/usr/include/vigra/polynomial.hxx is in libvigraimpex-dev 1.10.0+dfsg-3ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 | /************************************************************************/
/* */
/* Copyright 1998-2004 by Ullrich Koethe */
/* */
/* This file is part of the VIGRA computer vision library. */
/* The VIGRA Website is */
/* http://hci.iwr.uni-heidelberg.de/vigra/ */
/* Please direct questions, bug reports, and contributions to */
/* ullrich.koethe@iwr.uni-heidelberg.de or */
/* vigra@informatik.uni-hamburg.de */
/* */
/* Permission is hereby granted, free of charge, to any person */
/* obtaining a copy of this software and associated documentation */
/* files (the "Software"), to deal in the Software without */
/* restriction, including without limitation the rights to use, */
/* copy, modify, merge, publish, distribute, sublicense, and/or */
/* sell copies of the Software, and to permit persons to whom the */
/* Software is furnished to do so, subject to the following */
/* conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the */
/* Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES */
/* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND */
/* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT */
/* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, */
/* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING */
/* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR */
/* OTHER DEALINGS IN THE SOFTWARE. */
/* */
/************************************************************************/
#ifndef VIGRA_POLYNOMIAL_HXX
#define VIGRA_POLYNOMIAL_HXX
#include <cmath>
#include <complex>
#include <algorithm>
#include <iosfwd>
#include "error.hxx"
#include "mathutil.hxx"
#include "numerictraits.hxx"
#include "array_vector.hxx"
namespace vigra {
template <class T> class Polynomial;
template <unsigned int MAXORDER, class T> class StaticPolynomial;
/*****************************************************************/
/* */
/* PolynomialView */
/* */
/*****************************************************************/
/** Polynomial interface for an externally managed array.
The coefficient type <tt>T</tt> can be either a scalar or complex
(compatible to <tt>std::complex</tt>) type.
\see vigra::Polynomial, vigra::StaticPolynomial, polynomialRoots()
<b>\#include</b> \<vigra/polynomial.hxx\><br>
Namespace: vigra
\ingroup Polynomials
*/
template <class T>
class PolynomialView
{
public:
/** Coefficient type of the polynomial
*/
typedef T value_type;
/** Promote type of <tt>value_type</tt>
used for polynomial calculations
*/
typedef typename NumericTraits<T>::RealPromote RealPromote;
/** Scalar type associated with <tt>RealPromote</tt>
*/
typedef typename NumericTraits<RealPromote>::ValueType Real;
/** Complex type associated with <tt>RealPromote</tt>
*/
typedef typename NumericTraits<RealPromote>::ComplexPromote Complex;
/** Iterator for the coefficient sequence
*/
typedef T * iterator;
/** Const iterator for the coefficient sequence
*/
typedef T const * const_iterator;
typedef Polynomial<Real> RealPolynomial;
typedef Polynomial<Complex> ComplexPolynomial;
/** Construct from a coefficient array of given <tt>order</tt>.
The externally managed array must have length <tt>order+1</tt>
and is interpreted as representing the polynomial:
\code
coeffs[0] + x * coeffs[1] + x * x * coeffs[2] + ...
\endcode
The coefficients are not copied, we only store a pointer to the
array.<tt>epsilon</tt> (default: 1.0e-14) determines the precision
of subsequent algorithms (especially root finding) performed on the
polynomial.
*/
PolynomialView(T * coeffs, unsigned int order, double epsilon = 1.0e-14)
: coeffs_(coeffs),
order_(order),
epsilon_(epsilon)
{}
/// Access the coefficient of x^i
T & operator[](unsigned int i)
{ return coeffs_[i]; }
/// Access the coefficient of x^i
T const & operator[](unsigned int i) const
{ return coeffs_[i]; }
/** Evaluate the polynomial at the point <tt>v</tt>
Multiplication must be defined between the types
<tt>V</tt> and <tt>PromoteTraits<T, V>::Promote</tt>.
