ = 1.0 / scale_;
}
double mapItem(double t) const
{
return scale_ * (t - offset_);
}
double mapItemInverse(double t) const
{
return inverse_scale_ * t + offset_;
}
template <class ArrayLike>
void computeStandardQuantiles(double minimum, double maximum, double count,
ArrayLike const & desiredQuantiles, ArrayLike & res) const
{
if(count == 0.0) {
return;
}
ArrayVector<double> keypoints, cumhist;
double mappedMinimum = mapItem(minimum);
double mappedMaximum = mapItem(maximum);
keypoints.push_back(mappedMinimum);
cumhist.push_back(0.0);
if(this->left_outliers > 0.0)
{
keypoints.push_back(0.0);
cumhist.push_back(this->left_outliers);
}
int size = (int)this->value_.size();
double cumulative = this->left_outliers;
for(int k=0; k<size; ++k)
{
if(this->value_[k] > 0.0)
{
if(keypoints.back() <= k)
{
keypoints.push_back(k);
cumhist.push_back(cumulative);
}
cumulative += this->value_[k];
keypoints.push_back(k+1);
cumhist.push_back(cumulative);
}
}
if(this->right_outliers > 0.0)
{
if(keypoints.back() != size)
{
keypoints.push_back(size);
cumhist.push_back(cumulative);
}
keypoints.push_back(mappedMaximum);
cumhist.push_back(count);
}
else
{
keypoints.back() = mappedMaximum;
cumhist.back() = count;
}
int quantile = 0, end = (int)desiredQuantiles.size();
if(desiredQuantiles[0] == 0.0)
{
res[0] = minimum;
++quantile;
}
if(desiredQuantiles[end-1] == 1.0)
{
res[end-1] = maximum;
--end;
}
int point = 0;
double qcount = count * desiredQuantiles[quantile];
while(quantile < end)
{
if(cumhist[point] < qcount && cumhist[point+1] >= qcount)
{
double t = (qcount - cumhist[point]) / (cumhist[point+1] - cumhist[point]) * (keypoints[point+1] - keypoints[point]);
res[quantile] = mapItemInverse(t + keypoints[point]);
++quantile;
qcount = count * desiredQuantiles[quantile];
}
else
{
++point;
}
}
}
};
/** \brief Histogram where data values are equal to bin indices.
- If BinCount != 0, the return type of the accumulator is TinyVector<double, BinCount> .
- If BinCount == 0, the return type of the accumulator is MultiArray<1, double> . BinCount can be set by calling getAccumulator<IntegerHistogram<0> >(acc_chain).setBinCount(bincount).
- Outliers can be accessed via getAccumulator<IntegerHistogram<Bincount>>(a).left_outliers and getAccumulator<...>(acc_chain).right_outliers.
- Note that histogram options (for all histograms in the accumulator chain) can also be set by passing an instance of HistogramOptions to the accumulator chain via acc_chain.setHistogramOptions().
Works in pass 1, %operator+=() supported (merging supported).
