/usr/include/tcl8.6/tcl-private/generic/tclTomMath.h is in tcl8.6-dev 8.6.1-4ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 | /* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
*/
#ifndef BN_H_
#define BN_H_
#include "tclTomMathDecls.h"
#ifndef MODULE_SCOPE
#define MODULE_SCOPE extern
#endif
#ifndef MIN
# define MIN(x,y) ((x)<(y)?(x):(y))
#endif
#ifndef MAX
# define MAX(x,y) ((x)>(y)?(x):(y))
#endif
#ifdef __cplusplus
extern "C" {
/* C++ compilers don't like assigning void * to mp_digit * */
#define OPT_CAST(x) (x *)
#else
/* C on the other hand doesn't care */
#define OPT_CAST(x)
#endif
/* detect 64-bit mode if possible */
#if defined(NEVER) /* 128-bit ints fail in too many places */
# if !(defined(MP_64BIT) && defined(MP_16BIT) && defined(MP_8BIT))
# define MP_64BIT
# endif
#endif
/* some default configurations.
*
* A "mp_digit" must be able to hold DIGIT_BIT + 1 bits
* A "mp_word" must be able to hold 2*DIGIT_BIT + 1 bits
*
* At the very least a mp_digit must be able to hold 7 bits
* [any size beyond that is ok provided it doesn't overflow the data type]
*/
#ifdef MP_8BIT
#ifndef MP_DIGIT_DECLARED
typedef unsigned char mp_digit;
#define MP_DIGIT_DECLARED
#endif
typedef unsigned short mp_word;
#elif defined(MP_16BIT)
#ifndef MP_DIGIT_DECLARED
typedef unsigned short mp_digit;
#define MP_DIGIT_DECLARED
#endif
typedef unsigned long mp_word;
#elif defined(MP_64BIT)
/* for GCC only on supported platforms */
#ifndef CRYPT
typedef unsigned long long ulong64;
typedef signed long long long64;
#endif
#ifndef MP_DIGIT_DECLARED
typedef unsigned long mp_digit;
#define MP_DIGIT_DECLARED
#endif
typedef unsigned long mp_word __attribute__ ((mode(TI)));
# define DIGIT_BIT 60
#else
/* this is the default case, 28-bit digits */
/* this is to make porting into LibTomCrypt easier :-) */
#ifndef CRYPT
# if defined(_MSC_VER) || defined(__BORLANDC__)
typedef unsigned __int64 ulong64;
typedef signed __int64 long64;
# else
typedef unsigned long long ulong64;
typedef signed long long long64;
# endif
#endif
#ifndef MP_DIGIT_DECLARED
typedef unsigned int mp_digit;
#define MP_DIGIT_DECLARED
#endif
typedef ulong64 mp_word;
#ifdef MP_31BIT
/* this is an extension that uses 31-bit digits */
# define DIGIT_BIT 31
#else
/* default case is 28-bit digits, defines MP_28BIT as a handy macro to test */
# define DIGIT_BIT 28
# define MP_28BIT
#endif
#endif
/* define heap macros */
#if 0 /* these are macros in tclTomMathDecls.h */
#ifndef CRYPT
/* default to libc stuff */
# ifndef XMALLOC
# define XMALLOC malloc
# define XFREE free
# define XREALLOC realloc
# define XCALLOC calloc
# else
/* prototypes for our heap functions */
extern void *XMALLOC(size_t n);
extern void *XREALLOC(void *p, size_t n);
extern void *XCALLOC(size_t n, size_t s);
extern void XFREE(void *p);
# endif
#endif
#endif
/* otherwise the bits per digit is calculated automatically from the size of a mp_digit */
#ifndef DIGIT_BIT
# define DIGIT_BIT ((int)((CHAR_BIT * sizeof(mp_digit) - 1))) /* bits per digit */
#endif
#define MP_DIGIT_BIT DIGIT_BIT
#define MP_MASK ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1))
#define MP_DIGIT_MAX MP_MASK
/* equalities */
#define MP_LT -1 /* less than */
#define MP_EQ 0 /* equal to */
#define MP_GT 1 /* greater than */
#define MP_ZPOS 0 /* positive integer */
#define MP_NEG 1 /* negative */
#define MP_OKAY 0 /* ok result */
#define MP_MEM -2 /* out of mem */
#define MP_VAL -3 /* invalid input */
