/usr/lib/python3/dist-packages/genshi/path.py is in python3-genshi 0.7-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 | # -*- coding: utf-8 -*-
#
# Copyright (C) 2006-2009 Edgewall Software
# All rights reserved.
#
# This software is licensed as described in the file COPYING, which
# you should have received as part of this distribution. The terms
# are also available at http://genshi.edgewall.org/wiki/License.
#
# This software consists of voluntary contributions made by many
# individuals. For the exact contribution history, see the revision
# history and logs, available at http://genshi.edgewall.org/log/.
"""Basic support for evaluating XPath expressions against streams.
>>> from genshi.input import XML
>>> doc = XML('''<doc>
... <items count="4">
... <item status="new">
... <summary>Foo</summary>
... </item>
... <item status="closed">
... <summary>Bar</summary>
... </item>
... <item status="closed" resolution="invalid">
... <summary>Baz</summary>
... </item>
... <item status="closed" resolution="fixed">
... <summary>Waz</summary>
... </item>
... </items>
... </doc>''')
>>> print((doc.select('items/item[@status="closed" and '
... '(@resolution="invalid" or not(@resolution))]/summary/text()')))
BarBaz
Because the XPath engine operates on markup streams (as opposed to tree
structures), it only implements a subset of the full XPath 1.0 language.
"""
from collections import deque
try:
reduce # builtin in Python < 3
except NameError:
from functools import reduce
from math import ceil, floor
import operator
import re
from itertools import chain
from genshi.core import Stream, Attrs, Namespace, QName
from genshi.core import START, END, TEXT, START_NS, END_NS, COMMENT, PI, \
START_CDATA, END_CDATA
__all__ = ['Path', 'PathSyntaxError']
__docformat__ = 'restructuredtext en'
class Axis(object):
"""Defines constants for the various supported XPath axes."""
ATTRIBUTE = 'attribute'
CHILD = 'child'
DESCENDANT = 'descendant'
DESCENDANT_OR_SELF = 'descendant-or-self'
SELF = 'self'
@classmethod
def forname(cls, name):
"""Return the axis constant for the given name, or `None` if no such
axis was defined.
"""
return getattr(cls, name.upper().replace('-', '_'), None)
ATTRIBUTE = Axis.ATTRIBUTE
CHILD = Axis.CHILD
DESCENDANT = Axis.DESCENDANT
DESCENDANT_OR_SELF = Axis.DESCENDANT_OR_SELF
SELF = Axis.SELF
class GenericStrategy(object):
@classmethod
def supports(cls, path):
return True
def __init__(self, path):
self.path = path
def test(self, ignore_context):
p = self.path
if ignore_context:
if p[0][0] is ATTRIBUTE:
steps = [_DOTSLASHSLASH] + p
else:
steps = [(DESCENDANT_OR_SELF, p[0][1], p[0][2])] + p[1:]
elif p[0][0] is CHILD or p[0][0] is ATTRIBUTE \
or p[0][0] is DESCENDANT:
steps = [_DOTSLASH] + p
else:
steps = p
# for node it contains all positions of xpath expression
# where its child should start checking for matches
# with list of corresponding context counters
# there can be many of them, because position that is from
# descendant-like axis can be achieved from different nodes
# for example <a><a><b/></a></a> should match both //a//b[1]
# and //a//b[2]
# positions always form increasing sequence (invariant)
stack = [[(0, [[]])]]
def _test(event, namespaces, variables, updateonly=False):
kind, data, pos = event[:3]
retval = None
# Manage the stack that tells us "where we are" in the stream
if kind is END:
if stack:
stack.pop()
return None
if kind is START_NS or kind is END_NS \
or kind is START_CDATA or kind is END_CDATA:
# should we make namespaces work?
return None
pos_queue = deque([(pos, cou, []) for pos, cou in stack[-1]])
next_pos = []
# length of real part of path - we omit attribute axis
real_len = len(steps) - ((steps[-1][0] == ATTRIBUTE) or 1 and 0)
last_checked = -1
# places where we have to check for match, are these
# provided by parent
while pos_queue:
x, pcou, mcou = pos_queue.popleft()
axis, nodetest, predicates = steps[x]
# we need to push descendant-like positions from parent
# further
if (axis is DESCENDANT or axis is DESCENDANT_OR_SELF) and pcou:
if next_pos and next_pos[-1][0] == x:
next_pos[-1][1].extend(pcou)
else:
next_pos.append((x, pcou))
# nodetest first
if not nodetest(kind, data, pos, namespaces, variables):
continue
# counters packs that were already bad
missed = set()
counters_len = len(pcou) + len(mcou)
# number of counters - we have to create one
# for every context position based predicate
cnum = 0
# tells if we have match with position x
matched = True
if predicates:
for predicate in predicates:
pretval = predicate(kind, data, pos,
namespaces,
variables)
if type(pretval) is float: # FIXME <- need to check
# this for other types that
# can be coerced to float
# each counter pack needs to be checked
for i, cou in enumerate(chain(pcou, mcou)):
# it was bad before
if i in missed:
continue
if len(cou) < cnum + 1:
cou.append(0)
cou[cnum] += 1
# it is bad now
if cou[cnum] != int(pretval):
missed.add(i)
# none of counters pack was good
if len(missed) == counters_len:
pretval = False
cnum += 1
if not pretval:
matched = False
break
if not matched:
continue
# counter for next position with current node as context node
child_counter = []
if x + 1 == real_len:
# we reached end of expression, because x + 1
# is equal to the length of expression
matched = True
axis, nodetest, predicates = steps[-1]
if axis is ATTRIBUTE:
matched = nodetest(kind, data, pos, namespaces,
variables)
if matched:
retval = matched
else:
next_axis = steps[x + 1][0]
# if next axis allows matching self we have
# to add next position to our queue
if next_axis is DESCENDANT_OR_SELF or next_axis is SELF:
if not pos_queue or pos_queue[0][0] > x + 1:
pos_queue.appendleft((x + 1, [], [child_counter]))
else:
pos_queue[0][2].append(child_counter)
# if axis is not self we have to add it to child's list
if next_axis is not SELF:
next_pos.append((x + 1, [child_counter]))
if kind is START:
stack.append(next_pos)
return retval
return _test
class SimplePathStrategy(object):
"""Strategy for path with only local names, attributes and text nodes."""
