/usr/include/vigra/multi_impex.hxx is in libvigraimpex-dev 1.10.0+dfsg-3ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 | /************************************************************************/
/* */
/* Copyright 2003 by Gunnar Kedenburg */
/* */
/* This file is part of the VIGRA computer vision library. */
/* The VIGRA Website is */
/* http://hci.iwr.uni-heidelberg.de/vigra/ */
/* Please direct questions, bug reports, and contributions to */
/* ullrich.koethe@iwr.uni-heidelberg.de or */
/* vigra@informatik.uni-hamburg.de */
/* */
/* Permission is hereby granted, free of charge, to any person */
/* obtaining a copy of this software and associated documentation */
/* files (the "Software"), to deal in the Software without */
/* restriction, including without limitation the rights to use, */
/* copy, modify, merge, publish, distribute, sublicense, and/or */
/* sell copies of the Software, and to permit persons to whom the */
/* Software is furnished to do so, subject to the following */
/* conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the */
/* Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES */
/* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND */
/* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT */
/* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, */
/* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING */
/* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR */
/* OTHER DEALINGS IN THE SOFTWARE. */
/* */
/************************************************************************/
#ifndef VIGRA_MULTI_IMPEX_HXX
#define VIGRA_MULTI_IMPEX_HXX
#include <memory>
#include <iomanip>
#include <sstream>
#include <iostream>
#include <string>
#include <fstream>
#include "config.hxx"
#include "basicimageview.hxx"
#include "impex.hxx"
#include "multi_array.hxx"
#include "multi_pointoperators.hxx"
#include "sifImport.hxx"
#ifdef _MSC_VER
# include <direct.h>
#else
# include <unistd.h>
#endif
namespace vigra {
/** \addtogroup VolumeImpex Import/export of volume data.
*/
//@{
/** \brief Argument object for the function importVolume().
See \ref importVolume() for usage example. This object can be used
to define the properties of a volume data set to be read from disk.
Sorry, no \ref detailedDocumentation() available yet.
<b>\#include</b> \<vigra/multi_impex.hxx\> <br/>
Namespace: vigra
**/
class VolumeImportInfo
{
public:
typedef ImageImportInfo::PixelType PixelType;
/// type of volume size returned by shape()
typedef MultiArrayShape<3>::type ShapeType;
/// type of volume size returned by shape()
typedef ShapeType size_type;
/// 3D resolution type returned by resolution()
typedef TinyVector<float, 3> Resolution;
/** Construct VolumeImportInfo from a single filename.
The \a filename (which may contain a path) can be interpreted in three different ways:
<ul>
<li>If the name refers to a file that contains volume data, the header information
of this file is read. Two file formats are currently supported: Andor .SIF
and multi-page TIFF.
<li>If the name refers to a textfile, the constructor will attempt to interpret the file
in the ".info" format to obtain the header information. The volume data
are then expected to be located in an accompanying RAW file. The ".info" file must
contain the following key-value pairs:
<UL>
<LI> name = [short descriptive name of the volume] (optional)
<LI> filename = [absolute or relative path to raw voxel data file] (required)
<li> description = [arbitrary description of the data set] (optional)
<li> width = [positive integer] (required)
<li> height = [positive integer] (required)
<li> depth = [positive integer] (required)
<li> datatype = [ UINT8 | INT16 | UINT16 | INT32 | UINT32 | FLOAT | DOUBLE ] (required)
</UL>
Lines starting with "#" are ignored. To read the data correctly, the
value_type of the target MultiArray must match the datatype stored in the file.
Only single-band files are currently supported.
<li>If the name refers to a 2D image file, the constructor will attempt to decompose
the filename into the format <tt>base_name + slice_number + name_extension</tt>.
If this decomposition succeeds, all images with the same base_name and name_extension
will be considered as the slices of an image stack. Slice numbers need not be consecutive
(i.e. gaps are allowed) and will be interpreted according to their numerical order
(i.e. "009", "010", "011" are read in the same order as "9", "10", "11"). The number of images
found determines the depth of the volume, the remaining header data are read from the given image.
