This file is indexed.

/usr/include/vigra/multi_shape.hxx is in libvigraimpex-dev 1.10.0+dfsg-3ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
/************************************************************************/
/*                                                                      */
/*     Copyright 2011-2012 by Stefan Schmidt and Ullrich Koethe         */
/*                                                                      */
/*    This file is part of the VIGRA computer vision library.           */
/*    The VIGRA Website is                                              */
/*        http://hci.iwr.uni-heidelberg.de/vigra/                       */
/*    Please direct questions, bug reports, and contributions to        */
/*        ullrich.koethe@iwr.uni-heidelberg.de    or                    */
/*        vigra@informatik.uni-hamburg.de                               */
/*                                                                      */
/*    Permission is hereby granted, free of charge, to any person       */
/*    obtaining a copy of this software and associated documentation    */
/*    files (the "Software"), to deal in the Software without           */
/*    restriction, including without limitation the rights to use,      */
/*    copy, modify, merge, publish, distribute, sublicense, and/or      */
/*    sell copies of the Software, and to permit persons to whom the    */
/*    Software is furnished to do so, subject to the following          */
/*    conditions:                                                       */
/*                                                                      */
/*    The above copyright notice and this permission notice shall be    */
/*    included in all copies or substantial portions of the             */
/*    Software.                                                         */
/*                                                                      */
/*    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND    */
/*    EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES   */
/*    OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND          */
/*    NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT       */
/*    HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,      */
/*    WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING      */
/*    FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR     */
/*    OTHER DEALINGS IN THE SOFTWARE.                                   */
/*                                                                      */
/************************************************************************/

#ifndef VIGRA_MULTI_SHAPE_HXX
#define VIGRA_MULTI_SHAPE_HXX

#include <sys/types.h>
#include "tinyvector.hxx"
#include "array_vector.hxx"
#include "numerictraits.hxx"

namespace vigra {

/** \addtogroup MultiIteratorGroup  Multi-dimensional Shapes and Array Iterators

    \brief Shape objects and general iterators for arrays of arbitrary dimension.
*/
//@{

    /** Index type for a single dimension of a MultiArrayView or
        MultiArray.
    */
typedef std::ptrdiff_t MultiArrayIndex;

/********************************************************/
/*                                                      */
/*              Singleband and Multiband                */
/*                                                      */
/********************************************************/

template <class T>
struct Singleband  // the resulting MultiArray has no explicit channel axis 
                   // (i.e. the number of channels is implicitly one)
{
    typedef T value_type;
};

template <class T>
struct Multiband  // the last axis is explicitly designated as channel axis
{
    typedef T value_type;
};

template<class T>
struct NumericTraits<Singleband<T> >
: public NumericTraits<T>
{};

template<class T>
struct NumericTraits<Multiband<T> >
{
    typedef Multiband<T> Type;
/*
    typedef int Promote;
    typedef unsigned int UnsignedPromote;
    typedef double RealPromote;
    typedef std::complex<RealPromote> ComplexPromote;
*/
    typedef Type ValueType;

    typedef typename NumericTraits<T>::isIntegral isIntegral;
    typedef VigraFalseType isScalar;
    typedef typename NumericTraits<T>::isSigned isSigned;
    typedef typename NumericTraits<T>::isSigned isOrdered;
    typedef typename NumericTraits<T>::isSigned isComplex;
/*
    static signed char zero() { return 0; }
    static signed char one() { return 1; }
    static signed char nonZero() { return 1; }
    static signed char min() { return SCHAR_MIN; }
    static signed char max() { return SCHAR_MAX; }

#ifdef NO_INLINE_STATIC_CONST_DEFINITION
    enum { minConst = SCHAR_MIN, maxConst = SCHAR_MIN };
#else
    static const signed char minConst = SCHAR_MIN;
    static const signed char maxConst = SCHAR_MIN;
#endif

    static Promote toPromote(signed char v) { return v; }
    static RealPromote toRealPromote(signed char v) { return v; }
    static signed char fromPromote(Promote v) {
        return ((v < SCHAR_MIN) ? SCHAR_MIN : (v > SCHAR_MAX) ? SCHAR_MAX : v);
    }
    static signed char fromRealPromote(RealPromote v) {
        return ((v < 0.0)
                   ? ((v < (RealPromote)SCHAR_MIN)
                       ? SCHAR_MIN
                       : static_cast<signed char>(v - 0.5))
                   : (v > (RealPromote)SCHAR_MAX)
                       ? SCHAR_MAX
                       : static_cast<signed char>(v + 0.5));
    }
*/
};

namespace detail {

/********************************************************/
/*                                                      */
/*                    defaultStride                     */
/*                                                      */
/********************************************************/