@classmethod
def supports(cls, path):
if path[0][0] is ATTRIBUTE:
return False
allowed_tests = (LocalNameTest, CommentNodeTest, TextNodeTest)
for _, nodetest, predicates in path:
if predicates:
return False
if not isinstance(nodetest, allowed_tests):
return False
return True
def __init__(self, path):
# fragments is list of tuples (fragment, pi, attr, self_beginning)
# fragment is list of nodetests for fragment of path with only
# child:: axes between
# pi is KMP partial match table for this fragment
# attr is attribute nodetest if fragment ends with @ and None otherwise
# self_beginning is True if axis for first fragment element
# was self (first fragment) or descendant-or-self (farther fragment)
self.fragments = []
self_beginning = False
fragment = []
def nodes_equal(node1, node2):
"""Tests if two node tests are equal"""
if type(node1) is not type(node2):
return False
if type(node1) == LocalNameTest:
return node1.name == node2.name
return True
def calculate_pi(f):
"""KMP prefix calculation for table"""
# the indexes in prefix table are shifted by one
# in comparision with common implementations
# pi[i] = NORMAL_PI[i + 1]
if len(f) == 0:
return []
pi = [0]
s = 0
for i in range(1, len(f)):
while s > 0 and not nodes_equal(f[s], f[i]):
s = pi[s-1]
if nodes_equal(f[s], f[i]):
s += 1
pi.append(s)
return pi
for axis in path:
if axis[0] is SELF:
if len(fragment) != 0:
# if element is not first in fragment it has to be
# the same as previous one
# for example child::a/self::b is always wrong
if axis[1] != fragment[-1][1]:
self.fragments = None
return
else:
self_beginning = True
fragment.append(axis[1])
elif axis[0] is CHILD:
fragment.append(axis[1])
elif axis[0] is ATTRIBUTE:
pi = calculate_pi(fragment)
self.fragments.append((fragment, pi, axis[1], self_beginning))
# attribute has always to be at the end, so we can jump out
return
else:
pi = calculate_pi(fragment)
self.fragments.append((fragment, pi, None, self_beginning))
fragment = [axis[1]]
if axis[0] is DESCENDANT:
self_beginning = False
else: # DESCENDANT_OR_SELF
self_beginning = True
pi = calculate_pi(fragment)
self.fragments.append((fragment, pi, None, self_beginning))
def test(self, ignore_context):
# stack of triples (fid, p, ic)
# fid is index of current fragment
# p is position in this fragment
# ic is if we ignore context in this fragment
stack = []
stack_push = stack.append
stack_pop = stack.pop
frags = self.fragments
frags_len = len(frags)
def _test(event, namespaces, variables, updateonly=False):
# expression found impossible during init
if frags is None:
return None
kind, data, pos = event[:3]
# skip events we don't care about
if kind is END:
if stack:
stack_pop()
return None
if kind is START_NS or kind is END_NS \
or kind is START_CDATA or kind is END_CDATA:
return None
if not stack:
# root node, nothing on stack, special case
fid = 0
# skip empty fragments (there can be actually only one)
while not frags[fid][0]:
fid += 1
p = 0
# empty fragment means descendant node at beginning
ic = ignore_context or (fid > 0)
# expression can match first node, if first axis is self::,
# descendant-or-self:: or if ignore_context is True and
# axis is not descendant::
if not frags[fid][3] and (not ignore_context or fid > 0):
# axis is not self-beggining, we have to skip this node
stack_push((fid, p, ic))
return None
else:
# take position of parent
fid, p, ic = stack[-1]
if fid is not None and not ic:
# fragment not ignoring context - we can't jump back
frag, pi, attrib, _ = frags[fid]
frag_len = len(frag)
if p == frag_len:
# that probably means empty first fragment
pass
elif frag[p](kind, data, pos, namespaces, variables):
# match, so we can go further
p += 1
else:
# not matched, so there will be no match in subtree
fid, p = None, None
if p == frag_len and fid + 1 != frags_len:
# we made it to end of fragment, we can go to following
fid += 1
p = 0
ic = True
if fid is None:
# there was no match in fragment not ignoring context
if kind is START:
stack_push((fid, p, ic))
return None
if ic:
# we are in fragment ignoring context
while True:
frag, pi, attrib, _ = frags[fid]
frag_len = len(frag)
# KMP new "character"
while p > 0 and (p >= frag_len or not \
frag[p](kind, data, pos, namespaces, variables)):
p = pi[p-1]
if frag[p](kind, data, pos, namespaces, variables):
p += 1
if p == frag_len:
# end of fragment reached
if fid + 1 == frags_len:
# that was last fragment
break
else:
fid += 1
p = 0
ic = True
if not frags[fid][3]:
# next fragment not self-beginning
break
else:
break
if kind is START:
# we have to put new position on stack, for children
if not ic and fid + 1 == frags_len and p == frag_len:
# it is end of the only, not context ignoring fragment
# so there will be no matches in subtree
stack_push((None, None, ic))
else:
stack_push((fid, p, ic))