*/
template <int BinCount>
class IntegerHistogram
{
public:
typedef Select<> Dependencies;
static std::string name()
{
return std::string("IntegerHistogram<") + asString(BinCount) + ">";
// static const std::string n = std::string("IntegerHistogram<") + asString(BinCount) + ">";
// return n;
}
template <class U, class BASE>
struct Impl
: public HistogramBase<BASE, BinCount>
{
void update(int index)
{
if(index < 0)
++this->left_outliers;
else if(index >= (int)this->value_.size())
++this->right_outliers;
else
++this->value_[index];
}
void update(int index, double weight)
{
// cannot compute quantile from weighted integer histograms,
// so force people to use UserRangeHistogram or AutoRangeHistogram
vigra_precondition(false, "IntegerHistogram::update(): weighted histograms not supported, use another histogram type.");
}
template <class ArrayLike>
void computeStandardQuantiles(double minimum, double maximum, double count,
ArrayLike const & desiredQuantiles, ArrayLike & res) const
{
int quantile = 0, end = (int)desiredQuantiles.size();
if(desiredQuantiles[0] == 0.0)
{
res[0] = minimum;
++quantile;
}
if(desiredQuantiles[end-1] == 1.0)
{
res[end-1] = maximum;
--end;
}
count -= 1.0;
int currentBin = 0, size = (int)this->value_.size();
double cumulative1 = this->left_outliers,
cumulative2 = this->value_[currentBin] + cumulative1;
// add a to the quantiles to account for the fact that counting
// corresponds to 1-based indexing (one element == index 1)
double qcount = desiredQuantiles[quantile]*count + 1.0;
while(quantile < end)
{
if(cumulative2 == qcount)
{
res[quantile] = currentBin;
++quantile;
qcount = desiredQuantiles[quantile]*count + 1.0;
}
else if(cumulative2 > qcount)
{
if(cumulative1 > qcount) // in left_outlier bin
{
res[quantile] = minimum;
}
if(cumulative1 + 1.0 > qcount) // between bins
{
res[quantile] = currentBin - 1 + qcount - std::floor(qcount);
}
else // standard case
{
res[quantile] = currentBin;
}
++quantile;
qcount = desiredQuantiles[quantile]*count + 1.0;
}
else if(currentBin == size-1) // in right outlier bin
{
res[quantile] = maximum;
++quantile;
qcount = desiredQuantiles[quantile]*count + 1.0;
}
else
{
++currentBin;
cumulative1 = cumulative2;
cumulative2 += this->value_[currentBin];
}
}
}
};
};
/** \brief Histogram where user provides bounds for linear range mapping from values to indices.
- If BinCount != 0, the return type of the accumulator is TinyVector<double, BinCount> .
- If BinCount == 0, the return type of the accumulator is MultiArray<1, double> . BinCount can be set by calling getAccumulator<UserRangeHistogram<0> >(acc_chain).setBinCount(bincount).
- Bounds for the mapping (min/max) must be set before seeing data by calling getAccumulator<UserRangeHistogram<BinCount> >.setMinMax(min, max).
- Options can also be passed to the accumulator chain via an instance of HistogramOptions .
- Works in pass 1, %operator+=() is supported (merging) if both histograms have the same data mapping.
- Outliers can be accessed via getAccumulator<...>(a).left_outliers and getAccumulator<...>(a).right_outliers.
- Note that histogram options (for all histograms in the accumulator chain) can also be set by passing an instance of HistogramOptions to the accumulator chain via acc_chain.setHistogramOptions().
*/
template <int BinCount>
class UserRangeHistogram
{
public:
typedef Select<> Dependencies;
static std::string name()
{
return std::string("UserRangeHistogram<") + asString(BinCount) + ">";
// static const std::string n = std::string("UserRangeHistogram<") + asString(BinCount) + ">";
// return n;
}
template <class U, class BASE>
struct Impl
: public RangeHistogramBase<BASE, BinCount, U>
{
void update(U const & t)
{
update(t, 1.0);
}
void update(U const & t, double weight)
{
vigra_precondition(this->scale_ != 0.0,
"UserRangeHistogram::update(): setMinMax(...) has not been called.");
RangeHistogramBase<BASE, BinCount, U>::update(t, weight);
}
};
};
/** \brief Histogram where range mapping bounds are defined by minimum and maximum of data.
- If BinCount != 0, the return type of the accumulator is TinyVector<double, BinCount> .
- If BinCount == 0, the return type of the accumulator is MultiArray<1, double> . BinCount can be set by calling getAccumulator<AutoRangeHistogram>(acc_chain).setBinCount(bincount).
- Becomes a UserRangeHistogram if min/max is set.
- Works in pass 2, %operator+=() is supported (merging) if both histograms have the same data mapping.
- Outliers can be accessed via getAccumulator<...>(acc_chain).left_outliers and getAccumulator<...>(acc_chain).right_outliers .
- Note that histogram options (for all histograms in the accumulator chain) can also be set by passing an instance of HistogramOptions to the accumulator chain via acc_chain.setHistogramOptions().