    /* generates the stride for a gapless shape.
    */
template <int N>
inline TinyVector <MultiArrayIndex, N>
defaultStride(const TinyVector <MultiArrayIndex, N> &shape)
{
    TinyVector <MultiArrayIndex, N> ret;
    ret [0] = 1;
    for (int i = 1; i < (int)N; ++i)
        ret [i] = ret [i-1] * shape [i-1];
    return ret;
}

    /* generates the stride for a gapless shape.
    */
template <int N>
inline TinyVector <MultiArrayIndex, N>
defaultMultibandStride(const TinyVector <MultiArrayIndex, N> &shape)
{
    TinyVector <MultiArrayIndex, N> ret;
    ret [N-1] = 1;
    for (int i = 0; i < (int)N-1; ++i)
    {
        int j = (i + int(N - 1)) % N;
        ret [i] = ret [j] * shape [j];
    }
    return ret;
}

/********************************************************/
/*                                                      */
/*                  ResolveMultiband                    */
/*                                                      */
/********************************************************/

template <class T>
struct ResolveMultiband
{
    typedef T type;
    typedef StridedArrayTag Stride;
    static const bool value = false;

    template <int N>
    static TinyVector <MultiArrayIndex, N>
    defaultStride(const TinyVector <MultiArrayIndex, N> &shape)
    {
        return vigra::detail::defaultStride(shape);
    }
};

template <class T>
struct ResolveMultiband<Singleband<T> >
{
    typedef T type;
    typedef StridedArrayTag Stride;
    static const bool value = false;

    template <int N>
    static TinyVector <MultiArrayIndex, N>
    defaultStride(const TinyVector <MultiArrayIndex, N> &shape)
    {
        return vigra::detail::defaultStride(shape);
    }
};

template <class T>
struct ResolveMultiband<Multiband<T> >
{
    typedef T type;
    typedef StridedArrayTag Stride;
    static const bool value = true;

    template <int N>
    static TinyVector <MultiArrayIndex, N>
    defaultStride(const TinyVector <MultiArrayIndex, N> &shape)
    {
        return vigra::detail::defaultMultibandStride(shape);
    }
};

} // namespace detail

template <unsigned int N, class T, class C = StridedArrayTag>
class MultiArrayView;

template <unsigned int N, class T, 
          class A = std::allocator<typename vigra::detail::ResolveMultiband<T>::type> >
class MultiArray;


    /** Traits class for the difference type of all MultiIterator, MultiArrayView, and
        MultiArray variants.
    */
template <unsigned int N>
class MultiArrayShape
{
  public:
        /** The difference type of all MultiIterator, MultiArrayView, and
            MultiArray variants.
        */
    typedef TinyVector<MultiArrayIndex, N> type;
};

typedef MultiArrayShape<1>::type Shape1; ///< shape type for MultiArray<1, T>
typedef MultiArrayShape<2>::type Shape2; ///< shape type for MultiArray<2, T>
typedef MultiArrayShape<3>::type Shape3; ///< shape type for MultiArray<3, T>
typedef MultiArrayShape<4>::type Shape4; ///< shape type for MultiArray<4, T>
typedef MultiArrayShape<5>::type Shape5; ///< shape type for MultiArray<5, T>

    /** \brief Choose the neighborhood system in a dimension-independent way.  
    