# have we reached the end of the last fragment?
if fid + 1 == frags_len and p == frag_len:
if attrib: # attribute ended path, return value
return attrib(kind, data, pos, namespaces, variables)
return True
return None
return _test
class SingleStepStrategy(object):
@classmethod
def supports(cls, path):
return len(path) == 1
def __init__(self, path):
self.path = path
def test(self, ignore_context):
steps = self.path
if steps[0][0] is ATTRIBUTE:
steps = [_DOTSLASH] + steps
select_attr = steps[-1][0] is ATTRIBUTE and steps[-1][1] or None
# for every position in expression stores counters' list
# it is used for position based predicates
counters = []
depth = [0]
def _test(event, namespaces, variables, updateonly=False):
kind, data, pos = event[:3]
# Manage the stack that tells us "where we are" in the stream
if kind is END:
if not ignore_context:
depth[0] -= 1
return None
elif kind is START_NS or kind is END_NS \
or kind is START_CDATA or kind is END_CDATA:
# should we make namespaces work?
return None
if not ignore_context:
outside = (steps[0][0] is SELF and depth[0] != 0) \
or (steps[0][0] is CHILD and depth[0] != 1) \
or (steps[0][0] is DESCENDANT and depth[0] < 1)
if kind is START:
depth[0] += 1
if outside:
return None
axis, nodetest, predicates = steps[0]
if not nodetest(kind, data, pos, namespaces, variables):
return None
if predicates:
cnum = 0
for predicate in predicates:
pretval = predicate(kind, data, pos, namespaces, variables)
if type(pretval) is float: # FIXME <- need to check this
# for other types that can be
# coerced to float
if len(counters) < cnum + 1:
counters.append(0)
counters[cnum] += 1
if counters[cnum] != int(pretval):
pretval = False
cnum += 1
if not pretval:
return None
if select_attr:
return select_attr(kind, data, pos, namespaces, variables)
return True
return _test
class Path(object):
"""Implements basic XPath support on streams.
Instances of this class represent a "compiled" XPath expression, and
provide methods for testing the path against a stream, as well as
extracting a substream matching that path.
"""
STRATEGIES = (SingleStepStrategy, SimplePathStrategy, GenericStrategy)
def __init__(self, text, filename=None, lineno=-1):
"""Create the path object from a string.
:param text: the path expression
:param filename: the name of the file in which the path expression was
found (used in error messages)
:param lineno: the line on which the expression was found
"""
self.source = text
self.paths = PathParser(text, filename, lineno).parse()
self.strategies = []
for path in self.paths:
for strategy_class in self.STRATEGIES:
if strategy_class.supports(path):
self.strategies.append(strategy_class(path))
break
else:
raise NotImplemented('No strategy found for path')
def __repr__(self):
paths = []
for path in self.paths:
steps = []
for axis, nodetest, predicates in path:
steps.append('%s::%s' % (axis, nodetest))
for predicate in predicates:
steps[-1] += '[%s]' % predicate
paths.append('/'.join(steps))
return '<%s "%s">' % (type(self).__name__, '|'.join(paths))
def select(self, stream, namespaces=None, variables=None):
"""Returns a substream of the given stream that matches the path.
If there are no matches, this method returns an empty stream.
>>> from genshi.input import XML
>>> xml = XML('<root><elem><child>Text</child></elem></root>')
>>> print((Path('.//child').select(xml)))
<child>Text</child>
>>> print((Path('.//child/text()').select(xml)))
Text
:param stream: the stream to select from
:param namespaces: (optional) a mapping of namespace prefixes to URIs
:param variables: (optional) a mapping of variable names to values
:return: the substream matching the path, or an empty stream
:rtype: `Stream`
"""
if namespaces is None:
namespaces = {}
if variables is None:
variables = {}
stream = iter(stream)
def _generate(stream=stream, ns=namespaces, vs=variables):
next = stream.__next__
test = self.test()
for event in stream:
result = test(event, ns, vs)
if result is True:
yield event
if event[0] is START:
depth = 1
while depth > 0:
subevent = next()
if subevent[0] is START:
depth += 1
elif subevent[0] is END:
depth -= 1
yield subevent
test(subevent, ns, vs, updateonly=True)
elif result:
yield result
return Stream(_generate(),
serializer=getattr(stream, 'serializer', None))
def test(self, ignore_context=False):
"""Returns a function that can be used to track whether the path matches
a specific stream event.
The function returned expects the positional arguments ``event``,
``namespaces`` and ``variables``. The first is a stream event, while the
latter two are a mapping of namespace prefixes to URIs, and a mapping
of variable names to values, respectively. In addition, the function
accepts an ``updateonly`` keyword argument that default to ``False``. If
it is set to ``True``, the function only updates its internal state,
but does not perform any tests or return a result.
If the path matches the event, the function returns the match (for
example, a `START` or `TEXT` event.) Otherwise, it returns ``None``.
