/usr/include/vigra/regression.hxx is in libvigraimpex-dev 1.10.0+dfsg-3ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 | /************************************************************************/
/* */
/* Copyright 2008-2013 by Ullrich Koethe */
/* */
/* This file is part of the VIGRA computer vision library. */
/* The VIGRA Website is */
/* http://hci.iwr.uni-heidelberg.de/vigra/ */
/* Please direct questions, bug reports, and contributions to */
/* ullrich.koethe@iwr.uni-heidelberg.de or */
/* vigra@informatik.uni-hamburg.de */
/* */
/* Permission is hereby granted, free of charge, to any person */
/* obtaining a copy of this software and associated documentation */
/* files (the "Software"), to deal in the Software without */
/* restriction, including without limitation the rights to use, */
/* copy, modify, merge, publish, distribute, sublicense, and/or */
/* sell copies of the Software, and to permit persons to whom the */
/* Software is furnished to do so, subject to the following */
/* conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the */
/* Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES */
/* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND */
/* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT */
/* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, */
/* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING */
/* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR */
/* OTHER DEALINGS IN THE SOFTWARE. */
/* */
/************************************************************************/
#ifndef VIGRA_REGRESSION_HXX
#define VIGRA_REGRESSION_HXX
#include "matrix.hxx"
#include "linear_solve.hxx"
#include "singular_value_decomposition.hxx"
#include "numerictraits.hxx"
#include "functorexpression.hxx"
#include "autodiff.hxx"
namespace vigra
{
namespace linalg
{
/** \addtogroup Optimization Optimization and Regression
*/
//@{
/** Ordinary Least Squares Regression.
Given a matrix \a A with <tt>m</tt> rows and <tt>n</tt> columns (with <tt>m \>= n</tt>),
and a column vector \a b of length <tt>m</tt> rows, this function computes
the column vector \a x of length <tt>n</tt> rows that solves the optimization problem
\f[ \tilde \textrm{\bf x} = \textrm{argmin}
\left|\left|\textrm{\bf A} \textrm{\bf x} - \textrm{\bf b}\right|\right|_2^2
\f]
When \a b is a matrix with <tt>k</tt> columns, \a x must also have
<tt>k</tt> columns, which will contain the solutions for the corresponding columns of
\a b. Note that all matrices must already have the correct shape.
This function is just another name for \ref linearSolve(), perhaps
leading to more readable code when \a A is a rectangular matrix. It returns
<tt>false</tt> when the rank of \a A is less than <tt>n</tt>.
See \ref linearSolve() for more documentation.
<b>\#include</b> \<vigra/regression.hxx\><br/>
Namespaces: vigra and vigra::linalg
*/
template <class T, class C1, class C2, class C3>
inline bool
leastSquares(MultiArrayView<2, T, C1> const & A,
MultiArrayView<2, T, C2> const &b, MultiArrayView<2, T, C3> &x,
std::string method = "QR")
{
return linearSolve(A, b, x, method);
}
/** Weighted Least Squares Regression.
Given a matrix \a A with <tt>m</tt> rows and <tt>n</tt> columns (with <tt>m \>= n</tt>),
a vector \a b of length <tt>m</tt>, and a weight vector \a weights of length <tt>m</tt>
with non-negative entries, this function computes the vector \a x of length <tt>n</tt>
that solves the optimization problem
\f[ \tilde \textrm{\bf x} = \textrm{argmin}
\left(\textrm{\bf A} \textrm{\bf x} - \textrm{\bf b}\right)^T
\textrm{diag}(\textrm{\bf weights})
\left(\textrm{\bf A} \textrm{\bf x} - \textrm{\bf b}\right)
\f]
where <tt>diag(weights)</tt> creates a diagonal matrix from \a weights.
The algorithm calls \ref leastSquares() on the equivalent problem
\f[ \tilde \textrm{\bf x} = \textrm{argmin}
\left|\left|\textrm{diag}(\textrm{\bf weights})^{1/2}\textrm{\bf A} \textrm{\bf x} -
\textrm{diag}(\textrm{\bf weights})^{1/2} \textrm{\bf b}\right|\right|_2^2
\f]
where the square root of \a weights is just taken element-wise.
When \a b is a matrix with <tt>k</tt> columns, \a x must also have
<tt>k</tt> columns, which will contain the solutions for the corresponding columns of
\a b. Note that all matrices must already have the correct shape.
The function returns
<tt>false</tt> when the rank of the weighted matrix \a A is less than <tt>n</tt>.
<b>\#include</b> \<vigra/regression.hxx\><br/>
Namespaces: vigra and vigra::linalg
*/
template <class T, class C1, class C2, class C3, class C4>
bool
weightedLeastSquares(MultiArrayView<2, T, C1> const & A,
MultiArrayView<2, T, C2> const &b, MultiArrayView<2, T, C3> const &weights,
MultiArrayView<2, T, C4> &x, std::string method = "QR")
{
const unsigned int rows = rowCount(A);
const unsigned int cols = columnCount(A);
const unsigned int rhsCount = columnCount(b);
vigra_precondition(rows >= cols,
"weightedLeastSquares(): Input matrix A must be rectangular with rowCount >= columnCount.");
vigra_precondition(rowCount(b) == rows,
"weightedLeastSquares(): Shape mismatch between matrices A and b.");
vigra_precondition(rowCount(b) == rowCount(weights) && columnCount(weights) == 1,
"weightedLeastSquares(): Weight matrix has wrong shape.");
vigra_precondition(rowCount(x) == cols && columnCount(x) == rhsCount,
"weightedLeastSquares(): Result matrix x has wrong shape.");
Matrix<T> wa(A.shape()), wb(b.shape());
for(unsigned int k=0; k<rows; ++k)
{
vigra_precondition(weights(k,0) >= 0,
"weightedLeastSquares(): Weights must be positive.");
T w = std::sqrt(weights(k,0));
for(unsigned int l=0; l<cols; ++l)
wa(k,l) = w * A(k,l);
for(unsigned int l=0; l<rhsCount; ++l)
wb(k,l) = w * b(k,l);
}
return leastSquares(wa, wb, x, method);
}
/** Ridge Regression.