*/
template <int BinCount>
class AutoRangeHistogram
{
public:
typedef Select<Minimum, Maximum> Dependencies;
static std::string name()
{
return std::string("AutoRangeHistogram<") + asString(BinCount) + ">";
// static const std::string n = std::string("AutoRangeHistogram<") + asString(BinCount) + ">";
// return n;
}
template <class U, class BASE>
struct Impl
: public RangeHistogramBase<BASE, BinCount, U>
{
static const unsigned int workInPass = LookupDependency<Minimum, BASE>::type::workInPass + 1;
void update(U const & t)
{
update(t, 1.0);
}
void update(U const & t, double weight)
{
if(this->scale_ == 0.0)
this->setMinMax(getDependency<Minimum>(*this), getDependency<Maximum>(*this));
RangeHistogramBase<BASE, BinCount, U>::update(t, weight);
}
};
};
/** \brief Like AutoRangeHistogram, but use global min/max rather than region min/max.
- If BinCount != 0, the return type of the accumulator is TinyVector<double, BinCount> .
- If BinCount == 0, the return type of the accumulator is MultiArray<1, double> . BinCount can be set by calling getAccumulator<GlobalRangeHistogram<0>>(acc_chain).setBinCount(bincount).
- Becomes a UserRangeHistogram if min/max is set.
- Works in pass 2, %operator+=() is supported (merging) if both histograms have the same data mapping.
- Outliers can be accessed via getAccumulator<GlobalRangeHistogram<Bincount>>(acc_chain).left_outliers and getAccumulator<...>(acc_chain).right_outliers .
- Histogram options (for all histograms in the accumulator chain) can also be set by passing an instance of HistogramOptions to the accumulator chain via acc_chain.setHistogramOptions().
*/
template <int BinCount>
class GlobalRangeHistogram
{
public:
typedef Select<Global<Minimum>, Global<Maximum>, Minimum, Maximum> Dependencies;
static std::string name()
{
return std::string("GlobalRangeHistogram<") + asString(BinCount) + ">";
// static const std::string n = std::string("GlobalRangeHistogram<") + asString(BinCount) + ">";
// return n;
}
template <class U, class BASE>
struct Impl
: public RangeHistogramBase<BASE, BinCount, U>
{
static const unsigned int workInPass = LookupDependency<Minimum, BASE>::type::workInPass + 1;
bool useLocalMinimax_;
Impl()
: useLocalMinimax_(false)
{}
void setRegionAutoInit(bool locally)
{
this->scale_ = 0.0;
useLocalMinimax_ = locally;
}
void update(U const & t)
{
update(t, 1.0);
}
void update(U const & t, double weight)
{
if(this->scale_ == 0.0)
{
if(useLocalMinimax_)
this->setMinMax(getDependency<Minimum>(*this), getDependency<Maximum>(*this));
else
this->setMinMax(getDependency<Global<Minimum> >(*this), getDependency<Global<Maximum> >(*this));
}
RangeHistogramBase<BASE, BinCount, U>::update(t, weight);
}
};
};
/** \brief Compute (0%, 10%, 25%, 50%, 75%, 90%, 100%) quantiles from given histogram.
Return type is TinyVector<double, 7> .
*/
template <class HistogramAccumulator>
class StandardQuantiles
{
public:
typedef typename StandardizeTag<HistogramAccumulator>::type HistogramTag;
typedef Select<HistogramTag, Minimum, Maximum, Count> Dependencies;
static std::string name()
{
return std::string("StandardQuantiles<") + HistogramTag::name() + " >";
// static const std::string n = std::string("StandardQuantiles<") + HistogramTag::name() + " >";
// return n;
}
template <class U, class BASE>
struct Impl
: public CachedResultBase<BASE, TinyVector<double, 7>, U>
{
typedef typename CachedResultBase<BASE, TinyVector<double, 7>, U>::result_type result_type;
typedef typename CachedResultBase<BASE, TinyVector<double, 7>, U>::value_type value_type;
static const unsigned int workInPass = LookupDependency<HistogramTag, BASE>::type::workInPass;
result_type operator()() const
{
if(this->isDirty())
{
double desiredQuantiles[] = {0.0, 0.1, 0.25, 0.5, 0.75, 0.9, 1.0 };
getAccumulator<HistogramTag>(*this).computeStandardQuantiles(getDependency<Minimum>(*this), getDependency<Maximum>(*this),
getDependency<Count>(*this), value_type(desiredQuantiles),
this->value_);
this->setClean();
}
return this->value_;
}
};
};
}} // namespace vigra::acc
#endif // VIGRA_ACCUMULATOR_HXX
|