        DirectNeighborhood corresponds to 4-neighborhood in 2D and 6-neighborhood in 3D, whereas
        IndirectNeighborhood means 8-neighborhood in 2D and 26-neighborhood in 3D. The general
        formula for N dimensions are 2*N for direct neighborhood and 3^N-1 for indirect neighborhood. 
    */
enum NeighborhoodType { 
        DirectNeighborhood=0,   ///< use only direct neighbors
        IndirectNeighborhood=1  ///< use direct and indirect neighbors
};

// Helper functions

namespace detail {

/********************************************************/
/*                                                      */
/*                CoordinateToScanOrder                 */
/*                                                      */
/********************************************************/

    /* Convert multi-dimensional index (i.e. a grid coordinate) to scan-order index.
    */
template <int K>
struct CoordinateToScanOrder
{
    template <int N, class D1, class D2, class D3, class D4>
    static MultiArrayIndex
    exec(const TinyVectorBase <MultiArrayIndex, N, D1, D2> &shape,
         const TinyVectorBase <MultiArrayIndex, N, D3, D4> & coordinate)
    {
        return coordinate[N-K] + shape[N-K] * CoordinateToScanOrder<K-1>::exec(shape, coordinate);
    }
};

template <>
struct CoordinateToScanOrder<1>
{
    template <int N, class D1, class D2, class D3, class D4>
    static MultiArrayIndex
    exec(const TinyVectorBase <MultiArrayIndex, N, D1, D2> & /*shape*/,
         const TinyVectorBase <MultiArrayIndex, N, D3, D4> & coordinate)
    {
        return coordinate[N-1];
    }
};

/********************************************************/
/*                                                      */
/*                ScanOrderToCoordinate                 */
/*                                                      */
/********************************************************/

    /* Convert scan-order index to multi-dimensional index (i.e. a grid coordinate).
    */
template <int K>
struct ScanOrderToCoordinate
{
    template <int N>
    static void
    exec(MultiArrayIndex d, const TinyVector <MultiArrayIndex, N> &shape,
         TinyVector <MultiArrayIndex, N> & result)
    {
        result[N-K] = (d % shape[N-K]);
        ScanOrderToCoordinate<K-1>::exec(d / shape[N-K], shape, result);
    }
};

template <>
struct ScanOrderToCoordinate<1>
{
    template <int N>
    static void
    exec(MultiArrayIndex d, const TinyVector <MultiArrayIndex, N> & /*shape*/,
         TinyVector <MultiArrayIndex, N> & result)
    {
        result[N-1] = d;
    }
};

/********************************************************/
/*                                                      */
/*                 ScanOrderToOffset                    */
/*                                                      */
/********************************************************/

    /* transforms an index in scan order sense to a pointer offset in a possibly
       strided, multi-dimensional array.
    */
template <int K>
struct ScanOrderToOffset
{
    template <int N>
    static MultiArrayIndex
    exec(MultiArrayIndex d, const TinyVector <MultiArrayIndex, N> &shape,
         const TinyVector <MultiArrayIndex, N> & stride)
    {
        return stride[N-K] * (d % shape[N-K]) +
               ScanOrderToOffset<K-1>::exec(d / shape[N-K], shape, stride);
    }
};

template <>
struct ScanOrderToOffset<1>
{
    template <int N>
    static MultiArrayIndex
    exec(MultiArrayIndex d, const TinyVector <MultiArrayIndex, N> & /*shape*/,
         const TinyVector <MultiArrayIndex, N> & stride)
    {
        return stride[N-1] * d;
    }
};

/********************************************************/
/*                                                      */
/*                 ScanOrderToOffset                    */
/*                                                      */
/********************************************************/

    /* transforms a multi-dimensional index (grid coordinate) to a pointer offset in a possibly
       strided, multi-dimensional array.
    */
template <class C>
struct CoordinatesToOffest
{
    template <int N>
    static MultiArrayIndex
    exec(const TinyVector <MultiArrayIndex, N> & stride, MultiArrayIndex x)
    {
        return stride[0] * x;
    }
    template <int N>
    static MultiArrayIndex
    exec(const TinyVector <MultiArrayIndex, N> & stride, MultiArrayIndex x, MultiArrayIndex y)
    {
        return stride[0] * x + stride[1] * y;
    }
};

template <>
struct CoordinatesToOffest<UnstridedArrayTag>
{
    template <int N>
    static MultiArrayIndex
    exec(const TinyVector <MultiArrayIndex, N> & /*stride*/, MultiArrayIndex x)
    {
        return x;
    }
    template <int N>
    static MultiArrayIndex
    exec(const TinyVector <MultiArrayIndex, N> & stride, MultiArrayIndex x, MultiArrayIndex y)
    {
        return x + stride[1] * y;
    }
};

/********************************************************/
/*                                                      */
/*            RelativeToAbsoluteCoordinate              */
/*                                                      */
/********************************************************/