Given a matrix \a A with <tt>m</tt> rows and <tt>n</tt> columns (with <tt>m \>= n</tt>),
a vector \a b of length <tt>m</tt>, and a regularization parameter <tt>lambda \>= 0.0</tt>,
this function computes the vector \a x of length <tt>n</tt>
that solves the optimization problem
\f[ \tilde \textrm{\bf x} = \textrm{argmin}
\left|\left|\textrm{\bf A} \textrm{\bf x} - \textrm{\bf b}\right|\right|_2^2 +
\lambda \textrm{\bf x}^T\textrm{\bf x}
\f]
This is implemented by means of \ref singularValueDecomposition().
When \a b is a matrix with <tt>k</tt> columns, \a x must also have
<tt>k</tt> columns, which will contain the solutions for the corresponding columns of
\a b. Note that all matrices must already have the correct shape.
The function returns <tt>false</tt> if the rank of \a A is less than <tt>n</tt>
and <tt>lambda == 0.0</tt>.
<b>\#include</b> \<vigra/regression.hxx\><br/>
Namespaces: vigra and vigra::linalg
*/
template <class T, class C1, class C2, class C3>
bool
ridgeRegression(MultiArrayView<2, T, C1> const & A,
MultiArrayView<2, T, C2> const &b, MultiArrayView<2, T, C3> &x, double lambda)
{
const unsigned int rows = rowCount(A);
const unsigned int cols = columnCount(A);
const unsigned int rhsCount = columnCount(b);
vigra_precondition(rows >= cols,
"ridgeRegression(): Input matrix A must be rectangular with rowCount >= columnCount.");
vigra_precondition(rowCount(b) == rows,
"ridgeRegression(): Shape mismatch between matrices A and b.");
vigra_precondition(rowCount(x) == cols && columnCount(x) == rhsCount,
"ridgeRegression(): Result matrix x has wrong shape.");
vigra_precondition(lambda >= 0.0,
"ridgeRegression(): lambda >= 0.0 required.");
unsigned int m = rows;
unsigned int n = cols;
Matrix<T> u(m, n), s(n, 1), v(n, n);
unsigned int rank = singularValueDecomposition(A, u, s, v);
if(rank < n && lambda == 0.0)
return false;
Matrix<T> t = transpose(u)*b;
for(unsigned int k=0; k<cols; ++k)
for(unsigned int l=0; l<rhsCount; ++l)
t(k,l) *= s(k,0) / (sq(s(k,0)) + lambda);
x = v*t;
return true;
}
/** Weighted ridge Regression.
Given a matrix \a A with <tt>m</tt> rows and <tt>n</tt> columns (with <tt>m \>= n</tt>),
a vector \a b of length <tt>m</tt>, a weight vector \a weights of length <tt>m</tt>
with non-negative entries, and a regularization parameter <tt>lambda >= 0.0</tt>
this function computes the vector \a x of length <tt>n</tt>
that solves the optimization problem
\f[ \tilde \textrm{\bf x} = \textrm{argmin}
\left(\textrm{\bf A} \textrm{\bf x} - \textrm{\bf b}\right)^T
\textrm{diag}(\textrm{\bf weights})
\left(\textrm{\bf A} \textrm{\bf x} - \textrm{\bf b}\right) +
\lambda \textrm{\bf x}^T\textrm{\bf x}
\f]
where <tt>diag(weights)</tt> creates a diagonal matrix from \a weights.
The algorithm calls \ref ridgeRegression() on the equivalent problem
\f[ \tilde \textrm{\bf x} = \textrm{argmin}
\left|\left|\textrm{diag}(\textrm{\bf weights})^{1/2}\textrm{\bf A} \textrm{\bf x} -
\textrm{diag}(\textrm{\bf weights})^{1/2} \textrm{\bf b}\right|\right|_2^2 +
\lambda \textrm{\bf x}^T\textrm{\bf x}
\f]
where the square root of \a weights is just taken element-wise. This solution is
computed by means of \ref singularValueDecomposition().
When \a b is a matrix with <tt>k</tt> columns, \a x must also have
<tt>k</tt> columns, which will contain the solutions for the corresponding columns of
\a b. Note that all matrices must already have the correct shape.
The function returns <tt>false</tt> if the rank of \a A is less than <tt>n</tt>
and <tt>lambda == 0.0</tt>.
<b>\#include</b> \<vigra/regression.hxx\><br/>
Namespaces: vigra and vigra::linalg
*/
template <class T, class C1, class C2, class C3, class C4>
bool
weightedRidgeRegression(MultiArrayView<2, T, C1> const & A,
MultiArrayView<2, T, C2> const &b, MultiArrayView<2, T, C3> const &weights,
MultiArrayView<2, T, C4> &x, double lambda)
{
const unsigned int rows = rowCount(A);
const unsigned int cols = columnCount(A);
const unsigned int rhsCount = columnCount(b);
vigra_precondition(rows >= cols,
"weightedRidgeRegression(): Input matrix A must be rectangular with rowCount >= columnCount.");
vigra_precondition(rowCount(b) == rows,
"weightedRidgeRegression(): Shape mismatch between matrices A and b.");
vigra_precondition(rowCount(b) == rowCount(weights) && columnCount(weights) == 1,
"weightedRidgeRegression(): Weight matrix has wrong shape.");
vigra_precondition(rowCount(x) == cols && columnCount(x) == rhsCount,
"weightedRidgeRegression(): Result matrix x has wrong shape.");
vigra_precondition(lambda >= 0.0,
"weightedRidgeRegression(): lambda >= 0.0 required.");
Matrix<T> wa(A.shape()), wb(b.shape());
for(unsigned int k=0; k<rows; ++k)
{
vigra_precondition(weights(k,0) >= 0,
"weightedRidgeRegression(): Weights must be positive.");
T w = std::sqrt(weights(k,0));
for(unsigned int l=0; l<cols; ++l)
wa(k,l) = w * A(k,l);
for(unsigned int l=0; l<rhsCount; ++l)
wb(k,l) = w * b(k,l);
}
return ridgeRegression(wa, wb, x, lambda);
}
/** Ridge Regression with many lambdas.
This executes \ref ridgeRegression() for a sequence of regularization parameters. This
is implemented so that the \ref singularValueDecomposition() has to be executed only once.
\a lambda must be an array conforming to the <tt>std::vector</tt> interface, i.e. must
support <tt>lambda.size()</tt> and <tt>lambda[k]</tt>. The columns of the matrix \a x
will contain the solutions for the corresponding lambda, so the number of columns of
the matrix \a x must be equal to <tt>lambda.size()</tt>, and \a b must be a columns vector,
i.e. cannot contain several right hand sides at once.
The function returns <tt>false</tt> when the matrix \a A is rank deficient. If this
happens, and one of the lambdas is zero, the corresponding column of \a x will be skipped.