</ul>
*/
VIGRA_EXPORT VolumeImportInfo(const std::string &filename);
/** Construct VolumeImportInfo for a stack of images.
The constructor will look for filenames of the form <tt>base_name + slice_number + name_extension</tt>.
All images conforming to this pattern will be considered as the slices of an image stack.
Slice numbers need not be consecutive (i.e. gaps are allowed) and will be interpreted according
to their numerical order (i.e. "009", "010", "011" are read in the same order as "9", "10", "11").
The number of images found determines the depth of the volume, the remaining header data are read
from the given image. \a name_base may contain a path.
*/
VIGRA_EXPORT VolumeImportInfo(const std::string &base_name, const std::string &name_extension);
/** Get the shape of the volume.
*/
VIGRA_EXPORT ShapeType shape() const;
/** Get width of the volume.
**/
VIGRA_EXPORT MultiArrayIndex width() const;
/** Get height of the volume.
**/
VIGRA_EXPORT MultiArrayIndex height() const;
/** Get depth of the volume.
**/
VIGRA_EXPORT MultiArrayIndex depth() const;
/**
* resolution() contains the alignment and resolution of the
* volume. resolution()[0] is the x increment in a left-handed
* world coordinate system of one unstrided step in the volume
* memory. The [1] and [2] elements contain the y resp. z
* increments of the strided row resp. slice steps in the
* volume.
*
* EXAMPLES: (1.f, 1.f, 4.f) means that the slices are four
* times thicker than the x/y resolution.
* (1.f, -1.f, 1.f) means that the volume coordinate system is
* right-handed.
*/
VIGRA_EXPORT Resolution resolution() const;
/** Query the file type.
Possible values are:
<DL>
<DT>"MULTIPAGE"<DD> Multiple 2D images in a single file (currently only supported by TIFF).
<DT>"SIF"<DD> <a href="http://www.andor.com">Andor Technology's</a> .sif format.
<DT>"RAW"<DD> Raw data file, accompanied by a .info file
<DT>"STACK"<DD> A numbered set of 2D image files, one per slice of the volume.
</DL>
**/
VIGRA_EXPORT const char * getFileType() const;
/** Query the pixel type of the volume data.
Possible values are:
<DL>
<DT>"INT8"<DD> 8-bit signed integer (signed char)
<DT>"UINT8"<DD> 8-bit unsigned integer (unsigned char)
<DT>"INT16"<DD> 16-bit signed integer (short)
<DT>"UINT16"<DD> 16-bit unsigned integer (unsigned short)
<DT>"INT32"<DD> 32-bit signed integer (long)
<DT>"UINT32"<DD> 32-bit unsigned integer (unsigned long)
<DT>"INT64"<DD> 64-bit signed integer (long long)
<DT>"UINT64"<DD> 64-bit unsigned integer (unsigned long long)
<DT>"FLOAT"<DD> 32-bit floating point (float)
<DT>"DOUBLE"<DD> 64-bit floating point (double)
<DT>"UNKNOWN"<DD> any other type
</DL>
**/
VIGRA_EXPORT const char * getPixelType() const;
/** Query the pixel type of the volume data.
Same as getPixelType(), but the result is returned as a
ImageImportInfo::PixelType enum. This is useful to implement
a switch() on the pixel type.