If both <tt>V</tt> and <tt>V</tt> are scalar, the result will
be a scalar, otherwise it will be complex.
*/
template <class V>
typename PromoteTraits<T, V>::Promote
operator()(V v) const;
/** Differentiate the polynomial <tt>n</tt> times.
*/
void differentiate(unsigned int n = 1);
/** Deflate the polynomial at the root <tt>r</tt> with
the given <tt>multiplicity</tt>.
The behavior of this function is undefined if <tt>r</tt>
is not a root with at least the given multiplicity.
This function calls forwardBackwardDeflate().
*/
void deflate(T const & r, unsigned int multiplicity = 1);
/** Forward-deflate the polynomial at the root <tt>r</tt>.
The behavior of this function is undefined if <tt>r</tt>
is not a root. Forward deflation is best if <tt>r</tt> is
the biggest root (by magnitude).
*/
void forwardDeflate(T const & v);
/** Forward/backward eflate the polynomial at the root <tt>r</tt>.
The behavior of this function is undefined if <tt>r</tt>
is not a root. Combined forward/backward deflation is best
if <tt>r</tt> is an intermediate root or we don't know
<tt>r</tt>'s relation to the other roots of the polynomial.
*/
void forwardBackwardDeflate(T v);
/** Backward-deflate the polynomial at the root <tt>r</tt>.
The behavior of this function is undefined if <tt>r</tt>
is not a root. Backward deflation is best if <tt>r</tt> is
the smallest root (by magnitude).
*/
void backwardDeflate(T v);
/** Deflate the polynomial with the complex conjugate roots
<tt>r</tt> and <tt>conj(r)</tt>.
The behavior of this function is undefined if these are not
roots.
*/
void deflateConjugatePair(Complex const & v);
/** Adjust the polynomial's order if the highest coefficients are near zero.
The order is reduced as long as the absolute value does not exceed
the given \a epsilon.
*/
void minimizeOrder(double epsilon = 0.0);
/** Normalize the polynomial, i.e. dived by the highest coefficient.
*/
void normalize();
void balance();
/** Get iterator for the coefficient sequence.
*/
iterator begin()
{ return coeffs_; }
/** Get end iterator for the coefficient sequence.
*/
iterator end()
{ return begin() + size(); }
/** Get const_iterator for the coefficient sequence.
*/
const_iterator begin() const
{ return coeffs_; }
/** Get end const_iterator for the coefficient sequence.
*/
const_iterator end() const
{ return begin() + size(); }
/** Get length of the coefficient sequence (<tt>order() + 1</tt>).
*/
unsigned int size() const
{ return order_ + 1; }
/** Get order of the polynomial.
*/
unsigned int order() const
{ return order_; }
/** Get requested precision for polynomial algorithms
(especially root finding).
*/
double epsilon() const
{ return epsilon_; }
/** Set requested precision for polynomial algorithms
(especially root finding).
