This file is indexed.

/usr/include/vigra/gaussians.hxx is in libvigraimpex-dev 1.10.0+dfsg-3ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
/************************************************************************/
/*                                                                      */
/*               Copyright 1998-2004 by Ullrich Koethe                  */
/*                                                                      */
/*    This file is part of the VIGRA computer vision library.           */
/*    The VIGRA Website is                                              */
/*        http://hci.iwr.uni-heidelberg.de/vigra/                       */
/*    Please direct questions, bug reports, and contributions to        */
/*        ullrich.koethe@iwr.uni-heidelberg.de    or                    */
/*        vigra@informatik.uni-hamburg.de                               */
/*                                                                      */
/*    Permission is hereby granted, free of charge, to any person       */
/*    obtaining a copy of this software and associated documentation    */
/*    files (the "Software"), to deal in the Software without           */
/*    restriction, including without limitation the rights to use,      */
/*    copy, modify, merge, publish, distribute, sublicense, and/or      */
/*    sell copies of the Software, and to permit persons to whom the    */
/*    Software is furnished to do so, subject to the following          */
/*    conditions:                                                       */
/*                                                                      */
/*    The above copyright notice and this permission notice shall be    */
/*    included in all copies or substantial portions of the             */
/*    Software.                                                         */
/*                                                                      */
/*    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND    */
/*    EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES   */
/*    OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND          */
/*    NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT       */
/*    HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,      */
/*    WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING      */
/*    FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR     */
/*    OTHER DEALINGS IN THE SOFTWARE.                                   */                
/*                                                                      */
/************************************************************************/

#ifndef VIGRA_GAUSSIANS_HXX
#define VIGRA_GAUSSIANS_HXX

#include <cmath>
#include "config.hxx"
#include "mathutil.hxx"
#include "array_vector.hxx"
#include "error.hxx"

namespace vigra {

#if 0
/** \addtogroup MathFunctions Mathematical Functions
*/
//@{
#endif
/** The Gaussian function and its derivatives.

    Implemented as a unary functor. Since it supports the <tt>radius()</tt> function
    it can also be used as a kernel in \ref resamplingConvolveImage().

    <b>\#include</b> \<vigra/gaussians.hxx\><br>
    Namespace: vigra

    \ingroup MathFunctions
*/
template <class T = double>
class Gaussian
{
  public:

        /** the value type if used as a kernel in \ref resamplingConvolveImage().
        */
    typedef T            value_type;
        /** the functor's argument type
        */
    typedef T            argument_type;
        /** the functor's result type
        */
    typedef T            result_type;

        /** Create functor for the given standard deviation <tt>sigma</tt> and
            derivative order <i>n</i>. The functor then realizes the function

            \f[ f_{\sigma,n}(x)=\frac{\partial^n}{\partial x^n}
                 \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{x^2}{2\sigma^2}}
            \f]

            Precondition:
            \code
            sigma > 0.0
            \endcode
        */
    explicit Gaussian(T sigma = 1.0, unsigned int derivativeOrder = 0)
    : sigma_(sigma),
      sigma2_(T(-0.5 / sigma / sigma)),
      norm_(0.0),
      order_(derivativeOrder),
      hermitePolynomial_(derivativeOrder / 2 + 1)
    {
        vigra_precondition(sigma_ > 0.0,
            "Gaussian::Gaussian(): sigma > 0 required.");
        switch(order_)
        {
            case 1:
            case 2:
                norm_ = T(-1.0 / (VIGRA_CSTD::sqrt(2.0 * M_PI) * sq(sigma) * sigma));
                break;
            case 3:
                norm_ = T(1.0 / (VIGRA_CSTD::sqrt(2.0 * M_PI) * sq(sigma) * sq(sigma) * sigma));
                break;
            default:
                norm_ = T(1.0 / VIGRA_CSTD::sqrt(2.0 * M_PI) / sigma);
        }
        calculateHermitePolynomial();
    }

        /** Function (functor) call.
        */
    result_type operator()(argument_type x) const;