Possible values are:
<DL>
<DT>UINT8<DD> 8-bit unsigned integer (unsigned char)
<DT>INT16<DD> 16-bit signed integer (short)
<DT>UINT16<DD> 16-bit unsigned integer (unsigned short)
<DT>INT32<DD> 32-bit signed integer (long)
<DT>UINT32<DD> 32-bit unsigned integer (unsigned long)
<DT>FLOAT<DD> 32-bit floating point (float)
<DT>DOUBLE<DD> 64-bit floating point (double)
</DL>
**/
VIGRA_EXPORT PixelType pixelType() const;
VIGRA_EXPORT MultiArrayIndex numBands() const;
VIGRA_EXPORT bool isGrayscale() const;
VIGRA_EXPORT bool isColor() const;
// get base file name without path, image index, and extension
VIGRA_EXPORT const std::string &name() const;
VIGRA_EXPORT const std::string &description() const;
template <class T, class Stride>
void importImpl(MultiArrayView <3, T, Stride> &volume) const;
protected:
void getVolumeInfoFromFirstSlice(const std::string &filename);
size_type shape_;
Resolution resolution_;
//PixelType pixelType_;
int numBands_;
std::string path_, name_, description_, fileType_, pixelType_;
std::string rawFilename_;
std::string baseName_, extension_;
std::vector<std::string> numbers_;
};
/********************************************************/
/* */
/* VolumeExportInfo */
/* */
/********************************************************/
/** \brief Argument object for the function exportVolume().
See \ref exportVolume() for usage example. This object must be used
to define the properties of a volume to be written to disk.
<b>\#include</b> \<vigra/imageinfo.hxx\> <br/>
Namespace: vigra
**/
class VolumeExportInfo
{
public:
/** Construct VolumeExportInfo object to output volume data as a multi-page tiff.
The filename must refer to a TIFF file (extension '.tif' or '.tiff'). This function
is only available when libtiff is installed.
**/
VIGRA_EXPORT VolumeExportInfo( const char * filename );
/** Construct VolumeExportInfo object to output volume data as an image stack.
The volume will be stored in a by-slice manner, where the number of slices
equals the depth of the volume. The file names will be enumerated like
<tt>name_base+"000"+name_ext</tt>, <tt>name_base+"001"+name_ext</tt> etc.
(the actual number of zeros depends on the depth). If the target image type
does not support the source voxel type, all slices will be mapped
simultaneously to the appropriate target range.
The file type will be guessed from the extension unless overridden
by \ref setFileType().
Recognized extensions: '.bmp', '.gif',
'.jpeg', '.jpg', '.p7', '.png', '.pbm', '.pgm', '.pnm', '.ppm', '.ras',
'.tif', '.tiff', '.xv', '.hdr'.
JPEG support requires libjpeg, PNG support requires libpng, and
TIFF support requires libtiff.
If \a name_ext is an empty string, the data is written as a multi-page tiff.
**/
VIGRA_EXPORT VolumeExportInfo( const char * name_base, const char * name_ext );
VIGRA_EXPORT ~VolumeExportInfo();
/** Set volume file name base.
**/
VIGRA_EXPORT VolumeExportInfo & setFileNameBase(const char * name_base);
/** Set volume file name extension.
The file type will be guessed from the extension unless overridden
by \ref setFileType(). Recognized extensions: '.bmp', '.gif',
'.jpeg', '.jpg', '.p7', '.png', '.pbm', '.pgm', '.pnm', '.ppm', '.ras',
'.tif', '.tiff', '.xv', '.hdr'.
JPEG support requires libjpeg, PNG support requires libpng, and
TIFF support requires libtiff.
**/
VIGRA_EXPORT VolumeExportInfo & setFileNameExt(const char * name_ext);
VIGRA_EXPORT const char * getFileNameBase() const;
VIGRA_EXPORT const char * getFileNameExt() const;
/** Store volume as given file type.
This will override any type guessed
from the file name's extension. Recognized file types:
<DL>
<DT>"BMP"<DD> Microsoft Windows bitmap image file.
<DT>"GIF"<DD> CompuServe graphics interchange format; 8-bit color.
<DT>"JPEG"<DD> Joint Photographic Experts Group JFIF format;
compressed 24-bit color (only available if libjpeg is installed).
<DT>"PNG"<DD> Portable Network Graphic
(only available if libpng is installed).
<DT>"PBM"<DD> Portable bitmap format (black and white).
<DT>"PGM"<DD> Portable graymap format (gray scale).