>>> from genshi.input import XML
>>> xml = XML('<root><elem><child id="1"/></elem><child id="2"/></root>')
>>> test = Path('child').test()
>>> namespaces, variables = {}, {}
>>> for event in xml:
... if test(event, namespaces, variables):
... print(('%s %r' % (event[0], event[1])))
START (QName('child'), Attrs([(QName('id'), '2')]))
:param ignore_context: if `True`, the path is interpreted like a pattern
in XSLT, meaning for example that it will match
at any depth
:return: a function that can be used to test individual events in a
stream against the path
:rtype: ``function``
"""
tests = [s.test(ignore_context) for s in self.strategies]
if len(tests) == 1:
return tests[0]
def _multi(event, namespaces, variables, updateonly=False):
retval = None
for test in tests:
val = test(event, namespaces, variables, updateonly=updateonly)
if retval is None:
retval = val
return retval
return _multi
class PathSyntaxError(Exception):
"""Exception raised when an XPath expression is syntactically incorrect."""
def __init__(self, message, filename=None, lineno=-1, offset=-1):
if filename:
message = '%s (%s, line %d)' % (message, filename, lineno)
Exception.__init__(self, message)
self.filename = filename
self.lineno = lineno
self.offset = offset
class PathParser(object):
"""Tokenizes and parses an XPath expression."""
_QUOTES = (("'", "'"), ('"', '"'))
_TOKENS = ('::', ':', '..', '.', '//', '/', '[', ']', '()', '(', ')', '@',
'=', '!=', '!', '|', ',', '>=', '>', '<=', '<', '$')
_tokenize = re.compile('("[^"]*")|(\'[^\']*\')|((?:\d+)?\.\d+)|(%s)|([^%s\s]+)|\s+' % (
'|'.join([re.escape(t) for t in _TOKENS]),
''.join([re.escape(t[0]) for t in _TOKENS]))).findall
def __init__(self, text, filename=None, lineno=-1):
self.filename = filename
self.lineno = lineno
self.tokens = [t for t in [dqstr or sqstr or number or token or name
for dqstr, sqstr, number, token, name in
self._tokenize(text)] if t]
self.pos = 0
# Tokenizer
@property
def at_end(self):
return self.pos == len(self.tokens) - 1
@property
def cur_token(self):
return self.tokens[self.pos]
def next_token(self):
self.pos += 1
return self.tokens[self.pos]
def peek_token(self):
if not self.at_end:
return self.tokens[self.pos + 1]
return None
# Recursive descent parser
def parse(self):
"""Parses the XPath expression and returns a list of location path
tests.
For union expressions (such as `*|text()`), this function returns one
test for each operand in the union. For patch expressions that don't
use the union operator, the function always returns a list of size 1.
Each path test in turn is a sequence of tests that correspond to the
location steps, each tuples of the form `(axis, testfunc, predicates)`
"""
paths = [self._location_path()]
while self.cur_token == '|':
self.next_token()
paths.append(self._location_path())
if not self.at_end:
raise PathSyntaxError('Unexpected token %r after end of expression'
% self.cur_token, self.filename, self.lineno)
return paths
def _location_path(self):
steps = []
while True:
if self.cur_token.startswith('/'):
if not steps:
if self.cur_token == '//':
# hack to make //* match every node - also root
self.next_token()
axis, nodetest, predicates = self._location_step()
steps.append((DESCENDANT_OR_SELF, nodetest,
predicates))
if self.at_end or not self.cur_token.startswith('/'):
break
continue
else:
raise PathSyntaxError('Absolute location paths not '
'supported', self.filename,
self.lineno)
elif self.cur_token == '//':
steps.append((DESCENDANT_OR_SELF, NodeTest(), []))
self.next_token()
axis, nodetest, predicates = self._location_step()
if not axis:
axis = CHILD
steps.append((axis, nodetest, predicates))
if self.at_end or not self.cur_token.startswith('/'):
break
return steps
def _location_step(self):
if self.cur_token == '@':
axis = ATTRIBUTE
self.next_token()
elif self.cur_token == '.':
axis = SELF
elif self.cur_token == '..':
raise PathSyntaxError('Unsupported axis "parent"', self.filename,
self.lineno)
elif self.peek_token() == '::':
axis = Axis.forname(self.cur_token)
if axis is None:
raise PathSyntaxError('Unsupport axis "%s"' % axis,
self.filename, self.lineno)
self.next_token()
self.next_token()
else:
axis = None
nodetest = self._node_test(axis or CHILD)
predicates = []
while self.cur_token == '[':
predicates.append(self._predicate())
return axis, nodetest, predicates
def _node_test(self, axis=None):
test = prefix = None
next_token = self.peek_token()
if next_token in ('(', '()'): # Node type test
test = self._node_type()
elif next_token == ':': # Namespace prefix
prefix = self.cur_token
self.next_token()
localname = self.next_token()
if localname == '*':
test = QualifiedPrincipalTypeTest(axis, prefix)
else:
test = QualifiedNameTest(axis, prefix, localname)
else: # Name test
if self.cur_token == '*':
test = PrincipalTypeTest(axis)
elif self.cur_token == '.':
test = NodeTest()
else:
test = LocalNameTest(axis, self.cur_token)
if not self.at_end:
self.next_token()
return test
def _node_type(self):
name = self.cur_token
self.next_token()
args = []
if self.cur_token != '()':
# The processing-instruction() function optionally accepts the
# name of the PI as argument, which must be a literal string
self.next_token() # (
if self.cur_token != ')':
string = self.cur_token
if (string[0], string[-1]) in self._QUOTES:
string = string[1:-1]
args.append(string)
cls = _nodetest_map.get(name)
if not cls:
raise PathSyntaxError('%s() not allowed here' % name, self.filename,
self.lineno)
return cls(*args)
def _predicate(self):
assert self.cur_token == '['
self.next_token()
expr = self._or_expr()
if self.cur_token != ']':
raise PathSyntaxError('Expected "]" to close predicate, '