<b>\#include</b> \<vigra/regression.hxx\><br/>
Namespaces: vigra and vigra::linalg
*/
template <class T, class C1, class C2, class C3, class Array>
bool
ridgeRegressionSeries(MultiArrayView<2, T, C1> const & A,
MultiArrayView<2, T, C2> const &b, MultiArrayView<2, T, C3> &x, Array const & lambda)
{
const unsigned int rows = rowCount(A);
const unsigned int cols = columnCount(A);
const unsigned int lambdaCount = lambda.size();
vigra_precondition(rows >= cols,
"ridgeRegressionSeries(): Input matrix A must be rectangular with rowCount >= columnCount.");
vigra_precondition(rowCount(b) == rows && columnCount(b) == 1,
"ridgeRegressionSeries(): Shape mismatch between matrices A and b.");
vigra_precondition(rowCount(x) == cols && columnCount(x) == lambdaCount,
"ridgeRegressionSeries(): Result matrix x has wrong shape.");
unsigned int m = rows;
unsigned int n = cols;
Matrix<T> u(m, n), s(n, 1), v(n, n);
unsigned int rank = singularValueDecomposition(A, u, s, v);
Matrix<T> xl = transpose(u)*b;
Matrix<T> xt(cols,1);
for(unsigned int i=0; i<lambdaCount; ++i)
{
vigra_precondition(lambda[i] >= 0.0,
"ridgeRegressionSeries(): lambda >= 0.0 required.");
if(lambda[i] == 0.0 && rank < rows)
continue;
for(unsigned int k=0; k<cols; ++k)
xt(k,0) = xl(k,0) * s(k,0) / (sq(s(k,0)) + lambda[i]);
columnVector(x, i) = v*xt;
}
return (rank == n);
}
/** \brief Pass options to leastAngleRegression().
<b>\#include</b> \<vigra/regression.hxx\><br/>
Namespaces: vigra and vigra::linalg
*/
class LeastAngleRegressionOptions
{
public:
enum Mode { LARS, LASSO, NNLASSO };
/** Initialize all options with default values.
*/
LeastAngleRegressionOptions()
: max_solution_count(0),
unconstrained_dimension_count(0),
mode(LASSO),
least_squares_solutions(true)
{}
/** Maximum number of solutions to be computed.
If \a n is 0 (the default), the number of solutions is determined by the length
of the solution array. Otherwise, the minimum of maxSolutionCount() and that
length is taken.<br>
Default: 0 (use length of solution array)
*/
LeastAngleRegressionOptions & maxSolutionCount(unsigned int n)
{
max_solution_count = (int)n;
return *this;
}
/** Set the mode of the algorithm.
Mode must be one of "lars", "lasso", "nnlasso". The function just calls
the member function of the corresponding name to set the mode.
Default: "lasso"
*/
LeastAngleRegressionOptions & setMode(std::string mode)
{
mode = tolower(mode);
if(mode == "lars")
this->lars();
else if(mode == "lasso")
this->lasso();
else if(mode == "nnlasso")
this->nnlasso();
else
vigra_fail("LeastAngleRegressionOptions.setMode(): Invalid mode.");
return *this;
}
/** Use the plain LARS algorithm.
Default: inactive
*/
LeastAngleRegressionOptions & lars()
{
mode = LARS;
return *this;
}
/** Use the LASSO modification of the LARS algorithm.
This allows features to be removed from the active set under certain conditions.<br>
Default: active
*/
LeastAngleRegressionOptions & lasso()
{
mode = LASSO;
return *this;
}
/** Use the non-negative LASSO modification of the LARS algorithm.
This enforces all non-zero entries in the solution to be positive.<br>
Default: inactive
*/
LeastAngleRegressionOptions & nnlasso()
{
mode = NNLASSO;
return *this;
}
/** Compute least squares solutions.
Use least angle regression to determine active sets, but
return least squares solutions for the features in each active set,
instead of constrained solutions.<br>
Default: <tt>true</tt>
*/
LeastAngleRegressionOptions & leastSquaresSolutions(bool select = true)
{
least_squares_solutions = select;
return *this;
}
int max_solution_count, unconstrained_dimension_count;
Mode mode;
bool least_squares_solutions;
};
namespace detail {
template <class T, class C1, class C2>
struct LarsData
{
typedef typename MultiArrayShape<2>::type Shape;
int activeSetSize;
MultiArrayView<2, T, C1> A;
MultiArrayView<2, T, C2> b;
Matrix<T> R, qtb, lars_solution, lars_prediction, next_lsq_solution, next_lsq_prediction, searchVector;
ArrayVector<MultiArrayIndex> columnPermutation;
// init data for a new run
LarsData(MultiArrayView<2, T, C1> const & Ai, MultiArrayView<2, T, C2> const & bi)
: activeSetSize(1),
A(Ai), b(bi), R(A), qtb(b),
lars_solution(A.shape(1), 1), lars_prediction(A.shape(0), 1),
next_lsq_solution(A.shape(1), 1), next_lsq_prediction(A.shape(0), 1), searchVector(A.shape(0), 1),
columnPermutation(A.shape(1))
{
for(unsigned int k=0; k<columnPermutation.size(); ++k)
columnPermutation[k] = k;
}
// copy data for the recursive call in nnlassolsq
LarsData(LarsData const & d, int asetSize)
: activeSetSize(asetSize),
A(d.R.subarray(Shape(0,0), Shape(d.A.shape(0), activeSetSize))), b(d.qtb), R(A), qtb(b),
lars_solution(d.lars_solution.subarray(Shape(0,0), Shape(activeSetSize, 1))), lars_prediction(d.lars_prediction),
next_lsq_solution(d.next_lsq_solution.subarray(Shape(0,0), Shape(activeSetSize, 1))),
next_lsq_prediction(d.next_lsq_prediction), searchVector(d.searchVector),
columnPermutation(A.shape(1))
{
for(unsigned int k=0; k<columnPermutation.size(); ++k)
columnPermutation[k] = k;
}
};
template <class T, class C1, class C2, class Array1, class Array2, class Array3>
unsigned int
leastAngleRegressionMainLoop(LarsData<T, C1, C2> & d,
Array1 & activeSets,
Array2 * lars_solutions, Array3 * lsq_solutions,
LeastAngleRegressionOptions const & options)
{
using namespace vigra::functor;
typedef typename MultiArrayShape<2>::type Shape;
typedef typename Matrix<T>::view_type Subarray;
typedef ArrayVector<MultiArrayIndex> Permutation;
typedef typename Permutation::view_type ColumnSet;
vigra_precondition(d.activeSetSize > 0,
"leastAngleRegressionMainLoop() must not be called with empty active set.");
bool enforce_positive = (options.mode == LeastAngleRegressionOptions::NNLASSO);
bool lasso_modification = (options.mode != LeastAngleRegressionOptions::LARS);
const MultiArrayIndex rows = rowCount(d.R);
const MultiArrayIndex cols = columnCount(d.R);
const MultiArrayIndex maxRank = std::min(rows, cols);
MultiArrayIndex maxSolutionCount = options.max_solution_count;
if(maxSolutionCount == 0)
maxSolutionCount = lasso_modification
? 10*maxRank
: maxRank;
bool needToRemoveColumn = false;
MultiArrayIndex columnToBeAdded = 0, columnToBeRemoved = 0;
MultiArrayIndex currentSolutionCount = 0;
while(currentSolutionCount < maxSolutionCount)
{
//ColumnSet activeSet = d.columnPermutation.subarray(0, (unsigned int)d.activeSetSize);
ColumnSet inactiveSet = d.columnPermutation.subarray((unsigned int)d.activeSetSize, (unsigned int)cols);
// find next dimension to be activated
Matrix<T> cLARS = transpose(d.A) * (d.b - d.lars_prediction), // correlation with LARS residual
cLSQ = transpose(d.A) * (d.b - d.next_lsq_prediction); // correlation with LSQ residual
// In theory, all vectors in the active set should have the same correlation C, and
// the correlation of all others should not exceed this. In practice, we may find the
// maximum correlation in any variable due to tiny numerical inaccuracies. Therefore, we
// determine C from the entire set of variables.