#define MP_RANGE MP_VAL
#define MP_YES 1 /* yes response */
#define MP_NO 0 /* no response */
/* Primality generation flags */
#define LTM_PRIME_BBS 0x0001 /* BBS style prime */
#define LTM_PRIME_SAFE 0x0002 /* Safe prime (p-1)/2 == prime */
#define LTM_PRIME_2MSB_ON 0x0008 /* force 2nd MSB to 1 */
typedef int mp_err;
/* you'll have to tune these... */
#if defined(BUILD_tcl) || !defined(_WIN32)
MODULE_SCOPE int KARATSUBA_MUL_CUTOFF,
KARATSUBA_SQR_CUTOFF,
TOOM_MUL_CUTOFF,
TOOM_SQR_CUTOFF;
#endif
/* define this to use lower memory usage routines (exptmods mostly) */
/* #define MP_LOW_MEM */
/* default precision */
#ifndef MP_PREC
# ifndef MP_LOW_MEM
# define MP_PREC 32 /* default digits of precision */
# else
# define MP_PREC 8 /* default digits of precision */
# endif
#endif
/* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */
#define MP_WARRAY (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1))
/* the infamous mp_int structure */
#ifndef MP_INT_DECLARED
#define MP_INT_DECLARED
typedef struct mp_int mp_int;
#endif
struct mp_int {
int used, alloc, sign;
mp_digit *dp;
};
/* callback for mp_prime_random, should fill dst with random bytes and return how many read [upto len] */
typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat);
#define USED(m) ((m)->used)
#define DIGIT(m,k) ((m)->dp[(k)])
#define SIGN(m) ((m)->sign)
/* error code to char* string */
/*
char *mp_error_to_string(int code);
*/
/* ---> init and deinit bignum functions <--- */
/* init a bignum */
/*
int mp_init(mp_int *a);
*/
/* free a bignum */
/*
void mp_clear(mp_int *a);
*/
/* init a null terminated series of arguments */
/*
int mp_init_multi(mp_int *mp, ...);
*/
/* clear a null terminated series of arguments */
/*
void mp_clear_multi(mp_int *mp, ...);
*/
/* exchange two ints */
/*
void mp_exch(mp_int *a, mp_int *b);
*/
/* shrink ram required for a bignum */
/*
int mp_shrink(mp_int *a);
*/
/* grow an int to a given size */
/*
int mp_grow(mp_int *a, int size);
*/
/* init to a given number of digits */
/*
int mp_init_size(mp_int *a, int size);
*/
/* ---> Basic Manipulations <--- */
#define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO)
#define mp_iseven(a) (((a)->used == 0 || (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO)
#define mp_isodd(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO)
/* set to zero */
/*
void mp_zero(mp_int *a);
*/
/* set to a digit */
/*
void mp_set(mp_int *a, mp_digit b);
*/
/* set a 32-bit const */
/*
int mp_set_int(mp_int *a, unsigned long b);
*/
/* get a 32-bit value */
unsigned long mp_get_int(mp_int * a);
/* initialize and set a digit */
/*
int mp_init_set (mp_int * a, mp_digit b);
*/
/* initialize and set 32-bit value */
/*
int mp_init_set_int (mp_int * a, unsigned long b);
*/
/* copy, b = a */
/*
int mp_copy(const mp_int *a, mp_int *b);
*/
/* inits and copies, a = b */
/*
int mp_init_copy(mp_int *a, mp_int *b);
*/
/* trim unused digits */
/*
void mp_clamp(mp_int *a);
*/
/* ---> digit manipulation <--- */
/* right shift by "b" digits */
/*
void mp_rshd(mp_int *a, int b);
*/
/* left shift by "b" digits */
/*
int mp_lshd(mp_int *a, int b);
*/
/* c = a / 2**b */
/*
int mp_div_2d(const mp_int *a, int b, mp_int *c, mp_int *d);
*/
/* b = a/2 */
/*
int mp_div_2(mp_int *a, mp_int *b);
*/
/* c = a * 2**b */
/*
int mp_mul_2d(const mp_int *a, int b, mp_int *c);
*/
/* b = a*2 */
/*
int mp_mul_2(mp_int *a, mp_int *b);
*/
/* c = a mod 2**d */