'but found "%s"' % self.cur_token,
self.filename, self.lineno)
if not self.at_end:
self.next_token()
return expr
def _or_expr(self):
expr = self._and_expr()
while self.cur_token == 'or':
self.next_token()
expr = OrOperator(expr, self._and_expr())
return expr
def _and_expr(self):
expr = self._equality_expr()
while self.cur_token == 'and':
self.next_token()
expr = AndOperator(expr, self._equality_expr())
return expr
def _equality_expr(self):
expr = self._relational_expr()
while self.cur_token in ('=', '!='):
op = _operator_map[self.cur_token]
self.next_token()
expr = op(expr, self._relational_expr())
return expr
def _relational_expr(self):
expr = self._sub_expr()
while self.cur_token in ('>', '>=', '<', '>='):
op = _operator_map[self.cur_token]
self.next_token()
expr = op(expr, self._sub_expr())
return expr
def _sub_expr(self):
token = self.cur_token
if token != '(':
return self._primary_expr()
self.next_token()
expr = self._or_expr()
if self.cur_token != ')':
raise PathSyntaxError('Expected ")" to close sub-expression, '
'but found "%s"' % self.cur_token,
self.filename, self.lineno)
self.next_token()
return expr
def _primary_expr(self):
token = self.cur_token
if len(token) > 1 and (token[0], token[-1]) in self._QUOTES:
self.next_token()
return StringLiteral(token[1:-1])
elif token[0].isdigit() or token[0] == '.':
self.next_token()
return NumberLiteral(as_float(token))
elif token == '$':
token = self.next_token()
self.next_token()
return VariableReference(token)
elif not self.at_end and self.peek_token().startswith('('):
return self._function_call()
else:
axis = None
if token == '@':
axis = ATTRIBUTE
self.next_token()
return self._node_test(axis)
def _function_call(self):
name = self.cur_token
if self.next_token() == '()':
args = []
else:
assert self.cur_token == '('
self.next_token()
args = [self._or_expr()]
while self.cur_token == ',':
self.next_token()
args.append(self._or_expr())
if not self.cur_token == ')':
raise PathSyntaxError('Expected ")" to close function argument '
'list, but found "%s"' % self.cur_token,
self.filename, self.lineno)
self.next_token()
cls = _function_map.get(name)
if not cls:
raise PathSyntaxError('Unsupported function "%s"' % name,
self.filename, self.lineno)
return cls(*args)
# Type coercion
def as_scalar(value):
"""Convert value to a scalar. If a single element Attrs() object is passed
the value of the single attribute will be returned."""
if isinstance(value, Attrs):
assert len(value) == 1
return value[0][1]
else:
return value
def as_float(value):
# FIXME - if value is a bool it will be coerced to 0.0 and consequently
# compared as a float. This is probably not ideal.
return float(as_scalar(value))
def as_long(value):
return int(as_scalar(value))
def as_string(value):
value = as_scalar(value)
if value is False:
return ''
return str(value)
def as_bool(value):
return bool(as_scalar(value))
# Node tests
class PrincipalTypeTest(object):
"""Node test that matches any event with the given principal type."""
__slots__ = ['principal_type']
def __init__(self, principal_type):
self.principal_type = principal_type
def __call__(self, kind, data, pos, namespaces, variables):
if kind is START:
if self.principal_type is ATTRIBUTE:
return data[1] or None
else:
return True
def __repr__(self):
return '*'
class QualifiedPrincipalTypeTest(object):
"""Node test that matches any event with the given principal type in a
specific namespace."""
__slots__ = ['principal_type', 'prefix']
def __init__(self, principal_type, prefix):
self.principal_type = principal_type
self.prefix = prefix
def __call__(self, kind, data, pos, namespaces, variables):
namespace = Namespace(namespaces.get(self.prefix))
if kind is START:
if self.principal_type is ATTRIBUTE and data[1]:
return Attrs([(name, value) for name, value in data[1]
if name in namespace]) or None
else:
return data[0] in namespace
def __repr__(self):
return '%s:*' % self.prefix
class LocalNameTest(object):
"""Node test that matches any event with the given principal type and
local name.
"""
__slots__ = ['principal_type', 'name']
def __init__(self, principal_type, name):
self.principal_type = principal_type
self.name = name
def __call__(self, kind, data, pos, namespaces, variables):
if kind is START:
if self.principal_type is ATTRIBUTE and self.name in data[1]:
return Attrs([(self.name, data[1].get(self.name))])
else:
return data[0].localname == self.name
def __repr__(self):
return self.name
class QualifiedNameTest(object):
"""Node test that matches any event with the given principal type and
qualified name.
"""
__slots__ = ['principal_type', 'prefix', 'name']
def __init__(self, principal_type, prefix, name):
self.principal_type = principal_type
self.prefix = prefix
self.name = name
def __call__(self, kind, data, pos, namespaces, variables):
qname = QName('%s}%s' % (namespaces.get(self.prefix), self.name))
if kind is START:
if self.principal_type is ATTRIBUTE and qname in data[1]:
return Attrs([(self.name, data[1].get(self.name))])
else:
return data[0] == qname
def __repr__(self):
return '%s:%s' % (self.prefix, self.name)
class CommentNodeTest(object):
"""Node test that matches any comment events."""
__slots__ = []
def __call__(self, kind, data, pos, namespaces, variables):
return kind is COMMENT
def __repr__(self):
return 'comment()'
class NodeTest(object):
"""Node test that matches any node."""
__slots__ = []
def __call__(self, kind, data, pos, namespaces, variables):
if kind is START:
return True
return kind, data, pos
def __repr__(self):
return 'node()'
class ProcessingInstructionNodeTest(object):
"""Node test that matches any processing instruction event."""