MultiArrayIndex cmaxIndex = enforce_positive
? argMax(cLARS)
: argMax(abs(cLARS));
T C = abs(cLARS(cmaxIndex, 0));
Matrix<T> ac(cols - d.activeSetSize, 1);
for(MultiArrayIndex k = 0; k<cols-d.activeSetSize; ++k)
{
T rho = cLSQ(inactiveSet[k], 0),
cc = C - sign(rho)*cLARS(inactiveSet[k], 0);
if(rho == 0.0) // make sure that 0/0 cannot happen in the other cases
ac(k,0) = 1.0; // variable k is linearly dependent on the active set
else if(rho > 0.0)
ac(k,0) = cc / (cc + rho); // variable k would enter the active set with positive sign
else if(enforce_positive)
ac(k,0) = 1.0; // variable k cannot enter the active set because it would be negative
else
ac(k,0) = cc / (cc - rho); // variable k would enter the active set with negative sign
}
// in the non-negative case: make sure that a column just removed cannot re-enter right away
// (in standard LASSO, this is allowed, because the variable may re-enter with opposite sign)
if(enforce_positive && needToRemoveColumn)
ac(columnToBeRemoved-d.activeSetSize,0) = 1.0;
// find candidate
// Note: R uses Arg1() > epsilon, but this is only possible because it allows several variables to
// join the active set simultaneously, so that gamma = 0 cannot occur.
columnToBeAdded = argMin(ac);
// if no new column can be added, we do a full step gamma = 1.0 and then stop, unless a column is removed below
T gamma = (d.activeSetSize == maxRank)
? 1.0
: ac(columnToBeAdded, 0);
// adjust columnToBeAdded: we skipped the active set
if(columnToBeAdded >= 0)
columnToBeAdded += d.activeSetSize;
// check whether we have to remove a column from the active set
needToRemoveColumn = false;
if(lasso_modification)
{
// find dimensions whose weight changes sign below gamma*searchDirection
Matrix<T> s(Shape(d.activeSetSize, 1), NumericTraits<T>::max());
for(MultiArrayIndex k=0; k<d.activeSetSize; ++k)
{
if(( enforce_positive && d.next_lsq_solution(k,0) < 0.0) ||
(!enforce_positive && sign(d.lars_solution(k,0))*sign(d.next_lsq_solution(k,0)) == -1.0))
s(k,0) = d.lars_solution(k,0) / (d.lars_solution(k,0) - d.next_lsq_solution(k,0));
}
columnToBeRemoved = argMinIf(s, Arg1() <= Param(gamma));
if(columnToBeRemoved >= 0)
{
needToRemoveColumn = true; // remove takes precedence over add
gamma = s(columnToBeRemoved, 0);
}
}
// compute the current solutions
d.lars_prediction = gamma * d.next_lsq_prediction + (1.0 - gamma) * d.lars_prediction;
d.lars_solution = gamma * d.next_lsq_solution + (1.0 - gamma) * d.lars_solution;
if(needToRemoveColumn)
d.lars_solution(columnToBeRemoved, 0) = 0.0; // turn possible epsilon into an exact zero
// write the current solution
++currentSolutionCount;
activeSets.push_back(typename Array1::value_type(d.columnPermutation.begin(), d.columnPermutation.begin()+d.activeSetSize));
if(lsq_solutions != 0)
{
if(enforce_positive)
{
ArrayVector<Matrix<T> > nnresults;
ArrayVector<ArrayVector<MultiArrayIndex> > nnactiveSets;
LarsData<T, C1, C2> nnd(d, d.activeSetSize);
leastAngleRegressionMainLoop(nnd, nnactiveSets, &nnresults, (Array3*)0,
LeastAngleRegressionOptions().leastSquaresSolutions(false).nnlasso());
//Matrix<T> nnlsq_solution(d.activeSetSize, 1);
typename Array2::value_type nnlsq_solution(Shape(d.activeSetSize, 1));
for(unsigned int k=0; k<nnactiveSets.back().size(); ++k)
{
nnlsq_solution(nnactiveSets.back()[k],0) = nnresults.back()[k];
}
//lsq_solutions->push_back(nnlsq_solution);
lsq_solutions->push_back(typename Array3::value_type());
lsq_solutions->back() = nnlsq_solution;
}
else
{
//lsq_solutions->push_back(d.next_lsq_solution.subarray(Shape(0,0), Shape(d.activeSetSize, 1)));
lsq_solutions->push_back(typename Array3::value_type());
lsq_solutions->back() = d.next_lsq_solution.subarray(Shape(0,0), Shape(d.activeSetSize, 1));
}
}
if(lars_solutions != 0)
{
//lars_solutions->push_back(d.lars_solution.subarray(Shape(0,0), Shape(d.activeSetSize, 1)));
lars_solutions->push_back(typename Array2::value_type());
lars_solutions->back() = d.lars_solution.subarray(Shape(0,0), Shape(d.activeSetSize, 1));
}
// no further solutions possible
if(gamma == 1.0)
break;
if(needToRemoveColumn)
{
--d.activeSetSize;
if(columnToBeRemoved != d.activeSetSize)
{
// remove column 'columnToBeRemoved' and restore triangular form of R
// note: columnPermutation is automatically swapped here
detail::upperTriangularSwapColumns(columnToBeRemoved, d.activeSetSize, d.R, d.qtb, d.columnPermutation);
// swap solution entries
std::swap(d.lars_solution(columnToBeRemoved, 0), d.lars_solution(d.activeSetSize,0));
std::swap(d.next_lsq_solution(columnToBeRemoved, 0), d.next_lsq_solution(d.activeSetSize,0));
columnToBeRemoved = d.activeSetSize; // keep track of removed column
}
d.lars_solution(d.activeSetSize,0) = 0.0;
d.next_lsq_solution(d.activeSetSize,0) = 0.0;