*/
void setEpsilon(double eps)
{ epsilon_ = eps; }
protected:
PolynomialView(double epsilon = 1e-14)
: coeffs_(0),
order_(0),
epsilon_(epsilon)
{}
void setCoeffs(T * coeffs, unsigned int order)
{
coeffs_ = coeffs;
order_ = order;
}
T * coeffs_;
unsigned int order_;
double epsilon_;
};
template <class T>
template <class U>
typename PromoteTraits<T, U>::Promote
PolynomialView<T>::operator()(U v) const
{
typename PromoteTraits<T, U>::Promote p(coeffs_[order_]);
for(int i = order_ - 1; i >= 0; --i)
{
p = v * p + coeffs_[i];
}
return p;
}
/*
template <class T>
typename PolynomialView<T>::Complex
PolynomialView<T>::operator()(Complex const & v) const
{
Complex p(coeffs_[order_]);
for(int i = order_ - 1; i >= 0; --i)
{
p = v * p + coeffs_[i];
}
return p;
}
*/
template <class T>
void
PolynomialView<T>::differentiate(unsigned int n)
{
if(n == 0)
return;
if(order_ == 0)
{
coeffs_[0] = 0.0;
return;
}
for(unsigned int i = 1; i <= order_; ++i)
{
coeffs_[i-1] = double(i)*coeffs_[i];
}
--order_;
if(n > 1)
differentiate(n-1);
}
template <class T>
void
PolynomialView<T>::deflate(T const & v, unsigned int multiplicity)
{
vigra_precondition(order_ > 0,
"PolynomialView<T>::deflate(): cannot deflate 0th order polynomial.");
if(v == 0.0)
{
++coeffs_;
--order_;
}
else
{
// we use combined forward/backward deflation because
// our initial guess seems to favour convergence to
// a root with magnitude near the median among all roots
forwardBackwardDeflate(v);
}
if(multiplicity > 1)
deflate(v, multiplicity-1);
}
template <class T>
void
PolynomialView<T>::forwardDeflate(T const & v)
{
for(int i = order_-1; i > 0; --i)
{
coeffs_[i] += v * coeffs_[i+1];
}
++coeffs_;
--order_;
}
template <class T>
void
PolynomialView<T>::forwardBackwardDeflate(T v)
{
unsigned int order2 = order_ / 2;
T tmp = coeffs_[order_];
for(unsigned int i = order_-1; i >= order2; --i)
{
T tmp1 = coeffs_[i];
coeffs_[i] = tmp;
tmp = tmp1 + v * tmp;
}
v = -1.0 / v;
coeffs_[0] *= v;
for(unsigned int i = 1; i < order2; ++i)
{
coeffs_[i] = v * (coeffs_[i] - coeffs_[i-1]);
}
--order_;
}
template <class T>
void
PolynomialView<T>::backwardDeflate(T v)
{
v = -1.0 / v;
coeffs_[0] *= v;
for(unsigned int i = 1; i < order_; ++i)
{
coeffs_[i] = v * (coeffs_[i] - coeffs_[i-1]);
}
--order_;
}
template <class T>
void
PolynomialView<T>::deflateConjugatePair(Complex const & v)
{
vigra_precondition(order_ > 1,
"PolynomialView<T>::deflateConjugatePair(): cannot deflate 2 roots "
"from 1st order polynomial.");
Real a = 2.0*v.real();
Real b = -sq(v.real()) - sq(v.imag());
coeffs_[order_-1] += a * coeffs_[order_];
for(int i = order_-2; i > 1; --i)
{
coeffs_[i] += a * coeffs_[i+1] + b*coeffs_[i+2];
}
coeffs_ += 2;
order_ -= 2;
}
template <class T>
void
PolynomialView<T>::minimizeOrder(double epsilon)
{
while(std::abs(coeffs_[order_]) <= epsilon && order_ > 0)
--order_;
}
template <class T>
void
PolynomialView<T>::normalize()
{
for(unsigned int i = 0; i<order_; ++i)
coeffs_[i] /= coeffs_[order_];
coeffs_[order_] = T(1.0);
}
template <class T>
void
PolynomialView<T>::balance()
{
Real p0 = abs(coeffs_[0]), po = abs(coeffs_[order_]);
Real norm = (p0 > 0.0)
? VIGRA_CSTD::sqrt(p0*po)
: po;
for(unsigned int i = 0; i<=order_; ++i)
coeffs_[i] /= norm;
}
/*****************************************************************/
/* */
/* Polynomial */
/* */
/*****************************************************************/
/** Polynomial with internally managed array.
Most interesting functionality is inherited from \ref vigra::PolynomialView.
\see vigra::PolynomialView, vigra::StaticPolynomial, polynomialRoots()
<b>\#include</b> \<vigra/polynomial.hxx\><br>
Namespace: vigra
\ingroup Polynomials
*/
template <class T>
class Polynomial
: public PolynomialView<T>
{
typedef PolynomialView<T> BaseType;
public:
typedef typename BaseType::Real Real;
typedef typename BaseType::Complex Complex;
typedef Polynomial<Real> RealPolynomial;
typedef Polynomial<Complex> ComplexPolynomial;
typedef T value_type;
typedef T * iterator;
typedef T const * const_iterator;
/** Construct polynomial with given <tt>order</tt> and all coefficients
set to zero (they can be set later using <tt>operator[]</tt>
or the iterators). <tt>epsilon</tt> (default: 1.0e-14) determines
the precision of subsequent algorithms (especially root finding)
performed on the polynomial.