<DT>"PNM"<DD> Portable anymap.
<DT>"PPM"<DD> Portable pixmap format (color).
<DT>"SUN"<DD> SUN Rasterfile.
<DT>"TIFF"<DD> Tagged Image File Format.
(only available if libtiff is installed.)
<DT>"MULTIPAGE"<DD> Multi-page TIFF.
(only available if libtiff is installed.)
<DT>"VIFF"<DD> Khoros Visualization image file.
</DL>
With the exception of TIFF, VIFF, PNG, and PNM all file types store
only 1 byte (gray scale and mapped RGB) or 3 bytes (RGB) per
pixel.
PNG can store UInt8 and UInt16 values, and supports 1 and 3 channel
images. One additional alpha channel is also supported.
PNM can store 1 and 3 channel images with UInt8, UInt16 and UInt32
values in each channel.
TIFF and VIFF are additionally able to store short and long
integers (2 or 4 bytes) and real values (32 bit float and
64 bit double) without conversion. So you will need to use
TIFF or VIFF if you need to store images with high
accuracy (the appropriate type to write is automatically
derived from the image type to be exported). However, many
other programs using TIFF (e.g. ImageMagick) have not
implemented support for those pixel types. So don't be
surprised if the generated TIFF is not readable in some
cases. If this happens, export the image as 'unsigned
char' or 'RGBValue\<unsigned char\>' by calling
\ref ImageExportInfo::setPixelType().
Support to reading and writing ICC color profiles is
provided for TIFF, JPEG, and PNG images.
**/
VIGRA_EXPORT VolumeExportInfo & setFileType( const char * );
VIGRA_EXPORT const char * getFileType() const;
/** Set compression type and quality.
See \ref ImageExportInfo::setCompression() for details.
**/
VIGRA_EXPORT VolumeExportInfo & setCompression( const char * type);
VIGRA_EXPORT const char * getCompression() const;
/** Set the pixel type of the volume file(s). Possible values are:
<DL>
<DT>"UINT8"<DD> 8-bit unsigned integer (unsigned char)
<DT>"INT16"<DD> 16-bit signed integer (short)
<DT>"UINT16"<DD> 16-bit unsigned integer (unsigned short)
<DT>"INT32"<DD> 32-bit signed integer (long)
<DT>"UINT32"<DD> 32-bit unsigned integer (unsigned long)
<DT>"FLOAT"<DD> 32-bit floating point (float)
<DT>"DOUBLE"<DD> 64-bit floating point (double)
</DL>
**/
VIGRA_EXPORT VolumeExportInfo & setPixelType( const char * );
/** Get the pixel type of the images in the volume. Possible values are:
<DL>
<DT>"UINT8"<DD> 8-bit unsigned integer (unsigned char)
<DT>"INT16"<DD> 16-bit signed integer (short)
<DT>"INT32"<DD> 32-bit signed integer (long)
<DT>"FLOAT"<DD> 32-bit floating point (float)
<DT>"DOUBLE"<DD> 64-bit floating point (double)
</DL>
**/
VIGRA_EXPORT const char * getPixelType() const;
VIGRA_EXPORT VolumeExportInfo & setForcedRangeMapping(double fromMin, double fromMax,
double toMin, double toMax);
VIGRA_EXPORT bool hasForcedRangeMapping() const;
VIGRA_EXPORT double getFromMin() const;
VIGRA_EXPORT double getFromMax() const;
VIGRA_EXPORT double getToMin() const;
VIGRA_EXPORT double getToMax() const;
/** Set the volume resolution in horizontal direction
**/
VIGRA_EXPORT VolumeExportInfo & setXResolution( float );
VIGRA_EXPORT float getXResolution() const;
/** Set the image resolution in vertical direction
**/
VIGRA_EXPORT VolumeExportInfo & setYResolution( float );
VIGRA_EXPORT float getYResolution() const;
/** Set the image resolution in depth direction
**/
VIGRA_EXPORT VolumeExportInfo & setZResolution( float );
VIGRA_EXPORT float getZResolution() const;
/** Set the position of the upper Left corner on a global
canvas.
