This file is indexed.

/usr/include/vigra/bit_array.hxx is in libvigraimpex-dev 1.10.0+dfsg-3ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
#ifndef VIGRA_BIT_ARRAY_HXX
#define VIGRA_BIT_ARRAY_HXX

#include <functional>
#include <ostream>
#include "metaprogramming.hxx"

namespace vigra {

template <class> // undefined class to provoke usable error messages
class vigra_error_BitArray_accepts_only_unsigned_underlying_types_and_no_;

template <unsigned SIZE, class X> // bitwise operators do not necessarily work for bool
struct EnableBitArray
    : public enable_if<(HasMetaLog2<X>::value && !IsSameType<X, bool>::value && SIZE > 0)> {};

// BitArray: a minimal subset of std::bitset with the extension of compile-time
// access functions set<unsigned>(), test<unsigned>(), reset<unsigned>(), and
// flip<unsigned>(), plus all relational operators;
// furthermore, there are no range checks.

template <unsigned SIZE, class WORD_TYPE = unsigned, class = void>
class BitArray
    : public
      vigra_error_BitArray_accepts_only_unsigned_underlying_types_and_no_
      <WORD_TYPE>
{};

template <unsigned SIZE, class WORD_TYPE>
class BitArray<SIZE, WORD_TYPE, typename EnableBitArray<SIZE, WORD_TYPE>::type>
{
    // 'unsigned' will be the most efficent word type for most CPUs,
    // since very long immediates such as a possible 64 bit 'unsigned long'
    // are slower for many typical uses of BitArray
  protected:
    static const unsigned bit_size = SIZE;
    static const unsigned word_len = MetaLog2<WORD_TYPE>::value;
    static const unsigned array_len = (bit_size + word_len - 1) / word_len;
    static const unsigned last_pos = array_len - 1;
    template <unsigned pos>
    struct bit_index
    {
        static const unsigned  word_pos = pos / word_len;
        static const unsigned   bit_pos = pos % word_len;
        static const WORD_TYPE bit_mask = WORD_TYPE(1) << bit_pos;
    };
    typedef bit_index<bit_size> size_index;
    static const WORD_TYPE ones_mask = ~(WORD_TYPE(0));
    static const unsigned border_pos = size_index::bit_pos;
    static const WORD_TYPE last_mask = !border_pos ? 0
                                                   : size_index::bit_mask - 1;
    static const bool does_fit = border_pos == 0;
    unsigned word_pos(unsigned pos) const
    {
        return pos / word_len;
    };
    WORD_TYPE bit_mask(unsigned pos) const
    {
        return WORD_TYPE(1) << (pos % word_len); // the compiler knows as well..
    };

    WORD_TYPE set_bits[array_len];

  public:
    unsigned size()
    {
        return bit_size;
    }
    void clear()
    {
        for (unsigned i = 0; i != array_len; ++i)
            set_bits[i] = 0;
    }
    BitArray()
    {
        clear();
    }
    template <unsigned pos>
    void set()
    {
        typedef bit_index<pos> index;
        set_bits[index::word_pos] |= index::bit_mask;
    }
    template <unsigned pos>
    void reset()
    {
        typedef bit_index<pos> index;
        set_bits[index::word_pos] &= ~index::bit_mask;
    }
    template <unsigned pos>
    void flip()
    {
        typedef bit_index<pos> index;
        set_bits[index::word_pos] ^= index::bit_mask;
    }
    template <unsigned pos>
    bool test() const
    {
        typedef bit_index<pos> index;
        return (set_bits[index::word_pos] & index::bit_mask) != 0;
    }

    BitArray & set(unsigned pos, bool value = true)
    {
        (set_bits[word_pos(pos)] &= ~bit_mask(pos))
                                 |= value ? bit_mask(pos) : 0;
        return *this;
    }
    BitArray & reset(unsigned pos)
    {
        set_bits[word_pos(pos)] &= ~bit_mask(pos);
        return *this;
    }
    BitArray & flip(unsigned pos)
    {
        set_bits[word_pos(pos)] ^= bit_mask(pos);
        return *this;
    }
    bool test(unsigned pos) const
    {
        return set_bits[word_pos(pos)] & bit_mask(pos);
    }
    bool operator[](unsigned pos) const
    {
        return test(pos);
    }