*/
Polynomial(unsigned int order = 0, double epsilon = 1.0e-14)
: BaseType(epsilon),
polynomial_(order + 1, T())
{
this->setCoeffs(&polynomial_[0], order);
}
/** Copy constructor
*/
Polynomial(Polynomial const & p)
: BaseType(p.epsilon()),
polynomial_(p.begin(), p.end())
{
this->setCoeffs(&polynomial_[0], p.order());
}
/** Construct polynomial by copying the given coefficient sequence.
*/
template <class ITER>
Polynomial(ITER i, unsigned int order)
: BaseType(),
polynomial_(i, i + order + 1)
{
this->setCoeffs(&polynomial_[0], order);
}
/** Construct polynomial by copying the given coefficient sequence.
Set <tt>epsilon</tt> (default: 1.0e-14) as
the precision of subsequent algorithms (especially root finding)
performed on the polynomial.
*/
template <class ITER>
Polynomial(ITER i, unsigned int order, double epsilon)
: BaseType(epsilon),
polynomial_(i, i + order + 1)
{
this->setCoeffs(&polynomial_[0], order);
}
/** Assigment
*/
Polynomial & operator=(Polynomial const & p)
{
if(this == &p)
return *this;
ArrayVector<T> tmp(p.begin(), p.end());
polynomial_.swap(tmp);
this->setCoeffs(&polynomial_[0], p.order());
this->epsilon_ = p.epsilon_;
return *this;
}
/** Construct new polynomial representing the derivative of this
polynomial.
*/
Polynomial<T> getDerivative(unsigned int n = 1) const
{
Polynomial<T> res(*this);
res.differentiate(n);
return res;
}
/** Construct new polynomial representing this polynomial after
deflation at the real root <tt>r</tt>.
*/
Polynomial<T>
getDeflated(Real r) const
{
Polynomial<T> res(*this);
res.deflate(r);
return res;
}
/** Construct new polynomial representing this polynomial after
deflation at the complex root <tt>r</tt>. The resulting
polynomial will have complex coefficients, even if this
polynomial had real ones.
*/
Polynomial<Complex>
getDeflated(Complex const & r) const
{
Polynomial<Complex> res(this->begin(), this->order(), this->epsilon());
res.deflate(r);
return res;
}
protected:
ArrayVector<T> polynomial_;
};
/*****************************************************************/
/* */
/* StaticPolynomial */
/* */
/*****************************************************************/
/** Polynomial with internally managed array of static length.
Most interesting functionality is inherited from \ref vigra::PolynomialView.
This class differs from \ref vigra::Polynomial in that it allocates
its memory statically which is much faster. Therefore, <tt>StaticPolynomial</tt>
can only represent polynomials up to the given <tt>MAXORDER</tt>.
\see vigra::PolynomialView, vigra::Polynomial, polynomialRoots()
<b>\#include</b> \<vigra/polynomial.hxx\><br>
Namespace: vigra
\ingroup Polynomials
*/
template <unsigned int MAXORDER, class T>
class StaticPolynomial
: public PolynomialView<T>
{
typedef PolynomialView<T> BaseType;
public:
typedef typename BaseType::Real Real;
typedef typename BaseType::Complex Complex;
typedef StaticPolynomial<MAXORDER, Real> RealPolynomial;
typedef StaticPolynomial<MAXORDER, Complex> ComplexPolynomial;
typedef T value_type;
typedef T * iterator;
typedef T const * const_iterator;
/** Construct polynomial with given <tt>order <= MAXORDER</tt> and all
coefficients set to zero (they can be set later using <tt>operator[]</tt>
or the iterators). <tt>epsilon</tt> (default: 1.0e-14) determines
the precision of subsequent algorithms (especially root finding)
performed on the polynomial.