Currently only supported by TIFF and PNG files.
The offset is encoded in the XPosition and YPosition TIFF tags.
@param pos position of the upper left corner in pixels
(must be >= 0)
**/
// FIXME: mhanselm: we might want to support 3D positions
VIGRA_EXPORT VolumeExportInfo & setPosition(const Diff2D & pos);
/** Get the position of the upper left corner on
a global canvas.
**/
// FIXME: mhanselm: we might want to support 3D positions
VIGRA_EXPORT Diff2D getPosition() const;
/**
ICC profiles (handled as raw data so far).
see getICCProfile()/setICCProfile()
**/
typedef ArrayVector<unsigned char> ICCProfile;
/** Returns a reference to the ICC profile.
*/
VIGRA_EXPORT const ICCProfile & getICCProfile() const;
/** Sets the ICC profile.
ICC profiles are currently supported by TIFF, PNG and JPEG images.
(Otherwise, the profile data is silently ignored.)
**/
VIGRA_EXPORT VolumeExportInfo & setICCProfile(const ICCProfile & profile);
private:
float m_x_res, m_y_res, m_z_res;
std::string m_filetype, m_filename_base, m_filename_ext, m_pixeltype, m_comp;
Diff2D m_pos;
ICCProfile m_icc_profile;
double fromMin_, fromMax_, toMin_, toMax_;
};
namespace detail {
template <class DestIterator, class Shape, class T>
inline void
readVolumeImpl(DestIterator d, Shape const & shape, std::ifstream & s, ArrayVector<T> & buffer, MetaInt<0>)
{
s.read((char*)buffer.begin(), shape[0]*sizeof(T));
DestIterator dend = d + shape[0];
int k = 0;
for(; d < dend; ++d, k++)
{
*d = buffer[k];
}
}
template <class DestIterator, class Shape, class T, int N>
void
readVolumeImpl(DestIterator d, Shape const & shape, std::ifstream & s, ArrayVector<T> & buffer, MetaInt<N>)
{
DestIterator dend = d + shape[N];
for(; d < dend; ++d)
{
readVolumeImpl(d.begin(), shape, s, buffer, MetaInt<N-1>());
}
}
} // namespace detail
template <class T, class Stride>
void VolumeImportInfo::importImpl(MultiArrayView <3, T, Stride> &volume) const
{
vigra_precondition(this->shape() == volume.shape(), "importVolume(): Output array must be shaped according to VolumeImportInfo.");
if(fileType_ == "RAW")
{
std::string dirName, baseName;
char oldCWD[2048];
#ifdef _MSC_VER
if(_getcwd(oldCWD, 2048) == 0)
{
perror("getcwd");
vigra_fail("VolumeImportInfo: Unable to query current directory (getcwd).");
}
if(_chdir(path_.c_str()))
{
perror("chdir");
vigra_fail("VolumeImportInfo: Unable to change to new directory (chdir).");
}
#else
if(getcwd(oldCWD, 2048) == 0)
{
perror("getcwd");
vigra_fail("VolumeImportInfo: Unable to query current directory (getcwd).");
}
if(chdir(path_.c_str()))
{
perror("chdir");
vigra_fail("VolumeImportInfo: Unable to change to new directory (chdir).");
}
#endif
std::ifstream s(rawFilename_.c_str(), std::ios::binary);
vigra_precondition(s.good(), "RAW file could not be opened");
ArrayVector<T> buffer(shape_[0]);
detail::readVolumeImpl(volume.traverser_begin(), shape_, s, buffer, vigra::MetaInt<2>());
//vigra_precondition(s.good(), "RAW file could not be opened");
//s.read((char*)volume.data(), shape_[0]*shape_[1]*shape_[2]*sizeof(T));
#ifdef _MSC_VER
if(_chdir(oldCWD))
perror("chdir");
#else
if(chdir(oldCWD))
perror("chdir");
#endif
vigra_postcondition(
volume.shape() == shape(), "imported volume has wrong size");
}
else if(fileType_ == "STACK")
{
for (unsigned int i = 0; i < numbers_.size(); ++i)
{
// build the filename
std::string name = baseName_ + numbers_[i] + extension_;
// import the image
ImageImportInfo info (name.c_str ());
// generate a basic image view to the current layer