__slots__ = ['target']
def __init__(self, target=None):
self.target = target
def __call__(self, kind, data, pos, namespaces, variables):
return kind is PI and (not self.target or data[0] == self.target)
def __repr__(self):
arg = ''
if self.target:
arg = '"' + self.target + '"'
return 'processing-instruction(%s)' % arg
class TextNodeTest(object):
"""Node test that matches any text event."""
__slots__ = []
def __call__(self, kind, data, pos, namespaces, variables):
return kind is TEXT
def __repr__(self):
return 'text()'
_nodetest_map = {'comment': CommentNodeTest, 'node': NodeTest,
'processing-instruction': ProcessingInstructionNodeTest,
'text': TextNodeTest}
# Functions
class Function(object):
"""Base class for function nodes in XPath expressions."""
class BooleanFunction(Function):
"""The `boolean` function, which converts its argument to a boolean
value.
"""
__slots__ = ['expr']
_return_type = bool
def __init__(self, expr):
self.expr = expr
def __call__(self, kind, data, pos, namespaces, variables):
val = self.expr(kind, data, pos, namespaces, variables)
return as_bool(val)
def __repr__(self):
return 'boolean(%r)' % self.expr
class CeilingFunction(Function):
"""The `ceiling` function, which returns the nearest lower integer number
for the given number.
"""
__slots__ = ['number']
def __init__(self, number):
self.number = number
def __call__(self, kind, data, pos, namespaces, variables):
number = self.number(kind, data, pos, namespaces, variables)
return ceil(as_float(number))
def __repr__(self):
return 'ceiling(%r)' % self.number
class ConcatFunction(Function):
"""The `concat` function, which concatenates (joins) the variable number of
strings it gets as arguments.
"""
__slots__ = ['exprs']
def __init__(self, *exprs):
self.exprs = exprs
def __call__(self, kind, data, pos, namespaces, variables):
strings = []
for item in [expr(kind, data, pos, namespaces, variables)
for expr in self.exprs]:
strings.append(as_string(item))
return ''.join(strings)
def __repr__(self):
return 'concat(%s)' % ', '.join([repr(expr) for expr in self.exprs])
class ContainsFunction(Function):
"""The `contains` function, which returns whether a string contains a given
substring.
"""
__slots__ = ['string1', 'string2']
def __init__(self, string1, string2):
self.string1 = string1
self.string2 = string2
def __call__(self, kind, data, pos, namespaces, variables):
string1 = self.string1(kind, data, pos, namespaces, variables)
string2 = self.string2(kind, data, pos, namespaces, variables)
return as_string(string2) in as_string(string1)
def __repr__(self):
return 'contains(%r, %r)' % (self.string1, self.string2)
class MatchesFunction(Function):
"""The `matches` function, which returns whether a string matches a regular
expression.
"""
__slots__ = ['string1', 'string2']
flag_mapping = {'s': re.S, 'm': re.M, 'i': re.I, 'x': re.X}
def __init__(self, string1, string2, flags=''):
self.string1 = string1
self.string2 = string2
self.flags = self._map_flags(flags)
def __call__(self, kind, data, pos, namespaces, variables):
string1 = as_string(self.string1(kind, data, pos, namespaces, variables))
string2 = as_string(self.string2(kind, data, pos, namespaces, variables))
return re.search(string2, string1, self.flags)
def _map_flags(self, flags):
return reduce(operator.or_,
[self.flag_map[flag] for flag in flags], re.U)
def __repr__(self):
return 'contains(%r, %r)' % (self.string1, self.string2)
class FalseFunction(Function):
"""The `false` function, which always returns the boolean `false` value."""
__slots__ = []
def __call__(self, kind, data, pos, namespaces, variables):
return False
def __repr__(self):
return 'false()'
class FloorFunction(Function):
"""The `ceiling` function, which returns the nearest higher integer number
for the given number.
"""
__slots__ = ['number']
def __init__(self, number):
self.number = number
def __call__(self, kind, data, pos, namespaces, variables):
number = self.number(kind, data, pos, namespaces, variables)
return floor(as_float(number))
def __repr__(self):
return 'floor(%r)' % self.number
class LocalNameFunction(Function):
"""The `local-name` function, which returns the local name of the current
element.
"""
__slots__ = []
def __call__(self, kind, data, pos, namespaces, variables):
if kind is START:
return data[0].localname
def __repr__(self):
return 'local-name()'
class NameFunction(Function):
"""The `name` function, which returns the qualified name of the current
element.
"""
__slots__ = []
def __call__(self, kind, data, pos, namespaces, variables):
if kind is START:
return data[0]
def __repr__(self):
return 'name()'
class NamespaceUriFunction(Function):
"""The `namespace-uri` function, which returns the namespace URI of the
current element.
"""
__slots__ = []
def __call__(self, kind, data, pos, namespaces, variables):
if kind is START:
return data[0].namespace
def __repr__(self):
return 'namespace-uri()'
class NotFunction(Function):
"""The `not` function, which returns the negated boolean value of its
argument.
"""
__slots__ = ['expr']
def __init__(self, expr):
self.expr = expr
def __call__(self, kind, data, pos, namespaces, variables):
return not as_bool(self.expr(kind, data, pos, namespaces, variables))
def __repr__(self):
return 'not(%s)' % self.expr
class NormalizeSpaceFunction(Function):
"""The `normalize-space` function, which removes leading and trailing
whitespace in the given string, and replaces multiple adjacent whitespace
characters inside the string with a single space.