*/
StaticPolynomial(unsigned int order = 0, double epsilon = 1.0e-14)
: BaseType(epsilon)
{
vigra_precondition(order <= MAXORDER,
"StaticPolynomial(): order exceeds MAXORDER.");
std::fill_n(polynomial_, order+1, T());
this->setCoeffs(polynomial_, order);
}
/** Copy constructor
*/
StaticPolynomial(StaticPolynomial const & p)
: BaseType(p.epsilon())
{
std::copy(p.begin(), p.end(), polynomial_);
this->setCoeffs(polynomial_, p.order());
}
/** Construct polynomial by copying the given coefficient sequence.
<tt>order <= MAXORDER</tt> is required.
*/
template <class ITER>
StaticPolynomial(ITER i, unsigned int order)
: BaseType()
{
vigra_precondition(order <= MAXORDER,
"StaticPolynomial(): order exceeds MAXORDER.");
std::copy(i, i + order + 1, polynomial_);
this->setCoeffs(polynomial_, order);
}
/** Construct polynomial by copying the given coefficient sequence.
<tt>order <= MAXORDER</tt> is required. Set <tt>epsilon</tt> (default: 1.0e-14) as
the precision of subsequent algorithms (especially root finding)
performed on the polynomial.
*/
template <class ITER>
StaticPolynomial(ITER i, unsigned int order, double epsilon)
: BaseType(epsilon)
{
vigra_precondition(order <= MAXORDER,
"StaticPolynomial(): order exceeds MAXORDER.");
std::copy(i, i + order + 1, polynomial_);
this->setCoeffs(polynomial_, order);
}
/** Assigment.
*/
StaticPolynomial & operator=(StaticPolynomial const & p)
{
if(this == &p)
return *this;
std::copy(p.begin(), p.end(), polynomial_);
this->setCoeffs(polynomial_, p.order());
this->epsilon_ = p.epsilon_;
return *this;
}
/** Construct new polynomial representing the derivative of this
polynomial.
*/
StaticPolynomial getDerivative(unsigned int n = 1) const
{
StaticPolynomial res(*this);
res.differentiate(n);
return res;
}
/** Construct new polynomial representing this polynomial after
deflation at the real root <tt>r</tt>.
*/
StaticPolynomial
getDeflated(Real r) const
{
StaticPolynomial res(*this);
res.deflate(r);
return res;
}
/** Construct new polynomial representing this polynomial after
deflation at the complex root <tt>r</tt>. The resulting
polynomial will have complex coefficients, even if this
polynomial had real ones.
*/
StaticPolynomial<MAXORDER, Complex>
getDeflated(Complex const & r) const
{
StaticPolynomial<MAXORDER, Complex> res(this->begin(), this->order(), this->epsilon());
res.deflate(r);
return res;
}
void setOrder(unsigned int order)
{
vigra_precondition(order <= MAXORDER,
"taticPolynomial::setOrder(): order exceeds MAXORDER.");
this->order_ = order;
}
protected:
T polynomial_[MAXORDER+1];
};
/************************************************************/
namespace detail {
// replacement for complex division (some compilers have numerically
// less stable implementations); code from python complexobject.c
template <class T>
std::complex<T> complexDiv(std::complex<T> const & a, std::complex<T> const & b)
{
const double abs_breal = b.real() < 0 ? -b.real() : b.real();
const double abs_bimag = b.imag() < 0 ? -b.imag() : b.imag();
if (abs_breal >= abs_bimag)
{
/* divide tops and bottom by b.real() */
if (abs_breal == 0.0)
{
return std::complex<T>(a.real() / abs_breal, a.imag() / abs_breal);
}
else
{
const double ratio = b.imag() / b.real();
const double denom = b.real() + b.imag() * ratio;
return std::complex<T>((a.real() + a.imag() * ratio) / denom,