MultiArrayView <2, T, Stride> view (volume.bindOuter (i));
vigra_precondition(view.shape() == info.shape(),
"importVolume(): the images have inconsistent sizes.");
importImage (info, destImage(view));
}
}
else if(fileType_ == "MULTIPAGE")
{
ImageImportInfo info(baseName_.c_str());
for(int k=0; k<info.numImages(); ++k)
{
info.setImageIndex(k);
importImage(info, volume.bindOuter(k));
}
}
// else if(fileType_ == "HDF5")
// {
// HDF5File file(baseName_, HDF5File::OpenReadOnly);
// file.read(extension_, volume);
// }
else if(fileType_ == "SIF")
{
SIFImportInfo infoSIF(baseName_.c_str());
readSIF(infoSIF, volume);
}
}
VIGRA_EXPORT void findImageSequence(const std::string &name_base,
const std::string &name_ext,
std::vector<std::string> & numbers);
/********************************************************/
/* */
/* importVolume */
/* */
/********************************************************/
/** \brief Function for importing a 3D volume.
<b>Declarations: </b>
\code
namespace vigra {
// variant 1: read data specified by the given VolumeImportInfo object
template <class T, class Stride>
void
importVolume(VolumeImportInfo const & info,
MultiArrayView <3, T, Stride> &volume);
// variant 2: read data using a single filename, resize volume automatically
template <class T, class Allocator>
void
importVolume(MultiArray <3, T, Allocator> & volume,
const std::string &filename);
// variant 3: read data from an image stack, resize volume automatically
template <class T, class Allocator>
void
importVolume(MultiArray <3, T, Allocator> & volume,
const std::string &name_base,
const std::string &name_ext);
}
\endcode
Data can be read either from a single file containing 3D data (supported formats:
Andor .SIF or multi-page TIFF), a ".info" text file which describes the contents of
an accompanying raw data file, or a stack of 2D images (numbered according to the
scheme <tt>name_base+"[0-9]+"+name_extension</tt>) each representing a slice of
the volume. The decision which of these possibilities applies is taken in the
\ref vigra::VolumeImportInfo::VolumeImportInfo(const std::string &) "VolumeImportInfo constructor",
see there for full details.
Variant 1 is the basic version of this function. Here, the info object and a destination
array of approriate size must already be constructed. The other variants are just abbreviations
provided for your convenience:
\code
// variant 2 is equivalent to
VolumeImportInfo info(filename);
volume.reshape(info.shape());
importVolume(info, volume); // call variant 1
// variant 3 is equivalent to
VolumeImportInfo info(name_base, name_ext);
volume.reshape(info.shape());
importVolume(info, volume); // call variant 1
\endcode
<b> Usage:</b>
<b>\#include</b> \<vigra/multi_impex.hxx\> <br/>
Namespace: vigra
\code
// read data from a multi-page TIFF file, using variant 1
VolumeImportInfo info("multipage.tif");
MultiArray<3, float> volume(info.shape());
importVolume(info, volume);
// read data from a stack of 2D png-images, using variant 1
VolumeImportInfo info("my_data", ".png"); // looks for files 'my_data0.png', 'my_data1.png' etc.
MultiArray<3, float> volume(info.shape());
importVolume(info, volume);
\endcode
Notice that slice numbers in a stack need not be consecutive (i.e. gaps are allowed) and
will be interpreted according to their numerical order (i.e. "009", "010", "011"
are read in the same order as "9", "10", "11"). The number of images
found determines the depth of the volume.