        /** Get the standard deviation of the Gaussian.
        */
    value_type sigma() const
        { return sigma_; }

        /** Get the derivative order of the Gaussian.
        */
    unsigned int derivativeOrder() const
        { return order_; }

        /** Get the required filter radius for a discrete approximation of the Gaussian.
            The radius is given as a multiple of the Gaussian's standard deviation
            (default: <tt>sigma * (3 + 1/2 * derivativeOrder()</tt> -- the second term
            accounts for the fact that the derivatives of the Gaussian become wider
            with increasing order). The result is rounded to the next higher integer.
        */
    double radius(double sigmaMultiple = 3.0) const
        { return VIGRA_CSTD::ceil(sigma_ * (sigmaMultiple + 0.5 * derivativeOrder())); }

  private:
    void calculateHermitePolynomial();
    T horner(T x) const;

    T sigma_, sigma2_, norm_;
    unsigned int order_;
    ArrayVector<T> hermitePolynomial_;
};

template <class T>
typename Gaussian<T>::result_type
Gaussian<T>::operator()(argument_type x) const
{
    T x2 = x * x;
    T g  = norm_ * VIGRA_CSTD::exp(x2 * sigma2_);
    switch(order_)
    {
        case 0:
            return detail::RequiresExplicitCast<result_type>::cast(g);
        case 1:
            return detail::RequiresExplicitCast<result_type>::cast(x * g);
        case 2:
            return detail::RequiresExplicitCast<result_type>::cast((1.0 - sq(x / sigma_)) * g);
        case 3:
            return detail::RequiresExplicitCast<result_type>::cast((3.0 - sq(x / sigma_)) * x * g);
        default:
            return order_ % 2 == 0 ?
                       detail::RequiresExplicitCast<result_type>::cast(g * horner(x2))
                     : detail::RequiresExplicitCast<result_type>::cast(x * g * horner(x2));
    }
}

template <class T>
T Gaussian<T>::horner(T x) const
{
    int i = order_ / 2;
    T res = hermitePolynomial_[i];
    for(--i; i >= 0; --i)
        res = x * res + hermitePolynomial_[i];
    return res;
}

template <class T>
void Gaussian<T>::calculateHermitePolynomial()
{
    if(order_ == 0)
    {
        hermitePolynomial_[0] = 1.0;
    }
    else if(order_ == 1)
    {
        hermitePolynomial_[0] = T(-1.0 / sigma_ / sigma_);
    }
    else
    {
        // calculate Hermite polynomial for requested derivative
        // recursively according to
        //     (0)
        //    h   (x) = 1
        //
        //     (1)
        //    h   (x) = -x / s^2
        //
        //     (n+1)                        (n)           (n-1)
        //    h     (x) = -1 / s^2 * [ x * h   (x) + n * h     (x) ]
        //
        T s2 = T(-1.0 / sigma_ / sigma_);
        ArrayVector<T> hn(3*order_+3, 0.0);
        typename ArrayVector<T>::iterator hn0 = hn.begin(),
                                          hn1 = hn0 + order_+1,
                                          hn2 = hn1 + order_+1,
                                          ht;
        hn2[0] = 1.0;
        hn1[1] = s2;
        for(unsigned int i = 2; i <= order_; ++i)
        {
            hn0[0] = s2 * (i-1) * hn2[0];
            for(unsigned int j = 1; j <= i; ++j)
                hn0[j] = s2 * (hn1[j-1] + (i-1) * hn2[j]);
            ht = hn2;
            hn2 = hn1;
            hn1 = hn0;
            hn0 = ht;
        }
        // keep only non-zero coefficients of the polynomial
        for(unsigned int i = 0; i < hermitePolynomial_.size(); ++i)
            hermitePolynomial_[i] = order_ % 2 == 0 ?
                                         hn1[2*i]
                                       : hn1[2*i+1];
    }
}


////@}

} // namespace vigra


#endif /* VIGRA_GAUSSIANS_HXX */