(a.imag() - a.real() * ratio) / denom);
}
}
else
{
/* divide tops and bottom by b.imag() */
const double ratio = b.real() / b.imag();
const double denom = b.real() * ratio + b.imag();
return std::complex<T>((a.real() * ratio + a.imag()) / denom,
(a.imag() * ratio - a.real()) / denom);
}
}
template <class T>
std::complex<T> deleteBelowEpsilon(std::complex<T> const & x, double eps)
{
return std::abs(x.imag()) <= 2.0*eps*std::abs(x.real())
? std::complex<T>(x.real())
: std::abs(x.real()) <= 2.0*eps*std::abs(x.imag())
? std::complex<T>(NumericTraits<T>::zero(), x.imag())
: x;
}
template <class POLYNOMIAL>
typename POLYNOMIAL::value_type
laguerreStartingGuess(POLYNOMIAL const & p)
{
double N = p.order();
typename POLYNOMIAL::value_type centroid = -p[p.order()-1] / N / p[p.order()];
double dist = VIGRA_CSTD::pow(std::abs(p(centroid) / p[p.order()]), 1.0 / N);
return centroid + dist;
}
template <class POLYNOMIAL, class Complex>
int laguerre1Root(POLYNOMIAL const & p, Complex & x, unsigned int multiplicity)
{
typedef typename NumericTraits<Complex>::ValueType Real;
double frac[] = {0.0, 0.5, 0.25, 0.75, 0.13, 0.38, 0.62, 0.88, 1.0};
int maxiter = 80,
count;
double N = p.order();
double eps = p.epsilon(),
eps2 = VIGRA_CSTD::sqrt(eps);
if(multiplicity == 0)
x = laguerreStartingGuess(p);
bool mayTryDerivative = true; // try derivative for multiple roots
for(count = 0; count < maxiter; ++count)
{
// Horner's algorithm to calculate values of polynomial and its
// first two derivatives and estimate error for current x
Complex p0(p[p.order()]);
Complex p1(0.0);
Complex p2(0.0);
Real ax = std::abs(x);
Real err = std::abs(p0);
for(int i = p.order()-1; i >= 0; --i)
{
p2 = p2 * x + p1;
p1 = p1 * x + p0;
p0 = p0 * x + p[i];
err = err * ax + std::abs(p0);
}
p2 *= 2.0;
err *= eps;
Real ap0 = std::abs(p0);
if(ap0 <= err)
{
break; // converged
}
Complex g = complexDiv(p1, p0);
Complex g2 = g * g;
Complex h = g2 - complexDiv(p2, p0);
// estimate root multiplicity according to Tien Chen
if(g2 != 0.0)
{
multiplicity = (unsigned int)VIGRA_CSTD::floor(N /
(std::abs(N * complexDiv(h, g2) - 1.0) + 1.0) + 0.5);
if(multiplicity < 1)
multiplicity = 1;
}
// improve accuracy of multiple roots on the derivative, as suggested by C. Bond
// (do this only if we are already near the root, otherwise we may converge to
// a different root of the derivative polynomial)
if(mayTryDerivative && multiplicity > 1 && ap0 < eps2)
{
Complex x1 = x;
int derivativeMultiplicity = laguerre1Root(p.getDerivative(), x1, multiplicity-1);
if(derivativeMultiplicity && std::abs(p(x1)) < std::abs(p(x)))
{
// successful search on derivative
x = x1;
return derivativeMultiplicity + 1;
}
else
{
// unsuccessful search on derivative => don't do it again
mayTryDerivative = false;
}
}
Complex sq = VIGRA_CSTD::sqrt((N - 1.0) * (N * h - g2));
Complex gp = g + sq;
Complex gm = g - sq;
if(std::abs(gp) < std::abs(gm))
gp = gm;
Complex dx;
if(gp != 0.0)
{
dx = complexDiv(Complex(N) , gp);
}
else
{
// re-initialisation trick due to Numerical Recipes
dx = (1.0 + ax) * Complex(VIGRA_CSTD::cos(double(count)), VIGRA_CSTD::sin(double(count)));
}
Complex x1 = x - dx;
if(x1 - x == 0.0)
{
break; // converged
}
if((count + 1) % 10)
x = x1;
else
// cycle breaking trick according to Numerical Recipes
x = x - frac[(count+1)/10] * dx;
}
return count < maxiter ?