}
else
{
vigra_invariant(columnToBeAdded >= 0,
"leastAngleRegression(): internal error (columnToBeAdded < 0)");
// add column 'columnToBeAdded'
if(d.activeSetSize != columnToBeAdded)
{
std::swap(d.columnPermutation[d.activeSetSize], d.columnPermutation[columnToBeAdded]);
columnVector(d.R, d.activeSetSize).swapData(columnVector(d.R, columnToBeAdded));
columnToBeAdded = d.activeSetSize; // keep track of added column
}
// zero the corresponding entries of the solutions
d.next_lsq_solution(d.activeSetSize,0) = 0.0;
d.lars_solution(d.activeSetSize,0) = 0.0;
// reduce R (i.e. its newly added column) to triangular form
detail::qrColumnHouseholderStep(d.activeSetSize, d.R, d.qtb);
++d.activeSetSize;
}
// compute the LSQ solution of the new active set
Subarray Ractive = d.R.subarray(Shape(0,0), Shape(d.activeSetSize, d.activeSetSize));
Subarray qtbactive = d.qtb.subarray(Shape(0,0), Shape(d.activeSetSize, 1));
Subarray next_lsq_solution_view = d.next_lsq_solution.subarray(Shape(0,0), Shape(d.activeSetSize, 1));
linearSolveUpperTriangular(Ractive, qtbactive, next_lsq_solution_view);
// compute the LSQ prediction of the new active set
d.next_lsq_prediction.init(0.0);
for(MultiArrayIndex k=0; k<d.activeSetSize; ++k)
d.next_lsq_prediction += next_lsq_solution_view(k,0)*columnVector(d.A, d.columnPermutation[k]);
}
return (unsigned int)currentSolutionCount;
}
template <class T, class C1, class C2, class Array1, class Array2>
unsigned int
leastAngleRegressionImpl(MultiArrayView<2, T, C1> const & A, MultiArrayView<2, T, C2> const &b,
Array1 & activeSets, Array2 * lasso_solutions, Array2 * lsq_solutions,
LeastAngleRegressionOptions const & options)
{
using namespace vigra::functor;
const MultiArrayIndex rows = rowCount(A);
vigra_precondition(rowCount(b) == rows && columnCount(b) == 1,
"leastAngleRegression(): Shape mismatch between matrices A and b.");
bool enforce_positive = (options.mode == LeastAngleRegressionOptions::NNLASSO);
detail::LarsData<T, C1, C2> d(A, b);
// find dimension with largest correlation
Matrix<T> c = transpose(A)*b;
MultiArrayIndex initialColumn = enforce_positive
? argMaxIf(c, Arg1() > Param(0.0))
: argMax(abs(c));
if(initialColumn == -1)
return 0; // no solution found
// prepare initial active set and search direction etc.
std::swap(d.columnPermutation[0], d.columnPermutation[initialColumn]);
columnVector(d.R, 0).swapData(columnVector(d.R, initialColumn));
detail::qrColumnHouseholderStep(0, d.R, d.qtb);
d.next_lsq_solution(0,0) = d.qtb(0,0) / d.R(0,0);
d.next_lsq_prediction = d.next_lsq_solution(0,0) * columnVector(A, d.columnPermutation[0]);
d.searchVector = d.next_lsq_solution(0,0) * columnVector(A, d.columnPermutation[0]);
return leastAngleRegressionMainLoop(d, activeSets, lasso_solutions, lsq_solutions, options);
}
} // namespace detail
/** Least Angle Regression.
<b>\#include</b> \<vigra/regression.hxx\><br/>
Namespaces: vigra and vigra::linalg
<b> Declarations:</b>
\code
namespace vigra {
namespace linalg {
// compute either LASSO or least squares solutions
template <class T, class C1, class C2, class Array1, class Array2>
unsigned int
leastAngleRegression(MultiArrayView<2, T, C1> const & A, MultiArrayView<2, T, C2> const &b,
Array1 & activeSets, Array2 & solutions,
LeastAngleRegressionOptions const & options = LeastAngleRegressionOptions());
// compute LASSO and least squares solutions
template <class T, class C1, class C2, class Array1, class Array2>
unsigned int
leastAngleRegression(MultiArrayView<2, T, C1> const & A, MultiArrayView<2, T, C2> const &b,
Array1 & activeSets, Array2 & lasso_solutions, Array2 & lsq_solutions,
LeastAngleRegressionOptions const & options = LeastAngleRegressionOptions());
}
using linalg::leastAngleRegression;
}
\endcode
This function implements Least Angle Regression (LARS) as described in
B.Efron, T.Hastie, I.Johnstone, and R.Tibshirani: <i>"Least Angle Regression"</i>,
Annals of Statistics 32(2):407-499, 2004.
It is an efficient algorithm to solve the L1-regularized least squares (LASSO) problem
\f[ \tilde \textrm{\bf x} = \textrm{argmin}
\left|\left|\textrm{\bf A} \textrm{\bf x} - \textrm{\bf b}\right|\right|_2^2
\textrm{ subject to } \left|\left|\textrm{\bf x}\right|\right|_1\le s
\f]
and the L1-regularized non-negative least squares (NN-LASSO) problem
\f[ \tilde \textrm{\bf x} = \textrm{argmin} \left|\left|\textrm{\bf A} \textrm{\bf x} - \textrm{\bf b}\right|\right|_2^2
\textrm{ subject to } \left|\left|\textrm{\bf x}\right|\right|_1\le s \textrm{ and } \textrm{\bf x}\ge \textrm{\bf 0}
\f]
where \a A is a matrix with <tt>m</tt> rows and <tt>n</tt> columns (often with <tt>m \< n</tt>),
\a b a vector of length <tt>m</tt>, and a regularization parameter s \>= 0.0.