*/
doxygen_overloaded_function(template <...> void importVolume)
template <class T, class Stride>
void
importVolume(VolumeImportInfo const & info,
MultiArrayView <3, T, Stride> &volume)
{
info.importImpl(volume);
}
template <class T, class Allocator>
void
importVolume(MultiArray <3, T, Allocator> &volume,
const std::string &filename)
{
VolumeImportInfo info(filename);
volume.reshape(info.shape());
info.importImpl(volume);
}
template <class T, class Allocator>
void importVolume (MultiArray <3, T, Allocator> & volume,
const std::string &name_base,
const std::string &name_ext)
{
VolumeImportInfo info(name_base, name_ext);
volume.reshape(info.shape());
info.importImpl(volume);
}
namespace detail {
template <class T>
void setRangeMapping(std::string const & pixeltype,
FindMinMax<T> const & minmax, ImageExportInfo & info)
{
if(pixeltype == "UINT8")
info.setForcedRangeMapping((double)minmax.min, (double)minmax.max,
(double)NumericTraits<UInt8>::min(),
(double)NumericTraits<UInt8>::max());
else if(pixeltype == "INT16")
info.setForcedRangeMapping((double)minmax.min, (double)minmax.max,
(double)NumericTraits<Int16>::min(),
(double)NumericTraits<Int16>::max());
else if(pixeltype == "UINT16")
info.setForcedRangeMapping((double)minmax.min, (double)minmax.max,
(double)NumericTraits<UInt16>::min(),
(double)NumericTraits<UInt16>::max());
else if(pixeltype == "INT32")
info.setForcedRangeMapping((double)minmax.min, (double)minmax.max,
(double)NumericTraits<Int32>::min(),
(double)NumericTraits<Int32>::max());
else if(pixeltype == "UINT32")
info.setForcedRangeMapping((double)minmax.min, (double)minmax.max,
(double)NumericTraits<UInt32>::min(),
(double)NumericTraits<UInt32>::max());
else if(pixeltype == "FLOAT")
info.setForcedRangeMapping((double)minmax.min, (double)minmax.max, 0.0, 1.0);
else if(pixeltype == "DOUBLE")
info.setForcedRangeMapping((double)minmax.min, (double)minmax.max, 0.0, 1.0);
}
template <class T, class Tag>
void setRangeMapping(MultiArrayView <3, T, Tag> const & volume,
ImageExportInfo & info, VigraTrueType /* isScalar */)
{
std::string pixeltype = info.getPixelType();
bool downcast = negotiatePixelType(getEncoderType(info.getFileName(), info.getFileType()),
TypeAsString<T>::result(), pixeltype);
if(downcast)
{
FindMinMax<T> minmax;
inspectMultiArray(srcMultiArrayRange(volume), minmax);
setRangeMapping(pixeltype, minmax, info);
}
}
template <class T, class Tag>
void setRangeMapping(MultiArrayView <3, T, Tag> const & volume,
ImageExportInfo & info, VigraFalseType /* isScalar */)
{
typedef typename T::value_type SrcComponent;
std::string pixeltype = info.getPixelType();
bool downcast = negotiatePixelType(getEncoderType(info.getFileName(), info.getFileType()),
TypeAsString<SrcComponent>::result(), pixeltype);
if(downcast)
{
unsigned int bands = volume(0,0,0).size();
FindMinMax<SrcComponent> minmax;
for(unsigned int i=0; i<bands; ++i)
{
VectorComponentValueAccessor<T> band(i);
inspectMultiArray(srcMultiArrayRange(volume, band), minmax );
}
setRangeMapping(pixeltype, minmax, info);
}
}
} // namespace detail
/********************************************************/
/* */
/* exportVolume */
/* */
/********************************************************/
/** \brief Function for exporting a 3D volume.