"""
__slots__ = ['expr']
_normalize = re.compile(r'\s{2,}').sub
def __init__(self, expr):
self.expr = expr
def __call__(self, kind, data, pos, namespaces, variables):
string = self.expr(kind, data, pos, namespaces, variables)
return self._normalize(' ', as_string(string).strip())
def __repr__(self):
return 'normalize-space(%s)' % repr(self.expr)
class NumberFunction(Function):
"""The `number` function that converts its argument to a number."""
__slots__ = ['expr']
def __init__(self, expr):
self.expr = expr
def __call__(self, kind, data, pos, namespaces, variables):
val = self.expr(kind, data, pos, namespaces, variables)
return as_float(val)
def __repr__(self):
return 'number(%r)' % self.expr
class RoundFunction(Function):
"""The `round` function, which returns the nearest integer number for the
given number.
"""
__slots__ = ['number']
def __init__(self, number):
self.number = number
def __call__(self, kind, data, pos, namespaces, variables):
number = self.number(kind, data, pos, namespaces, variables)
return round(as_float(number))
def __repr__(self):
return 'round(%r)' % self.number
class StartsWithFunction(Function):
"""The `starts-with` function that returns whether one string starts with
a given substring.
"""
__slots__ = ['string1', 'string2']
def __init__(self, string1, string2):
self.string1 = string1
self.string2 = string2
def __call__(self, kind, data, pos, namespaces, variables):
string1 = self.string1(kind, data, pos, namespaces, variables)
string2 = self.string2(kind, data, pos, namespaces, variables)
return as_string(string1).startswith(as_string(string2))
def __repr__(self):
return 'starts-with(%r, %r)' % (self.string1, self.string2)
class StringLengthFunction(Function):
"""The `string-length` function that returns the length of the given
string.
"""
__slots__ = ['expr']
def __init__(self, expr):
self.expr = expr
def __call__(self, kind, data, pos, namespaces, variables):
string = self.expr(kind, data, pos, namespaces, variables)
return len(as_string(string))
def __repr__(self):
return 'string-length(%r)' % self.expr
class SubstringFunction(Function):
"""The `substring` function that returns the part of a string that starts
at the given offset, and optionally limited to the given length.
"""
__slots__ = ['string', 'start', 'length']
def __init__(self, string, start, length=None):
self.string = string
self.start = start
self.length = length
def __call__(self, kind, data, pos, namespaces, variables):
string = self.string(kind, data, pos, namespaces, variables)
start = self.start(kind, data, pos, namespaces, variables)
length = 0
if self.length is not None:
length = self.length(kind, data, pos, namespaces, variables)
return string[as_long(start):len(as_string(string)) - as_long(length)]
def __repr__(self):
if self.length is not None:
return 'substring(%r, %r, %r)' % (self.string, self.start,
self.length)
else:
return 'substring(%r, %r)' % (self.string, self.start)
class SubstringAfterFunction(Function):
"""The `substring-after` function that returns the part of a string that
is found after the given substring.
"""
__slots__ = ['string1', 'string2']
def __init__(self, string1, string2):
self.string1 = string1
self.string2 = string2
def __call__(self, kind, data, pos, namespaces, variables):
string1 = as_string(self.string1(kind, data, pos, namespaces, variables))
string2 = as_string(self.string2(kind, data, pos, namespaces, variables))
index = string1.find(string2)
if index >= 0:
return string1[index + len(string2):]
return ''
def __repr__(self):
return 'substring-after(%r, %r)' % (self.string1, self.string2)
class SubstringBeforeFunction(Function):
"""The `substring-before` function that returns the part of a string that
is found before the given substring.
"""
__slots__ = ['string1', 'string2']
def __init__(self, string1, string2):
self.string1 = string1
self.string2 = string2
def __call__(self, kind, data, pos, namespaces, variables):
string1 = as_string(self.string1(kind, data, pos, namespaces, variables))
string2 = as_string(self.string2(kind, data, pos, namespaces, variables))
index = string1.find(string2)
if index >= 0:
return string1[:index]
return ''
def __repr__(self):
return 'substring-after(%r, %r)' % (self.string1, self.string2)
class TranslateFunction(Function):
"""The `translate` function that translates a set of characters in a
string to target set of characters.
"""
__slots__ = ['string', 'fromchars', 'tochars']
def __init__(self, string, fromchars, tochars):
self.string = string
self.fromchars = fromchars
self.tochars = tochars
def __call__(self, kind, data, pos, namespaces, variables):
string = as_string(self.string(kind, data, pos, namespaces, variables))
fromchars = as_string(self.fromchars(kind, data, pos, namespaces, variables))
tochars = as_string(self.tochars(kind, data, pos, namespaces, variables))
table = dict(list(zip([ord(c) for c in fromchars],
[ord(c) for c in tochars])))
return string.translate(table)
def __repr__(self):
return 'translate(%r, %r, %r)' % (self.string, self.fromchars,
self.tochars)
class TrueFunction(Function):
"""The `true` function, which always returns the boolean `true` value."""
__slots__ = []
def __call__(self, kind, data, pos, namespaces, variables):
return True
def __repr__(self):
return 'true()'
_function_map = {'boolean': BooleanFunction, 'ceiling': CeilingFunction,
'concat': ConcatFunction, 'contains': ContainsFunction,
'matches': MatchesFunction, 'false': FalseFunction, 'floor':
FloorFunction, 'local-name': LocalNameFunction, 'name':
NameFunction, 'namespace-uri': NamespaceUriFunction,
'normalize-space': NormalizeSpaceFunction, 'not': NotFunction,
'number': NumberFunction, 'round': RoundFunction,
'starts-with': StartsWithFunction, 'string-length':
StringLengthFunction, 'substring': SubstringFunction,
'substring-after': SubstringAfterFunction, 'substring-before':
SubstringBeforeFunction, 'translate': TranslateFunction,
'true': TrueFunction}
# Literals & Variables
class Literal(object):
"""Abstract base class for literal nodes."""
class StringLiteral(Literal):
"""A string literal node."""