    BitArray & set()
    {
        for (unsigned i = 0; i != last_pos + does_fit; ++i)
            set_bits[i] = ones_mask;
        if (!does_fit)
            set_bits[last_pos] = last_mask;
        return *this;
    }
    BitArray & reset()
    {
        for (unsigned i = 0; i != array_len; ++i)
            set_bits[i] = 0;
        return *this;
    }
    BitArray & flip()
    {
        for (unsigned i = 0; i != last_pos + does_fit; ++i)
            set_bits[i] ^= ones_mask;
        if (!does_fit)
            set_bits[last_pos] ^= last_mask;
        return *this;
    }

    operator bool() const
    {
        for (unsigned i = 0; i != array_len; ++i)
            if (set_bits[i] != 0)
                return true;
        return false;
    }
    bool operator!() const
    {
        return !bool(*this);
    }
    bool any() const
    {
        return *this;
    }
    bool none() const
    {
        return !*this;
    }
    bool all() const
    {
        for (unsigned i = 0; i != last_pos + does_fit; ++i)
            if (set_bits[i] != ones_mask)
                return false;
        if (!does_fit)
            return set_bits[last_pos] == last_mask;
        return true;
    }
    
    BitArray operator~() const
    {
        BitArray x(*this);
        x.flip();
        return x;
    }
   
  protected:
    template <class F>
    bool mutual_compare(const BitArray & t, F f, bool if_equal = false) const
    {
        for (int i = last_pos; i >= 0; i--)
        {
            WORD_TYPE x =   set_bits[i];
            WORD_TYPE y = t.set_bits[i];
            if (f(x, y))
                return true;
            if (f(y, x))
                return false;
        }
        return if_equal;
    }
    typedef std::less<WORD_TYPE>    less;
    typedef std::greater<WORD_TYPE> greater;
    
  public:
    bool operator<(const BitArray & t) const
    {
        return mutual_compare(t, less());
    }
    bool operator>(const BitArray & t) const
    {
        return mutual_compare(t, greater());
    }

    bool operator<=(const BitArray & t) const
    {
        return mutual_compare(t, less(), true);
    }
    bool operator>=(const BitArray & t) const
    {
        return mutual_compare(t, greater(), true);
    }

    bool operator!=(const BitArray & t) const
    {
        for (unsigned i = 0; i != array_len; ++i)
            if (set_bits[i] != t.set_bits[i])
                return true;
        return false;
    }
    bool operator==(const BitArray & t) const
    {
        return !operator!=(t);
    }

  protected:
    struct bit_and_assign
    {
        static void assign(WORD_TYPE & a, WORD_TYPE b) { a &= b; }
    };
    struct exclusive_or_assign
    {
        static void assign(WORD_TYPE & a, WORD_TYPE b) { a ^= b; }
    };
    struct bit_or_assign
    {
        static void assign(WORD_TYPE & a, WORD_TYPE b) { a |= b; }
    };
    template <class A>
    BitArray & assign_operator(const BitArray & x)
    {
        for (unsigned i = 0; i != array_len; ++i)
            A::assign(set_bits[i], x.set_bits[i]);
        return *this;
    }
  public:
    BitArray & operator&=(const BitArray & x)
    {
        return assign_operator<bit_and_assign>(x);
    }
    BitArray & operator^=(const BitArray & x)
    {
        return assign_operator<exclusive_or_assign>(x);
    }
    BitArray & operator|=(const BitArray & x)
    {
        return assign_operator<bit_or_assign>(x);
    }
   
  protected:
    template <class A>
    BitArray & bit_operator(const BitArray & y) const
    {
        BitArray x(*this);
        return x.assign_operator<A>(y);
    }
  public:
    BitArray operator&(const BitArray & y) const
    {
        return bit_operator<bit_and_assign>(y);
    }
    BitArray operator^(const BitArray & y) const
    {
        return bit_operator<exclusive_or_assign>(y);
    }
    BitArray operator|(const BitArray & y) const
    {
        return bit_operator<bit_or_assign>(y);
    }

    bool operator&&(const BitArray & y) const
    {
        return *this && y;
    }
    bool operator||(const BitArray & y) const
    {
        return *this || y;
    }

    friend std::ostream & operator<<(std::ostream & os, const BitArray & z)
    {
        for (int i = bit_size - 1; i >= 0; i--)
            os << (z[i] ? "1" : "0");
        return os;
    }
};

// work around GCC's zero-sized array extension
template <class WORD_TYPE>
class BitArray<0, WORD_TYPE>
{
//    bool error[-(long int)sizeof(WORD_TYPE)];
    void clear() {}
};

} // namespace vigra

#endif // VIGRA_BIT_ARRAY_HXX