multiplicity :
0;
}
template <class Real>
struct PolynomialRootCompare
{
Real epsilon;
PolynomialRootCompare(Real eps)
: epsilon(eps)
{}
template <class T>
bool operator()(T const & l, T const & r)
{
return closeAtTolerance(l.real(), r.real(), epsilon)
? l.imag() < r.imag()
: l.real() < r.real();
}
};
} // namespace detail
/** \addtogroup Polynomials Polynomials and root determination
Classes to represent polynomials and functions to find polynomial roots.
*/
//@{
/*****************************************************************/
/* */
/* polynomialRoots */
/* */
/*****************************************************************/
/** Determine the roots of the polynomial <tt>poriginal</tt>.
The roots are appended to the vector <tt>roots</tt>, with optional root
polishing as specified by <tt>polishRoots</tt> (default: do polishing). The function uses an
improved version of Laguerre's algorithm. The improvements are as follows:
<ul>
<li>It uses a clever initial guess for the iteration, according to a proposal by Tien Chen</li>
<li>It estimates each root's multiplicity, again according to Tien Chen, and reduces multiplicity
by switching to the polynomial's derivative (which has the same root, with multiplicity
reduced by one), as proposed by C. Bond.</li>
</ul>
The algorithm has been successfully used for polynomials up to order 80.
The function stops and returns <tt>false</tt> if an iteration fails to converge within
80 steps. The type <tt>POLYNOMIAL</tt> must be compatible to
\ref vigra::PolynomialView, <tt>VECTOR</tt> must be compatible to <tt>std::vector</tt>
with a <tt>value_type</tt> compatible to the type <tt>POLYNOMIAL::Complex</tt>.
<b> Declaration:</b>
pass arguments explicitly:
\code
namespace vigra {
template <class POLYNOMIAL, class VECTOR>
bool
polynomialRoots(POLYNOMIAL const & poriginal, VECTOR & roots, bool polishRoots = true);
}
\endcode
<b> Usage:</b>
<b>\#include</b> \<vigra/polynomial.hxx\><br>
Namespace: vigra
\code
// encode the polynomial x^4 - 1
Polynomial<double> poly(4);
poly[0] = -1.0;
poly[4] = 1.0;
ArrayVector<std::complex<double> > roots;
polynomialRoots(poly, roots);
\endcode
\see polynomialRootsEigenvalueMethod()
*/
template <class POLYNOMIAL, class VECTOR>
bool polynomialRoots(POLYNOMIAL const & poriginal, VECTOR & roots, bool polishRoots)
{
typedef typename POLYNOMIAL::Real Real;
typedef typename POLYNOMIAL::Complex Complex;
typedef typename POLYNOMIAL::ComplexPolynomial WorkPolynomial;
double eps = poriginal.epsilon();
WorkPolynomial p(poriginal.begin(), poriginal.order(), eps);
p.minimizeOrder();
if(p.order() == 0)
return true;
Complex x = detail::laguerreStartingGuess(p);
unsigned int multiplicity = 1;
bool triedConjugate = false;
// handle the high order cases
while(p.order() > 2)
{
p.balance();
// find root estimate using Laguerre's method on deflated polynomial p;
// zero return indicates failure to converge
multiplicity = detail::laguerre1Root(p, x, multiplicity);
if(multiplicity == 0)
return false;
// polish root on original polynomial poriginal;
// zero return indicates failure to converge
if(polishRoots && !detail::laguerre1Root(poriginal, x, multiplicity))
return false;
x = detail::deleteBelowEpsilon(x, eps);