    /* transforms a coordinate object with negative indices into the corresponding 
       'shape - abs(index)'.
    */
template <int M>
struct RelativeToAbsoluteCoordinate
{
    template <int N>
    static void
    exec(const TinyVector<MultiArrayIndex, N> & shape, TinyVector<MultiArrayIndex, N> & coord)
    {
        RelativeToAbsoluteCoordinate<M-1>::exec(shape, coord);
        if(coord[M] < 0)
            coord[M] += shape[M];
    }
};

template <>
struct RelativeToAbsoluteCoordinate<0>
{
    template <int N>
    static void
    exec(const TinyVector<MultiArrayIndex, N> & shape, TinyVector<MultiArrayIndex, N> & coord)
    {
        if(coord[0] < 0)
            coord[0] += shape[0];
    }
};

/********************************************************/
/*                                                      */
/*                   BorderTypeImpl                     */
/*                                                      */
/********************************************************/

// a border type is a compact bit-wise encoding of the fact that a 
// given coordinate is at the border of the ROI. Each border corresponds
// to one bit in the encoding, e.g. the left, right, top, bottom borders
// of a 2D image are represented by bits 0 to 3 respectively. 
// If a bit is set, the point in question is at the corresponding border.
// A code of all zeros therefore means that the point is in the interior
// of the ROI
template <unsigned int N, unsigned int DIMENSION=N-1>
struct BorderTypeImpl
{
    typedef typename MultiArrayShape<N>::type shape_type;
    
    static unsigned int exec(shape_type const & point, shape_type const & shape)
    {
        unsigned int res = BorderTypeImpl<N, DIMENSION-1>::exec(point, shape);
        if(point[DIMENSION] == 0)
            res |= (1 << 2*DIMENSION);
        if(point[DIMENSION] == shape[DIMENSION]-1)
            res |= (2 << 2*DIMENSION);
        return res;
    }
};

template <unsigned int N>
struct BorderTypeImpl<N, 0>
{
    typedef typename MultiArrayShape<N>::type shape_type;
    static const unsigned int DIMENSION = 0;
    
    static unsigned int exec(shape_type const & point, shape_type const & shape)
    {
        unsigned int res = 0;
        if(point[DIMENSION] == 0)
            res |= (1 << 2*DIMENSION);
        if(point[DIMENSION] == shape[DIMENSION]-1)
            res |= (2 << 2*DIMENSION);
        return res;
    }
};

/********************************************************/
/*                                                      */
/*                makeArrayNeighborhood                 */
/*                                                      */
/********************************************************/

// Create the offsets to all direct neighbors, starting from the given Level (=dimension)
// and append them to the given array. The algorithm is designed so that the offsets are 
// sorted by ascending strides. This has two important consequences:
//  * The first half of the array contains the causal neighbors (negative strides),
//    the second half the anti-causal ones (positive strides), where 'causal' refers
//    to all scan-order predecessors of the center pixel, and 'anticausal' to its successors.
//  * For any neighbor k, its opposite (=point-reflected) neighbor is located at index
//    'N-1-k', where N is the total number of neighbors.
// The function 'exists' returns an array of flags that contains 'true' when the corresponding 
// neighbor is inside the ROI for the given borderType, 'false' otherwise. 
template <unsigned int Level>
struct MakeDirectArrayNeighborhood
{
    template <class Array>
    static void offsets(Array & a)
    {
        typedef typename Array::value_type Shape;
        
        Shape point;
        point[Level] = -1;
        a.push_back(point);
        MakeDirectArrayNeighborhood<Level-1>::offsets(a);
        point[Level] = 1;
        a.push_back(point);
    }
    
    template <class Array>
    static void exists(Array & a, unsigned int borderType)
    {
        a.push_back((borderType & (1 << 2*Level)) == 0);
        MakeDirectArrayNeighborhood<Level-1>::exists(a, borderType);
        a.push_back((borderType & (2 << 2*Level)) == 0);
    }
};

template <>
struct MakeDirectArrayNeighborhood<0>
{
    template <class Array>
    static void offsets(Array & a)
    {
        typedef typename Array::value_type Shape;
        
        Shape point;
        point[0] = -1;
        a.push_back(point);
        point[0] = 1;
        a.push_back(point);
    }
    
    template <class Array>
    static void exists(Array & a, unsigned int borderType)
    {
        a.push_back((borderType & 1) == 0);
        a.push_back((borderType & 2) == 0);
    }
};