L1-regularization has the desirable effect that it causes the solution <b>x</b> to be sparse, i.e. only
the most important elements in <b>x</b> (called the <em>active set</em>) have non-zero values. The
key insight of the LARS algorithm is the following: When the solution vector <b>x</b> is considered
as a function of the regularization parameter s, then <b>x</b>(s) is a piecewise
linear function, i.e. a polyline in n-dimensional space. The knots of the polyline <b>x</b>(s)
are located precisely at those values of s where one variable enters or leaves the active set
and can be efficiently computed.
Therefore, leastAngleRegression() returns the entire solution path as a sequence of knot points, starting
at \f$\textrm{\bf x}(s=0)\f$ (where the only feasible solution is obviously <b>x</b> = 0) and ending at
\f$\textrm{\bf x}(s=\infty)\f$ (where the solution becomes the ordinary least squares solution). Actually,
the initial null solution is not explicitly returned, i.e. the sequence starts at the first non-zero
solution with one variable in the active set. The function leastAngleRegression() returns the number
of solutions (i.e. knot points) computed.
The sequences of active sets and corresponding variable weights are returned in \a activeSets and
\a solutions respectively. That is, <tt>activeSets[i]</tt> is an \ref vigra::ArrayVector "ArrayVector\<int\>"
containing the indices of the variables that are active at the i-th knot, and <tt>solutions</tt> is a
\ref vigra::linalg::Matrix "Matrix\<T\>" containing the weights of those variables, in the same order (see
example below). Variables not contained in <tt>activeSets[i]</tt> are zero at this solution.
The behavior of the algorithm can be adapted by \ref vigra::linalg::LeastAngleRegressionOptions
"LeastAngleRegressionOptions":
<DL>
<DT><b>options.lasso()</b> (active by default)
<DD> Compute the LASSO solution as described above.
<DT><b>options.nnlasso()</b> (inactive by default)
<DD> Compute non-negative LASSO solutions, i.e. use the additional constraint that
<b>x</b> \>= 0 in all solutions.
<DT><b>options.lars()</b> (inactive by default)
<DD> Compute a solution path according to the plain LARS rule, i.e. never remove
a variable from the active set once it entered.
<DT><b>options.leastSquaresSolutions(bool)</b> (default: true)
<DD> Use the algorithm mode selected above
to determine the sequence of active sets, but then compute and return an
ordinary (unconstrained) least squares solution for every active set.<br>
<b>Note:</b> The second form of leastAngleRegression() ignores this option and
does always compute both constrained and unconstrained solutions (returned in
\a lasso_solutions and \a lsq_solutions respectively).
<DT><b>maxSolutionCount(unsigned int n)</b> (default: n = 0, i.e. compute all solutions)
<DD> Compute at most <tt>n</tt> solutions.
</DL>
<b>Usage:</b>
\code
int m = ..., n = ...;
Matrix<double> A(m, n), b(m, 1);
... // fill A and b
// normalize the input
Matrix<double> offset(1,n), scaling(1,n);
prepareColumns(A, A, offset, scaling, DataPreparationGoals(ZeroMean|UnitVariance));
prepareColumns(b, b, DataPreparationGoals(ZeroMean));
// arrays to hold the output
ArrayVector<ArrayVector<int> > activeSets;
ArrayVector<Matrix<double> > solutions;
// run leastAngleRegression() in non-negative LASSO mode
int numSolutions = leastAngleRegression(A, b, activeSets, solutions,
LeastAngleRegressionOptions().nnlasso());
// print results
Matrix<double> denseSolution(1, n);
for (MultiArrayIndex k = 0; k < numSolutions; ++k)
{
// transform the sparse solution into a dense vector
denseSolution.init(0.0); // ensure that inactive variables are zero
for (unsigned int i = 0; i < activeSets[k].size(); ++i)
{
// set the values of the active variables;
// activeSets[k][i] is the true index of the i-th variable in the active set
denseSolution(0, activeSets[k][i]) = solutions[k](i,0);
}
// invert the input normalization
denseSolution = denseSolution * pointWise(scaling);
// output the solution
std::cout << "solution " << k << ":\n" << denseSolution << std::endl;
}
\endcode
<b>Required Interface:</b>
<ul>
<li> <tt>T</tt> must be numeric type (compatible to double)
<li> <tt>Array1 a1;</tt><br>
<tt>a1.push_back(ArrayVector\<int\>());</tt>
<li> <tt>Array2 a2;</tt><br>
<tt>a2.push_back(Matrix\<T\>());</tt>
</ul>
*/
doxygen_overloaded_function(template <...> unsigned int leastAngleRegression)
template <class T, class C1, class C2, class Array1, class Array2>
inline unsigned int
leastAngleRegression(MultiArrayView<2, T, C1> const & A, MultiArrayView<2, T, C2> const &b,
Array1 & activeSets, Array2 & solutions,
LeastAngleRegressionOptions const & options = LeastAngleRegressionOptions())
{
if(options.least_squares_solutions)
return detail::leastAngleRegressionImpl(A, b, activeSets, (Array2*)0, &solutions, options);
else
return detail::leastAngleRegressionImpl(A, b, activeSets, &solutions, (Array2*)0, options);
}
template <class T, class C1, class C2, class Array1, class Array2>
inline unsigned int
leastAngleRegression(MultiArrayView<2, T, C1> const & A, MultiArrayView<2, T, C2> const &b,
Array1 & activeSets, Array2 & lasso_solutions, Array2 & lsq_solutions,
LeastAngleRegressionOptions const & options = LeastAngleRegressionOptions())
{
return detail::leastAngleRegressionImpl(A, b, activeSets, &lasso_solutions, &lsq_solutions, options);
}
/** Non-negative Least Squares Regression.
