/usr/include/vigra/gaussians.hxx is in libvigraimpex-dev 1.10.0+dfsg-3ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 | /************************************************************************/
/* */
/* Copyright 1998-2004 by Ullrich Koethe */
/* */
/* This file is part of the VIGRA computer vision library. */
/* The VIGRA Website is */
/* http://hci.iwr.uni-heidelberg.de/vigra/ */
/* Please direct questions, bug reports, and contributions to */
/* ullrich.koethe@iwr.uni-heidelberg.de or */
/* vigra@informatik.uni-hamburg.de */
/* */
/* Permission is hereby granted, free of charge, to any person */
/* obtaining a copy of this software and associated documentation */
/* files (the "Software"), to deal in the Software without */
/* restriction, including without limitation the rights to use, */
/* copy, modify, merge, publish, distribute, sublicense, and/or */
/* sell copies of the Software, and to permit persons to whom the */
/* Software is furnished to do so, subject to the following */
/* conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the */
/* Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES */
/* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND */
/* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT */
/* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, */
/* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING */
/* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR */
/* OTHER DEALINGS IN THE SOFTWARE. */
/* */
/************************************************************************/
#ifndef VIGRA_GAUSSIANS_HXX
#define VIGRA_GAUSSIANS_HXX
#include <cmath>
#include "config.hxx"
#include "mathutil.hxx"
#include "array_vector.hxx"
#include "error.hxx"
namespace vigra {
#if 0
/** \addtogroup MathFunctions Mathematical Functions
*/
//@{
#endif
/** The Gaussian function and its derivatives.
Implemented as a unary functor. Since it supports the <tt>radius()</tt> function
it can also be used as a kernel in \ref resamplingConvolveImage().
<b>\#include</b> \<vigra/gaussians.hxx\><br>
Namespace: vigra
\ingroup MathFunctions
*/
template <class T = double>
class Gaussian
{
public:
/** the value type if used as a kernel in \ref resamplingConvolveImage().
*/
typedef T value_type;
/** the functor's argument type
*/
typedef T argument_type;
/** the functor's result type
*/
typedef T result_type;
/** Create functor for the given standard deviation <tt>sigma</tt> and
derivative order <i>n</i>. The functor then realizes the function
\f[ f_{\sigma,n}(x)=\frac{\partial^n}{\partial x^n}
\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{x^2}{2\sigma^2}}
\f]
Precondition:
\code
sigma > 0.0
\endcode
*/
explicit Gaussian(T sigma = 1.0, unsigned int derivativeOrder = 0)
: sigma_(sigma),
sigma2_(T(-0.5 / sigma / sigma)),
norm_(0.0),
order_(derivativeOrder),
hermitePolynomial_(derivativeOrder / 2 + 1)
{
vigra_precondition(sigma_ > 0.0,
"Gaussian::Gaussian(): sigma > 0 required.");
switch(order_)
{
case 1:
case 2:
norm_ = T(-1.0 / (VIGRA_CSTD::sqrt(2.0 * M_PI) * sq(sigma) * sigma));
break;
case 3:
norm_ = T(1.0 / (VIGRA_CSTD::sqrt(2.0 * M_PI) * sq(sigma) * sq(sigma) * sigma));
break;
default:
norm_ = T(1.0 / VIGRA_CSTD::sqrt(2.0 * M_PI) / sigma);
}
calculateHermitePolynomial();
}
/** Function (functor) call.
*/
result_type operator()(argument_type x) const;
/** Get the standard deviation of the Gaussian.
*/
value_type sigma() const
{ return sigma_; }
/** Get the derivative order of the Gaussian.
*/
unsigned int derivativeOrder() const
{ return order_; }
/** Get the required filter radius for a discrete approximation of the Gaussian.
The radius is given as a multiple of the Gaussian's standard deviation
(default: <tt>sigma * (3 + 1/2 * derivativeOrder()</tt> -- the second term
accounts for the fact that the derivatives of the Gaussian become wider
with increasing order). The result is rounded to the next higher integer.
*/
double radius(double sigmaMultiple = 3.0) const
{ return VIGRA_CSTD::ceil(sigma_ * (sigmaMultiple + 0.5 * derivativeOrder())); }
private:
void calculateHermitePolynomial();
T horner(T x) const;
T sigma_, sigma2_, norm_;
unsigned int order_;
ArrayVector<T> hermitePolynomial_;
};
template <class T>
typename Gaussian<T>::result_type
Gaussian<T>::operator()(argument_type x) const
{
T x2 = x * x;
T g = norm_ * VIGRA_CSTD::exp(x2 * sigma2_);
switch(order_)
{
case 0:
return detail::RequiresExplicitCast<result_type>::cast(g);
case 1:
return detail::RequiresExplicitCast<result_type>::cast(x * g);
case 2:
return detail::RequiresExplicitCast<result_type>::cast((1.0 - sq(x / sigma_)) * g);
case 3:
return detail::RequiresExplicitCast<result_type>::cast((3.0 - sq(x / sigma_)) * x * g);
default:
return order_ % 2 == 0 ?
detail::RequiresExplicitCast<result_type>::cast(g * horner(x2))
: detail::RequiresExplicitCast<result_type>::cast(x * g * horner(x2));
}
}
template <class T>
T Gaussian<T>::horner(T x) const
{
int i = order_ / 2;
T res = hermitePolynomial_[i];
for(--i; i >= 0; --i)
res = x * res + hermitePolynomial_[i];
return res;
}
template <class T>
void Gaussian<T>::calculateHermitePolynomial()
{
if(order_ == 0)
{
hermitePolynomial_[0] = 1.0;
}
else if(order_ == 1)
{
hermitePolynomial_[0] = T(-1.0 / sigma_ / sigma_);
}
else
{
// calculate Hermite polynomial for requested derivative
// recursively according to
// (0)
// h (x) = 1
//
// (1)
// h (x) = -x / s^2
//
// (n+1) (n) (n-1)
// h (x) = -1 / s^2 * [ x * h (x) + n * h (x) ]
//
T s2 = T(-1.0 / sigma_ / sigma_);
ArrayVector<T> hn(3*order_+3, 0.0);
typename ArrayVector<T>::iterator hn0 = hn.begin(),
hn1 = hn0 + order_+1,
hn2 = hn1 + order_+1,
ht;
hn2[0] = 1.0;
hn1[1] = s2;
for(unsigned int i = 2; i <= order_; ++i)
{
hn0[0] = s2 * (i-1) * hn2[0];
for(unsigned int j = 1; j <= i; ++j)
hn0[j] = s2 * (hn1[j-1] + (i-1) * hn2[j]);
ht = hn2;
hn2 = hn1;
hn1 = hn0;
hn0 = ht;
}
// keep only non-zero coefficients of the polynomial
for(unsigned int i = 0; i < hermitePolynomial_.size(); ++i)
hermitePolynomial_[i] = order_ % 2 == 0 ?
hn1[2*i]
: hn1[2*i+1];
}
}
////@}
} // namespace vigra
#endif /* VIGRA_GAUSSIANS_HXX */
|