/*
int mp_mod_2d(const mp_int *a, int b, mp_int *c);
*/
/* computes a = 2**b */
/*
int mp_2expt(mp_int *a, int b);
*/
/* Counts the number of lsbs which are zero before the first zero bit */
/*
int mp_cnt_lsb(mp_int *a);
*/
/* I Love Earth! */
/* makes a pseudo-random int of a given size */
/*
int mp_rand(mp_int *a, int digits);
*/
/* ---> binary operations <--- */
/* c = a XOR b */
/*
int mp_xor(mp_int *a, mp_int *b, mp_int *c);
*/
/* c = a OR b */
/*
int mp_or(mp_int *a, mp_int *b, mp_int *c);
*/
/* c = a AND b */
/*
int mp_and(mp_int *a, mp_int *b, mp_int *c);
*/
/* ---> Basic arithmetic <--- */
/* b = -a */
/*
int mp_neg(const mp_int *a, mp_int *b);
*/
/* b = |a| */
/*
int mp_abs(mp_int *a, mp_int *b);
*/
/* compare a to b */
/*
int mp_cmp(const mp_int *a, const mp_int *b);
*/
/* compare |a| to |b| */
/*
int mp_cmp_mag(const mp_int *a, const mp_int *b);
*/
/* c = a + b */
/*
int mp_add(mp_int *a, mp_int *b, mp_int *c);
*/
/* c = a - b */
/*
int mp_sub(mp_int *a, mp_int *b, mp_int *c);
*/
/* c = a * b */
/*
int mp_mul(mp_int *a, mp_int *b, mp_int *c);
*/
/* b = a*a */
/*
int mp_sqr(mp_int *a, mp_int *b);
*/
/* a/b => cb + d == a */
/*
int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
*/
/* c = a mod b, 0 <= c < b */
/*
int mp_mod(mp_int *a, mp_int *b, mp_int *c);
*/
/* ---> single digit functions <--- */
/* compare against a single digit */
/*
int mp_cmp_d(const mp_int *a, mp_digit b);
*/
/* c = a + b */
/*
int mp_add_d(mp_int *a, mp_digit b, mp_int *c);
*/
/* c = a - b */
/*
int mp_sub_d(mp_int *a, mp_digit b, mp_int *c);
*/
/* c = a * b */
/*
int mp_mul_d(mp_int *a, mp_digit b, mp_int *c);
*/
/* a/b => cb + d == a */
/*
int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
*/
/* a/3 => 3c + d == a */
/*
int mp_div_3(mp_int *a, mp_int *c, mp_digit *d);
*/
/* c = a**b */
/*
int mp_expt_d(mp_int *a, mp_digit b, mp_int *c);
*/
/* c = a mod b, 0 <= c < b */
/*
int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c);
*/
/* ---> number theory <--- */
/* d = a + b (mod c) */
/*
int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
*/
/* d = a - b (mod c) */
/*
int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
*/
/* d = a * b (mod c) */
/*
int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
*/
/* c = a * a (mod b) */
/*
int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c);
*/
/* c = 1/a (mod b) */
/*
int mp_invmod(mp_int *a, mp_int *b, mp_int *c);
*/
/* c = (a, b) */
/*
int mp_gcd(mp_int *a, mp_int *b, mp_int *c);
*/
/* produces value such that U1*a + U2*b = U3 */
/*
int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3);
*/
/* c = [a, b] or (a*b)/(a, b) */
/*
int mp_lcm(mp_int *a, mp_int *b, mp_int *c);
*/
/* finds one of the b'th root of a, such that |c|**b <= |a|
*
* returns error if a < 0 and b is even
*/
/*
int mp_n_root(mp_int *a, mp_digit b, mp_int *c);
*/
/* special sqrt algo */
/*
int mp_sqrt(mp_int *arg, mp_int *ret);
*/
/* is number a square? */
/*
int mp_is_square(mp_int *arg, int *ret);
*/
/* computes the jacobi c = (a | n) (or Legendre if b is prime) */
/*
int mp_jacobi(mp_int *a, mp_int *n, int *c);
*/
/* used to setup the Barrett reduction for a given modulus b */
/*
int mp_reduce_setup(mp_int *a, mp_int *b);
*/
/* Barrett Reduction, computes a (mod b) with a precomputed value c
*
* Assumes that 0 < a <= b*b, note if 0 > a > -(b*b) then you can merely
* compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code].