<b> Declarations:</b>
\code
namespace vigra {
// variant 1: writa data as specified in the given VolumeExportInfo object
template <class T, class Tag>
void
exportVolume (MultiArrayView <3, T, Tag> const & volume,
const VolumeExportInfo & info);
// variant 2: write data to a multi-page TIFF file
template <class T, class Tag>
void
exportVolume (MultiArrayView <3, T, Tag> const & volume,
const std::string &filename);
// variant 3: write data to an image stack
template <class T, class Tag>
void
exportVolume (MultiArrayView <3, T, Tag> const & volume,
const std::string &name_base,
const std::string &name_ext);
}
\endcode
The volume can either be exported as a multi-page TIFF file (variant 2, only available if
libtiff is installed), or as a stack of 2D images, one image per slice (variant 3, files are named
according to the scheme <tt>name_base+"000"+name_ext</tt>, <tt>name_base+"001"+name_ext</tt> etc.).
If the target image format does not support the source <tt>value_type</tt>, all slices will
be mapped to the appropriate target range in the same way.
Variant 1 is the basic version of the function. It allows full control over the export via
an already constructed \ref vigra::VolumeExportInfo object. The other two are just abbreviations
that construct the VolumeExportInfo object internally.
<b> Usage:</b>
<b>\#include</b> \<vigra/multi_impex.hxx\> <br/>
Namespace: vigra
\code
MultiArray<3, RGBValue<UInt8> > volume(shape);
... // fill in data
// export a stack named "my_data01.jpg", "my_data02.jpg" etc.
VolumeExportInfo info("my_data", ".jpg");
info.setCompression("JPEG QUALITY=95");
exportVolume(volume, info);
\endcode
*/
doxygen_overloaded_function(template <...> void exportVolume)
template <class T, class Tag>
void
exportVolume (MultiArrayView <3, T, Tag> const & volume,
const VolumeExportInfo & volinfo)
{
if(volinfo.getFileType() == std::string("MULTIPAGE"))
{
char const * mode = "w";
std::string compression = "LZW";
if(volinfo.getCompression() != std::string())
compression = volinfo.getCompression();
for(MultiArrayIndex k=0; k<volume.shape(2); ++k)
{
ImageExportInfo info(volinfo.getFileNameBase(), mode);
info.setFileType("TIFF");
info.setCompression(compression.c_str());
info.setPixelType(volinfo.getPixelType());
detail::setRangeMapping(volume, info, typename NumericTraits<T>::isScalar());
exportImage(volume.bindOuter(k), info);
mode = "a";
}
}
else
{
std::string name = std::string(volinfo.getFileNameBase()) + std::string(volinfo.getFileNameExt());
ImageExportInfo info(name.c_str());
info.setCompression(volinfo.getCompression());
info.setPixelType(volinfo.getPixelType());
detail::setRangeMapping(volume, info, typename NumericTraits<T>::isScalar());
const unsigned int depth = volume.shape (2);
int numlen = static_cast <int> (std::ceil (std::log10 ((double)depth)));
for (unsigned int i = 0; i < depth; ++i)
{
// build the filename
std::stringstream stream;
stream << std::setfill ('0') << std::setw (numlen) << i;
std::string name_num;
stream >> name_num;
std::string name = std::string(volinfo.getFileNameBase()) + name_num + std::string(volinfo.getFileNameExt());
MultiArrayView <2, T, Tag> view (volume.bindOuter (i));
// export the image
info.setFileName(name.c_str ());
exportImage(srcImageRange(view), info);
}
}
}
template <class T, class Tag>
inline void
exportVolume (MultiArrayView <3, T, Tag> const & volume,
const std::string &filename)
{
VolumeExportInfo volinfo(filename.c_str());
exportVolume(volume, volinfo);
}
template <class T, class Tag>
inline void
exportVolume (MultiArrayView <3, T, Tag> const & volume,
const std::string &name_base,
const std::string &name_ext)
{
VolumeExportInfo volinfo(name_base.c_str(), name_ext.c_str());
exportVolume(volume, volinfo);
}
//@}
} // namespace vigra
#endif // VIGRA_MULTI_IMPEX_HXX
|