__slots__ = ['text']
def __init__(self, text):
self.text = text
def __call__(self, kind, data, pos, namespaces, variables):
return self.text
def __repr__(self):
return '"%s"' % self.text
class NumberLiteral(Literal):
"""A number literal node."""
__slots__ = ['number']
def __init__(self, number):
self.number = number
def __call__(self, kind, data, pos, namespaces, variables):
return self.number
def __repr__(self):
return str(self.number)
class VariableReference(Literal):
"""A variable reference node."""
__slots__ = ['name']
def __init__(self, name):
self.name = name
def __call__(self, kind, data, pos, namespaces, variables):
return variables.get(self.name)
def __repr__(self):
return str(self.name)
# Operators
class AndOperator(object):
"""The boolean operator `and`."""
__slots__ = ['lval', 'rval']
def __init__(self, lval, rval):
self.lval = lval
self.rval = rval
def __call__(self, kind, data, pos, namespaces, variables):
lval = as_bool(self.lval(kind, data, pos, namespaces, variables))
if not lval:
return False
rval = self.rval(kind, data, pos, namespaces, variables)
return as_bool(rval)
def __repr__(self):
return '%s and %s' % (self.lval, self.rval)
class EqualsOperator(object):
"""The equality operator `=`."""
__slots__ = ['lval', 'rval']
def __init__(self, lval, rval):
self.lval = lval
self.rval = rval
def __call__(self, kind, data, pos, namespaces, variables):
lval = as_scalar(self.lval(kind, data, pos, namespaces, variables))
rval = as_scalar(self.rval(kind, data, pos, namespaces, variables))
return lval == rval
def __repr__(self):
return '%s=%s' % (self.lval, self.rval)
class NotEqualsOperator(object):
"""The equality operator `!=`."""
__slots__ = ['lval', 'rval']
def __init__(self, lval, rval):
self.lval = lval
self.rval = rval
def __call__(self, kind, data, pos, namespaces, variables):
lval = as_scalar(self.lval(kind, data, pos, namespaces, variables))
rval = as_scalar(self.rval(kind, data, pos, namespaces, variables))
return lval != rval
def __repr__(self):
return '%s!=%s' % (self.lval, self.rval)
class OrOperator(object):
"""The boolean operator `or`."""
__slots__ = ['lval', 'rval']
def __init__(self, lval, rval):
self.lval = lval
self.rval = rval
def __call__(self, kind, data, pos, namespaces, variables):
lval = as_bool(self.lval(kind, data, pos, namespaces, variables))
if lval:
return True
rval = self.rval(kind, data, pos, namespaces, variables)
return as_bool(rval)
def __repr__(self):
return '%s or %s' % (self.lval, self.rval)
class GreaterThanOperator(object):
"""The relational operator `>` (greater than)."""
__slots__ = ['lval', 'rval']
def __init__(self, lval, rval):
self.lval = lval
self.rval = rval
def __call__(self, kind, data, pos, namespaces, variables):
lval = self.lval(kind, data, pos, namespaces, variables)
rval = self.rval(kind, data, pos, namespaces, variables)
return as_float(lval) > as_float(rval)
def __repr__(self):
return '%s>%s' % (self.lval, self.rval)
class GreaterThanOrEqualOperator(object):
"""The relational operator `>=` (greater than or equal)."""
__slots__ = ['lval', 'rval']
def __init__(self, lval, rval):
self.lval = lval
self.rval = rval
def __call__(self, kind, data, pos, namespaces, variables):
lval = self.lval(kind, data, pos, namespaces, variables)
rval = self.rval(kind, data, pos, namespaces, variables)
return as_float(lval) >= as_float(rval)
def __repr__(self):
return '%s>=%s' % (self.lval, self.rval)
class LessThanOperator(object):
"""The relational operator `<` (less than)."""
__slots__ = ['lval', 'rval']
def __init__(self, lval, rval):
self.lval = lval
self.rval = rval
def __call__(self, kind, data, pos, namespaces, variables):
lval = self.lval(kind, data, pos, namespaces, variables)
rval = self.rval(kind, data, pos, namespaces, variables)
return as_float(lval) < as_float(rval)
def __repr__(self):
return '%s<%s' % (self.lval, self.rval)
class LessThanOrEqualOperator(object):
"""The relational operator `<=` (less than or equal)."""
__slots__ = ['lval', 'rval']
def __init__(self, lval, rval):
self.lval = lval
self.rval = rval
def __call__(self, kind, data, pos, namespaces, variables):
lval = self.lval(kind, data, pos, namespaces, variables)
rval = self.rval(kind, data, pos, namespaces, variables)
return as_float(lval) <= as_float(rval)
def __repr__(self):
return '%s<=%s' % (self.lval, self.rval)
_operator_map = {'=': EqualsOperator, '!=': NotEqualsOperator,
'>': GreaterThanOperator, '>=': GreaterThanOrEqualOperator,
'<': LessThanOperator, '>=': LessThanOrEqualOperator}
_DOTSLASHSLASH = (DESCENDANT_OR_SELF, PrincipalTypeTest(None), ())
_DOTSLASH = (SELF, PrincipalTypeTest(None), ())
|