*/
/*
int mp_reduce(mp_int *a, mp_int *b, mp_int *c);
*/
/* setups the montgomery reduction */
/*
int mp_montgomery_setup(mp_int *a, mp_digit *mp);
*/
/* computes a = B**n mod b without division or multiplication useful for
* normalizing numbers in a Montgomery system.
*/
/*
int mp_montgomery_calc_normalization(mp_int *a, mp_int *b);
*/
/* computes x/R == x (mod N) via Montgomery Reduction */
/*
int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
*/
/* returns 1 if a is a valid DR modulus */
/*
int mp_dr_is_modulus(mp_int *a);
*/
/* sets the value of "d" required for mp_dr_reduce */
/*
void mp_dr_setup(mp_int *a, mp_digit *d);
*/
/* reduces a modulo b using the Diminished Radix method */
/*
int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp);
*/
/* returns true if a can be reduced with mp_reduce_2k */
/*
int mp_reduce_is_2k(mp_int *a);
*/
/* determines k value for 2k reduction */
/*
int mp_reduce_2k_setup(mp_int *a, mp_digit *d);
*/
/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
/*
int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d);
*/
/* returns true if a can be reduced with mp_reduce_2k_l */
/*
int mp_reduce_is_2k_l(mp_int *a);
*/
/* determines k value for 2k reduction */
/*
int mp_reduce_2k_setup_l(mp_int *a, mp_int *d);
*/
/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
/*
int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d);
*/
/* d = a**b (mod c) */
/*
int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
*/
/* ---> Primes <--- */
/* number of primes */
#ifdef MP_8BIT
# define PRIME_SIZE 31
#else
# define PRIME_SIZE 256
#endif
/* table of first PRIME_SIZE primes */
#if defined(BUILD_tcl) || !defined(_WIN32)
MODULE_SCOPE const mp_digit ltm_prime_tab[];
#endif
/* result=1 if a is divisible by one of the first PRIME_SIZE primes */
/*
int mp_prime_is_divisible(mp_int *a, int *result);
*/
/* performs one Fermat test of "a" using base "b".
* Sets result to 0 if composite or 1 if probable prime
*/
/*
int mp_prime_fermat(mp_int *a, mp_int *b, int *result);
*/
/* performs one Miller-Rabin test of "a" using base "b".
* Sets result to 0 if composite or 1 if probable prime
*/
/*
int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result);
*/
/* This gives [for a given bit size] the number of trials required
* such that Miller-Rabin gives a prob of failure lower than 2^-96
*/
/*
int mp_prime_rabin_miller_trials(int size);
*/
/* performs t rounds of Miller-Rabin on "a" using the first
* t prime bases. Also performs an initial sieve of trial
* division. Determines if "a" is prime with probability
* of error no more than (1/4)**t.
*
* Sets result to 1 if probably prime, 0 otherwise
*/
/*
int mp_prime_is_prime(mp_int *a, int t, int *result);
*/
/* finds the next prime after the number "a" using "t" trials
* of Miller-Rabin.