Given a matrix \a A with <tt>m</tt> rows and <tt>n</tt> columns (with <tt>m \>= n</tt>),
and a column vector \a b of length <tt>m</tt> rows, this function computes
a column vector \a x of length <tt>n</tt> with <b>non-negative entries</b> that solves the optimization problem
\f[ \tilde \textrm{\bf x} = \textrm{argmin}
\left|\left|\textrm{\bf A} \textrm{\bf x} - \textrm{\bf b}\right|\right|_2^2
\textrm{ subject to } \textrm{\bf x} \ge \textrm{\bf 0}
\f]
Both \a b and \a x must be column vectors (i.e. matrices with <tt>1</tt> column).
Note that all matrices must already have the correct shape. The solution is computed by means
of \ref leastAngleRegression() with non-negativity constraint.
<b>\#include</b> \<vigra/regression.hxx\>
Namespaces: vigra and vigra::linalg
*/
template <class T, class C1, class C2, class C3>
inline void
nonnegativeLeastSquares(MultiArrayView<2, T, C1> const & A,
MultiArrayView<2, T, C2> const &b, MultiArrayView<2, T, C3> &x)
{
vigra_precondition(columnCount(A) == rowCount(x) && rowCount(A) == rowCount(b),
"nonnegativeLeastSquares(): Matrix shape mismatch.");
vigra_precondition(columnCount(b) == 1 && columnCount(x) == 1,
"nonnegativeLeastSquares(): RHS and solution must be vectors (i.e. columnCount == 1).");
ArrayVector<ArrayVector<MultiArrayIndex> > activeSets;
ArrayVector<Matrix<T> > results;
leastAngleRegression(A, b, activeSets, results,
LeastAngleRegressionOptions().leastSquaresSolutions(false).nnlasso());
x.init(NumericTraits<T>::zero());
if(activeSets.size() > 0)
for(unsigned int k=0; k<activeSets.back().size(); ++k)
x(activeSets.back()[k],0) = results.back()[k];
}
//@}
} // namespace linalg
using linalg::leastSquares;
using linalg::weightedLeastSquares;
using linalg::ridgeRegression;
using linalg::weightedRidgeRegression;
using linalg::ridgeRegressionSeries;
using linalg::nonnegativeLeastSquares;
using linalg::leastAngleRegression;
using linalg::LeastAngleRegressionOptions;
namespace detail {
template <class T, class S>
inline T
getRow(MultiArrayView<1, T, S> const & a, MultiArrayIndex i)
{
return a(i);
}
template <class T, class S>
inline MultiArrayView<1, T>
getRow(MultiArrayView<2, T, S> const & a, MultiArrayIndex i)
{
return a.bindInner(i);
}
} // namespace detail
/** \addtogroup Optimization
*/
//@{
/** \brief Pass options to nonlinearLeastSquares().
<b>\#include</b> \<vigra/regression.hxx\>
Namespace: vigra
*/
class NonlinearLSQOptions
{
public:
double epsilon, lambda, tau;
int max_iter;
/** \brief Initialize options with default values.
*/
NonlinearLSQOptions()
: epsilon(0.0),
lambda(0.1),
tau(1.4),
max_iter(50)
{}
/** \brief Set minimum relative improvement in residual.
The algorithm stops when the relative improvement in residuals
between consecutive iterations is less than this value.
Default: 0 (i.e. choose tolerance automatically, will be 10*epsilon of the numeric type)
*/
NonlinearLSQOptions & tolerance(double eps)
{
epsilon = eps;
return *this;
}
/** \brief Set maximum number of iterations.
Default: 50
*/
NonlinearLSQOptions & maxIterations(int iter)
{
max_iter = iter;
return *this;
}
/** \brief Set damping parameters for Levenberg-Marquardt algorithm.
\a lambda determines by how much the diagonal is emphasized, and \a v is
the factor by which lambda will be increased if more damping is needed
for convergence
(see <a href="http://en.wikipedia.org/wiki/Levenberg%E2%80%93Marquardt_algorithm">Wikipedia</a>
for more explanations).
Default: lambda = 0.1, v = 1.4
*/
NonlinearLSQOptions & dampingParamters(double lambda, double v)
{
vigra_precondition(lambda > 0.0 && v > 0.0,
"NonlinearLSQOptions::dampingParamters(): parameters must be positive.");
this->lambda = lambda;
tau = v;
return *this;
}
};
template <unsigned int D, class T, class S1, class S2,
class U, int N,
class Functor>
T
nonlinearLeastSquaresImpl(MultiArrayView<D, T, S1> const & features,
MultiArrayView<1, T, S2> const & response,
TinyVector<U, N> & p,
Functor model,
NonlinearLSQOptions const & options)
{
vigra_precondition(features.shape(0) == response.shape(0),
"nonlinearLeastSquares(): shape mismatch between features and response.");
double t = options.tau, l = options.lambda; // initial damping parameters
double epsilonT = NumericTraits<T>::epsilon()*10.0,
epsilonU = NumericTraits<U>::epsilon()*10.0,
epsilon = options.epsilon <= 0.0
? std::max(epsilonT, epsilonU)
: options.epsilon;
linalg::Matrix<T> jj(N,N); // outer product of the Jacobian
TinyVector<U, N> jr, dp;
T residual = 0.0;
bool didStep = true;
for(int iter=0; iter<options.max_iter; ++iter)
{
if(didStep)
{
// update the residual and Jacobian
residual = 0.0;
jr = 0.0;
jj = 0.0;
for(int i=0; i<features.shape(0); ++i)
{
autodiff::DualVector<U, N> res = model(detail::getRow(features, i), autodiff::dualMatrix(p));
T r = response(i) - res.v;
jr += r * res.d;
jj += outer(res.d);
residual += sq(r);
}
}
// perform a damped gradient step
linalg::Matrix<T> djj(jj);
djj.diagonal() *= 1.0 + l;
linearSolve(djj, jr, dp);
TinyVector<U, N> p_new = p + dp;
// compute the new residual
T residual_new = 0.0;
for(int i=0; i<features.shape(0); ++i)
{
residual_new += sq(response(i) - model(detail::getRow(features, i), p_new));
}
if(residual_new < residual)
{
// accept the step
p = p_new;
if(std::abs((residual - residual_new) / residual) < epsilon)
return residual_new;
// try less damping in the next iteration
l /= t;
didStep = true;
}
else
{
// reject the step und use more damping in the next iteration
l *= t;
didStep = false;
}
}
return residual;
}
/********************************************************/
/* */
/* nonlinearLeastSquares */
/* */
/********************************************************/
/** \brief Fit a non-linear model to given data by minimizing least squares loss.