// Likewise, create the offsets to all indirect neighbors according to the same rules.
template <unsigned int Level>
struct MakeIndirectArrayNeighborhood
{
    template <class Array, class Shape>
    static void offsets(Array & a, Shape point, bool isCenter = true)
    {
        point[Level] = -1;
        MakeIndirectArrayNeighborhood<Level-1>::offsets(a, point, false);
        point[Level] = 0;
        MakeIndirectArrayNeighborhood<Level-1>::offsets(a, point, isCenter);
        point[Level] = 1;
        MakeIndirectArrayNeighborhood<Level-1>::offsets(a, point, false);
    }
    
    template <class Array>
    static void exists(Array & a, unsigned int borderType, bool isCenter = true)
    {
        if((borderType & (1 << 2*Level)) == 0)
            MakeIndirectArrayNeighborhood<Level-1>::exists(a, borderType, false);
        else 
            MakeIndirectArrayNeighborhood<Level-1>::markOutside(a);

        MakeIndirectArrayNeighborhood<Level-1>::exists(a, borderType, isCenter);

        if((borderType & (2 << 2*Level)) == 0)
            MakeIndirectArrayNeighborhood<Level-1>::exists(a, borderType, false);
        else
            MakeIndirectArrayNeighborhood<Level-1>::markOutside(a);
    }

    template <class Array>
    static void markOutside(Array & a)
    {
        // Call markOutside() three times, for each possible offset at (Level-1)
        MakeIndirectArrayNeighborhood<Level-1>::markOutside(a);
        MakeIndirectArrayNeighborhood<Level-1>::markOutside(a);
        MakeIndirectArrayNeighborhood<Level-1>::markOutside(a);
    }

};

template <>
struct MakeIndirectArrayNeighborhood<0>
{
    template <class Array, class Shape>
    static void offsets(Array & a, Shape point, bool isCenter = true)
    {
        point[0] = -1;
        a.push_back(point);
        if(!isCenter) // the center point is not a neighbor, it's just convenient to do the enumeration this way...
        {
            point[0] = 0;
            a.push_back(point);
        }
        point[0] = 1;
        a.push_back(point);
    }
    
    template <class Array>
    static void exists(Array & a, unsigned int borderType, bool isCenter = true)
    {
        a.push_back((borderType & 1) == 0);
        if(!isCenter)
        {
            a.push_back(true);
        }
        a.push_back((borderType & 2) == 0);
    }

    template <class Array>
    static void markOutside(Array & a)
    {
        // Push 'false' three times, for each possible offset at level 0, whenever the point was 
        // outside the ROI in one of the higher levels.
        a.push_back(false);
        a.push_back(false);
        a.push_back(false);
    }
};

// Create the list of neighbor offsets for the given neighborhood type 
// and dimension (the dimension is implicitly defined by the Shape type)
// an return it in 'neighborOffsets'. Moreover, create a list of flags
// for each BorderType that is 'true' when the corresponding neighbor exists
// in this border situation and return the result in 'neighborExists'.
template <class Shape>
void
makeArrayNeighborhood(ArrayVector<Shape> & neighborOffsets, 
                      ArrayVector<ArrayVector<bool> > & neighborExists,
                      NeighborhoodType neighborhoodType = DirectNeighborhood)
{
    enum { N = Shape::static_size };
    
    neighborOffsets.clear();
    if(neighborhoodType == DirectNeighborhood)
    {
        MakeDirectArrayNeighborhood<N-1>::offsets(neighborOffsets);
    }
    else
    {
        Shape point; // represents the center
        MakeIndirectArrayNeighborhood<N-1>::offsets(neighborOffsets, point);
    }
    
    unsigned int borderTypeCount = 1 << 2*N;
    neighborExists.resize(borderTypeCount);

    for(unsigned int k=0; k<borderTypeCount; ++k)
    {
        neighborExists[k].clear();
        if(neighborhoodType == DirectNeighborhood)
        {
            MakeDirectArrayNeighborhood<N-1>::exists(neighborExists[k], k);
        }
        else
        {
            MakeIndirectArrayNeighborhood<N-1>::exists(neighborExists[k], k);
        }
    }
}

} // namespace detail

//@}

} // namespace vigra

#endif // VIGRA_MULTI_SHAPE_HXX