*
* bbs_style = 1 means the prime must be congruent to 3 mod 4
*/
/*
int mp_prime_next_prime(mp_int *a, int t, int bbs_style);
*/
/* makes a truly random prime of a given size (bytes),
* call with bbs = 1 if you want it to be congruent to 3 mod 4
*
* You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
* have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
* so it can be NULL
*
* The prime generated will be larger than 2^(8*size).
*/
#define mp_prime_random(a, t, size, bbs, cb, dat) mp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?LTM_PRIME_BBS:0, cb, dat)
/* makes a truly random prime of a given size (bits),
*
* Flags are as follows:
*
* LTM_PRIME_BBS - make prime congruent to 3 mod 4
* LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)
* LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero
* LTM_PRIME_2MSB_ON - make the 2nd highest bit one
*
* You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
* have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
* so it can be NULL
*
*/
/*
int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat);
*/
/* ---> radix conversion <--- */
/*
int mp_count_bits(const mp_int *a);
*/
/*
int mp_unsigned_bin_size(mp_int *a);
*/
/*
int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c);
*/
/*
int mp_to_unsigned_bin(mp_int *a, unsigned char *b);
*/
/*
int mp_to_unsigned_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen);
*/
/*
int mp_signed_bin_size(mp_int *a);
*/
/*
int mp_read_signed_bin(mp_int *a, const unsigned char *b, int c);
*/
/*
int mp_to_signed_bin(mp_int *a, unsigned char *b);
*/
/*
int mp_to_signed_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen);
*/
/*
int mp_read_radix(mp_int *a, const char *str, int radix);
*/
/*
int mp_toradix(mp_int *a, char *str, int radix);
*/
/*
int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen);
*/
/*
int mp_radix_size(mp_int *a, int radix, int *size);
*/
/*
int mp_fread(mp_int *a, int radix, FILE *stream);
*/
/*
int mp_fwrite(mp_int *a, int radix, FILE *stream);
*/
#define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len))
#define mp_raw_size(mp) mp_signed_bin_size(mp)
#define mp_toraw(mp, str) mp_to_signed_bin((mp), (str))
#define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len))
#define mp_mag_size(mp) mp_unsigned_bin_size(mp)
#define mp_tomag(mp, str) mp_to_unsigned_bin((mp), (str))
#define mp_tobinary(M, S) mp_toradix((M), (S), 2)
#define mp_tooctal(M, S) mp_toradix((M), (S), 8)
#define mp_todecimal(M, S) mp_toradix((M), (S), 10)
#define mp_tohex(M, S) mp_toradix((M), (S), 16)
/* lowlevel functions, do not call! */
/*
int s_mp_add(mp_int *a, mp_int *b, mp_int *c);
*/
/*
int s_mp_sub(mp_int *a, mp_int *b, mp_int *c);
*/
#define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1)
/*
int fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
*/
/*
int s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
*/
/*
int fast_s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
*/
/*
int s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
*/
/*
int fast_s_mp_sqr(mp_int *a, mp_int *b);
*/
/*
int s_mp_sqr(mp_int *a, mp_int *b);
*/
/*
int mp_karatsuba_mul(mp_int *a, mp_int *b, mp_int *c);
*/
/*
int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c);
*/
/*
int mp_karatsuba_sqr(mp_int *a, mp_int *b);
*/
/*
int mp_toom_sqr(mp_int *a, mp_int *b);
*/
/*
int fast_mp_invmod(mp_int *a, mp_int *b, mp_int *c);
*/
/*
int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c);
*/
/*
int fast_mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
*/
/*
int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int mode);
*/
/*
int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int mode);
*/
/*
void bn_reverse(unsigned char *s, int len);
*/
#if defined(BUILD_tcl) || !defined(_WIN32)
MODULE_SCOPE const char *mp_s_rmap;
#endif
#ifdef __cplusplus
}
#endif
#endif
|