<b> Declarations:</b>
\code
namespace vigra {
// variant 1: optimize a univariate model ('x' is a 1D array of scalar data points)
template <class T, class S1, class S2,
class U, int N,
class Functor>
T
nonlinearLeastSquares(MultiArrayView<1, T, S1> const & x,
MultiArrayView<1, T, S2> const & y,
TinyVector<U, N> & model_parameters,
Functor model,
NonlinearLSQOptions const & options = NonlinearLSQOptions());
// variant 2: optimize a multivariate model ('x' is a 2D array of vector-valued data points)
template <class T, class S1, class S2,
class U, int N,
class Functor>
T
nonlinearLeastSquares(MultiArrayView<2, T, S1> const & x,
MultiArrayView<1, T, S2> const & y,
TinyVector<U, N> & model_parameters,
Functor model,
NonlinearLSQOptions const & options = NonlinearLSQOptions());
}
\endcode
This function implements the
<a href="http://en.wikipedia.org/wiki/Levenberg%E2%80%93Marquardt_algorithm">Levenberg-Marquardt algorithm</a>
to fit a non-linear model to given data. The model depends on a vector of
parameters <b>p</b> which are to be choosen such that the least-squares residual
between the data and the model's predictions is minimized according to the objective function:
\f[ \tilde \textrm{\bf p} = \textrm{argmin}_{\textrm{\bf p}} \sum_i \left( y_i - f(\textrm{\bf x}_i; \textrm{\bf p}) \right)^2
\f]
where \f$f(\textrm{\bf x}; \textrm{\bf p})\f$ is the model to be optimized
(with arguments \f$\textrm{\bf x}\f$ and parameters \f$\textrm{\bf p}\f$), and
\f$(\textrm{\bf x}_i; y_i)\f$ are the feature/response pairs of the given data.
Since the model is non-linear (otherwise, you should use ordinary \ref leastSquares()),
it must be linearized in terms of a first-order Taylor expansion, and the optimal
parameters <b>p</b> have to be determined iteratively. In order for the iterations to
converge to the desired solution, a good initial guess on <b>p</b> is required.
The model must be specified by a functor which takes one of the following forms:
\code
typedef double DataType; // type of your data samples, may be any numeric type
static const int N = ...; // number of model parameters
// variant 1: the features x are scalars
struct UnivariateModel
{
template <class T>
T operator()(DataType x, TinyVector<T, N> const & p) const { ... }
};
// variant 2: the features x are vectors
struct MultivariateModel
{
template <class T>
T operator()(MultiArrayView<1, DataType> const & x, TinyVector<T, N> const & p) const { ... }
};
\endcode
Each call to the functor's <tt>operator()</tt> computes the model's prediction for a single data
point. The current model parameters are specified in a TinyVector of appropriate length.
The type <tt>T</tt> must be templated: normally, it is the same as <tt>DataType</tt>, but
the nonlinearLeastSquares() function will temporarily replace it with a special number type
that supports <a href="http://en.wikipedia.org/wiki/Automatic_differentiation">automatic differentiation</a>
(see \ref vigra::autodiff::DualVector). In this way, the derivatives needed in the model's Taylor
expansion can be computed automatically.
When the model is univariate (has a single scalar argument), the samples must be passed to
nonlinearLeastSquares() in a pair 'x', 'y' of 1D <tt>MultiArrayView</tt>s (variant 1).
When the model is multivariate (has a vector-valued argument), the 'x' input must
be a 2D <tt>MultiArrayView</tt> (variant 2) whose rows represent a single data sample
(i.e. the number of columns corresponds to the length of the model's argument vector).
The number of rows in 'x' defines the number of data samples and must match the length
of array 'y'.
The <tt>TinyVector</tt> 'model_parameters' holds the initial guess for the model parameters and
will be overwritten by the optimal values found by the algorithm. The algorithm's internal behavior
can be controlled by customizing the option object \ref vigra::NonlinearLSQOptions.
The function returns the residual sum of squared errors of the final solution.
<b> Usage:</b>
<b>\#include</b> \<vigra/regression.hxx\><br>
Namespace: vigra
Suppose that we want to fit a centered Gaussian function of the form
\f[ f(x ; a, s, b) = a \exp\left(-\frac{x^2}{2 s^2}\right) + b \f]
to noisy data \f$(x_i, y_i)\f$, i.e. we want to find parameters a, s, b such that
the residual \f$\sum_i \left(y_i - f(x_i; a,s,b)\right)^2\f$ is minimized.
The model parameters are placed in a <tt>TinyVector<T, 3></tt> <b>p</b> according to the rules<br/>
<tt>p[0] <=> a</tt>, <tt>p[1] <=> s</tt> and <tt>p[2] <=> b</tt>.<br/> The following
functor computes the model's prediction for a single data point <tt>x</tt>:
\code
struct GaussianModel
{
template <class T>
T operator()(double x, TinyVector<T, 3> const & p) const
{
return p[0] * exp(-0.5 * sq(x / p[1])) + p[2];
}
};
\endcode
Now we can find optimal values for the parameters like this:
\code
int size = ...; // number of data points
MultiArray<1, double> x(size), y(size);
... // fill the data arrays
TinyVector<double, 3> p(2.0, 1.0, 0.5); // your initial guess of the parameters
// (will be overwritten with the optimal values)
double residual = nonlinearLeastSquares(x, y, p, GaussianModel());
std::cout << "Model parameters: a=" << p[0] << ", s=" << p[1] << ", b=" << p[2] << " (residual: " << residual << ")\n";
\endcode
*/
doxygen_overloaded_function(template <...> void nonlinearLeastSquares)
template <class T, class S1, class S2,
class U, int N,
class Functor>
inline T
nonlinearLeastSquares(MultiArrayView<1, T, S1> const & features,
MultiArrayView<1, T, S2> const & response,
TinyVector<U, N> & p,
Functor model,
NonlinearLSQOptions const & options = NonlinearLSQOptions())
{
return nonlinearLeastSquaresImpl(features, response, p, model, options);
}
template <class T, class S1, class S2,
class U, int N,
class Functor>
inline T
nonlinearLeastSquares(MultiArrayView<2, T, S1> const & features,
MultiArrayView<1, T, S2> const & response,
TinyVector<U, N> & p,
Functor model,
NonlinearLSQOptions const & options = NonlinearLSQOptions())
{
return nonlinearLeastSquaresImpl(features, response, p, model, options);
}
//@}
} // namespace vigra
#endif // VIGRA_REGRESSION_HXX
|