roots.push_back(x);
p.deflate(x);
// determine the next starting guess
if(multiplicity > 1)
{
// probably multiple root => keep current root as starting guess
--multiplicity;
triedConjugate = false;
}
else
{
// need a new starting guess
if(x.imag() != 0.0 && !triedConjugate)
{
// if the root is complex and we don't already have
// the conjugate root => try the conjugate as starting guess
triedConjugate = true;
x = conj(x);
}
else
{
// otherwise generate new starting guess
triedConjugate = false;
x = detail::laguerreStartingGuess(p);
}
}
}
// handle the low order cases
if(p.order() == 2)
{
Complex a = p[2];
Complex b = p[1];
Complex c = p[0];
Complex b2 = std::sqrt(b*b - 4.0*a*c);
Complex q;
if((conj(b)*b2).real() >= 0.0)
q = -0.5 * (b + b2);
else
q = -0.5 * (b - b2);
x = detail::complexDiv(q, a);
if(polishRoots)
detail::laguerre1Root(poriginal, x, 1);
roots.push_back(detail::deleteBelowEpsilon(x, eps));
x = detail::complexDiv(c, q);
if(polishRoots)
detail::laguerre1Root(poriginal, x, 1);
roots.push_back(detail::deleteBelowEpsilon(x, eps));
}
else if(p.order() == 1)
{
x = detail::complexDiv(-p[0], p[1]);
if(polishRoots)
detail::laguerre1Root(poriginal, x, 1);
roots.push_back(detail::deleteBelowEpsilon(x, eps));
}
std::sort(roots.begin(), roots.end(), detail::PolynomialRootCompare<Real>(eps));
return true;
}
template <class POLYNOMIAL, class VECTOR>
inline bool
polynomialRoots(POLYNOMIAL const & poriginal, VECTOR & roots)
{
return polynomialRoots(poriginal, roots, true);
}
/** Determine the real roots of the polynomial <tt>p</tt>.
This function simply calls \ref polynomialRoots() and than throws away all complex roots.
Accordingly, <tt>VECTOR</tt> must be compatible to <tt>std::vector</tt>
with a <tt>value_type</tt> compatible to the type <tt>POLYNOMIAL::Real</tt>.
<b> Declaration:</b>
pass arguments explicitly:
\code
namespace vigra {
template <class POLYNOMIAL, class VECTOR>
bool
polynomialRealRoots(POLYNOMIAL const & p, VECTOR & roots, bool polishRoots = true);
}
\endcode
<b> Usage:</b>
<b>\#include</b> \<vigra/polynomial.hxx\><br>
Namespace: vigra
\code
// encode the polynomial x^4 - 1
Polynomial<double> poly(4);
poly[0] = -1.0;
poly[4] = 1.0;
ArrayVector<double> roots;
polynomialRealRoots(poly, roots);
\endcode
\see polynomialRealRootsEigenvalueMethod()
*/
template <class POLYNOMIAL, class VECTOR>
bool polynomialRealRoots(POLYNOMIAL const & p, VECTOR & roots, bool polishRoots)
{
typedef typename NumericTraits<typename VECTOR::value_type>::ComplexPromote Complex;
ArrayVector<Complex> croots;
if(!polynomialRoots(p, croots, polishRoots))
return false;
for(unsigned int i = 0; i < croots.size(); ++i)
if(croots[i].imag() == 0.0)
roots.push_back(croots[i].real());
return true;
}
template <class POLYNOMIAL, class VECTOR>
inline bool
polynomialRealRoots(POLYNOMIAL const & poriginal, VECTOR & roots)
{
return polynomialRealRoots(poriginal, roots, true);
}
//@}
} // namespace vigra
namespace std {
template <class T>
ostream & operator<<(ostream & o, vigra::PolynomialView<T> const & p)
{
for(unsigned int k=0; k < p.order(); ++k)
o << p[k] << " ";
o << p[p.order()];
return o;
}
} // namespace std
#endif // VIGRA_POLYNOMIAL_HXX
|